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First-spike coding promotes
accurate and e�cient spiking
neural networks for discrete
events with rich temporal
structures

Siying Liu*, Vincent C. H. Leung and Pier Luigi Dragotti

Communications and Signal Processing Group, Department of Electrical and Electronic Engineering,

Imperial College London, London, United Kingdom

Spiking neural networks (SNNs) are well-suited to process asynchronous event-

based data. Most of the existing SNNs use rate-coding schemes that focus on

firing rate (FR), and so they generally ignore the spike timing in events. On

the contrary, methods based on temporal coding, particularly time-to-first-spike

(TTFS) coding, can be accurate and e�cient but they are di�cult to train. Currently,

there is limited research on applying TTFS coding to real events, since traditional

TTFS-based methods impose one-spike constraint, which is not realistic for

event-based data. In this study, we present a novel decision-making strategy

based on first-spike (FS) coding that encodes FS timings of the output neurons

to investigate the role of the first-spike timing in classifying real-world event

sequences with complex temporal structures. To achieve FS coding, we propose a

novel surrogate gradient learning method for discrete spike trains. In the forward

pass, output spikes are encoded into discrete times to generate FS times. In the

backpropagation, we develop an error assignment method that propagates error

from FS times to spikes through a Gaussian window, and then supervised learning

for spikes is implemented through a surrogate gradient approach. Additional

strategies are introduced to facilitate the training of FS timings, such as adding

empty sequences and employing di�erent parameters for di�erent layers. We

make a comprehensive comparison between FS and FR coding in the experiments.

Our results show that FS coding achieves comparable accuracy to FR coding

while leading to superior energy e�ciency and distinct neuronal dynamics on

data sequences with very rich temporal structures. Additionally, a longer time

delay in the first spike leads to higher accuracy, indicating important information

is encoded in the timing of the first spike.

KEYWORDS

spiking neural networks, first-spike coding, firing rate coding, time-to-first-spike,

surrogate gradient, event-based data, temporal structures

1. Introduction

The emergence of event-driven neuromorphic devices has given further impetus

to the development of spiking neural networks (SNNs) (Anumula et al., 2018).

SNNs more closely mimic biological neural systems by processing and transmitting

information with sparse and asynchronous binary spikes (Pfeiffer and Pfeil, 2018). By

incorporating spike timing in their neuron model, SNNs have become effective tools

for acquiring and processing temporal information (Wang et al., 2020). Neuromorphic
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devices such as dynamic vision sensors (DVS) and dynamic audio

sensors (DAS) produce asynchronous events which are well-

suited to be used as the input of SNNs. Combining SNNs with

the output of neuromorphic devices can potentially enable the

development of power-efficient systems that more closely mimic

biological processing.

SNNs process a sequence of spikes in each layer, which is

referred to as spike trains. A spike train is mathematically defined

by s(t) =
∑

ti∈I
δ(t − ti), where ti represents the timing of

individual spikes in the set I . In terms of information encoding,

rate coding and temporal coding are two distinct approaches in

SNNs (Rullen and Thorpe, 2001; Huxter et al., 2003; Brette, 2015;

Kiselev, 2016; Liu and Wang, 2022). Rate coding focuses on the

firing rate (FR) of neurons, in which information is represented

by the average number of spikes within a certain time window.

Although it is widely used and effective, rate coding is less efficient

because it involves a great number of spikes and ignores the relative

timing between spikes, which encodes important information of

stimulus in visual (Gollisch and Meister, 2008), auditory (Heil,

2004; Fontaine and Peremans, 2009), and other systems (Panzeri

et al., 2001; Huxter et al., 2003). Alternatively, temporal coding

schemes rely on the precise timing of individual spikes, and this

potentially provides a faster and efficient way of processing and

transmitting signals. In particular, the first spike after a stimulus

(Panzeri et al., 2001; Johansson and Birznieks, 2004) is capable

of reliably conveying considerable information. This inspired

methods based on the time-to-first-spike (TTFS) coding, resulting

in fewer spikes and efficient computation (Bonilla et al., 2022;

Yu et al., 2023). In practice, most of these methods force each

neuron to fire at most one spike (Mostafa, 2018; Kheradpisheh

and Masquelier, 2020; Göltz et al., 2021; Mirsadeghi et al., 2021;

Zhou et al., 2021; Comşa et al., 2022) or assume there is a very

long refractory period after a spike (Kotariya and Ganguly, 2021)

to allow the computation of exact derivatives of postsynaptic spike

times with respect to presynaptic times. This means that these

networks can only process static inputs (Mostafa, 2018; Zhou

et al., 2021; Comşa et al., 2022; Sakemi et al., 2023), such as

spikes converted from intensity of each pixel in images, but not

a continuous stream of events. Hence, this type of single-spike

encoding is not biologically plausible.

In addition, there have been limited research on investigating

the temporal structures in neuromorphic data sequences and

SNNs. In the context of spiking signals, temporal structures

refer to the patterns, changes, or behaviors that occur over

time in the generation and transmission of these signals. Data

sequences containing rich temporal structures indicate that useful

information is encoded in the temporal domain. As shown

in Figure 1, various types of data produce varying degrees of

temporal structures, which can yield diverse results when using

different coding schemes. However, some widely used datasets lack

diverse temporal structures in their sequences because events are

generated by repeatedly moving a neuromorphic device around

static images, such as neuromorphic MNIST (N-MNIST), N-

Caltech101 (Orchard et al., 2015), and CIFAR10-DVS (Li et al.,

2017). Results presented by Iyer et al. (2021) illustrated that

rate-based SNNs outperform timing-based methods on N-MNIST

dataset. The authors argued that spike timings of sequences

in N-MNIST may not contain too much useful information.

Moreover, recent evidence (Jiang et al., 2023) indicates that timing-

based computation is superior in the task involving abundant

temporal information. As for TTFS coding, although some studies

focused on event data of static scenes (Park et al., 2020; Kotariya

and Ganguly, 2021), there have not been studies applying TTFS

coding to real event sequences that exhibit rich temporal structures.

We, therefore, propose a novel decision-making scheme based

on first-spike (FS) coding by encoding FS timings of output neurons

for real-world event sequences with rich temporal structures,

aiming to understand whether the timing of the FS plays a

distinct role and whether it exploits the temporal information

more effectively than FR. The FS coding differs from traditional

TTFS-based studies in that information is conveyed without relying

on exact timings, thereby eliminating the restriction of allowing

each neuron to fire at most once. Instead, we only encode

the timings of the fist spike in the output layer and use it in

the loss function for supervised learning. However, supervised

learning involving precise timing poses several challenges. First,

it is impractical to use continuous time encoding due to high

computational cost caused by the substantial number of events

generated by neuromorphic device. In addition, exact gradients

of continuous spike times with respect to spike trains are ill-

defined, which prevents the standard backpropagation process

used in conventional artificial neural networks (ANNs). Some

existing methods overcome this issue by estimating the derivatives

of continuous time with respect to membrane potential around

the threshold, such as SpikeProp (Bohte et al., 2002) and its

variations (Xu et al., 2013; Shrestha and Song, 2016, 2017) and

EventProp (Wunderlich and Pehle, 2021). Other methods utilize

the relationship between time and membrane potential to achieve

supervised learning of precise spike timing, such as probabilistic

models of firing intensity (Pfister et al., 2006; Gardner et al., 2015)

and implicit differentiation on the equilibrium state (Xiao et al.,

2020, 2023). Recent methods have made attempts to calculate

exact derivatives of the postsynaptic spike times with respect to

presynaptic spike times (Comşa et al., 2022) or potential (Zhang

et al., 2022). For example, Zhang et al. (2022) proposed a rectified

linear postsynaptic potential function to alleviate problems such

as non-differentiable spike function, exploding gradients and dead

neurons during backpropagation in deep SNNs utilizing temporal

coding. Most methods train the network to learn the timing of

desired spike trains, restricting its adaptability to diverse input

scenarios. Furthermore, the complicated rules of error propagation

and the dependency between spike times in these methods limit

their utilization in deep networks. Therefore, to simplify training

and alleviate the restrictions for spike times, we exclusively apply

discrete temporal coding to the output spikes in the final layer. In

this way, we can concentrate on error propagation from output FS

timings to subsequent spikes by leveraging the surrogate gradient

learning (Wu et al., 2018; Neftci et al., 2019; Yin et al., 2021) for

spikes. Specifically, the error of FS time in the output layer is

propagated to multiple spikes through a Gaussian window, and

then the SuperSpike method (Zenke and Ganguli, 2018), based on

surrogate gradient descent, is utilized to achieve the supervised

learning of spikes in the network. Additionally, this approach

enables a flexible configuration of the network architecture, which
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FIGURE 1

Event sequences with varying degrees of temporal structures (blue/red: positive/negative events). DVSGesture and DVSPlane are visual datasets that

heavily rely on the spatial information in decision-making. The sequences of DVSGesture are periodic in the temporal domain, while DVSPlane data

exhibits more complex temporal structures as it lacks temporal repetition. On the other hand, audio data sequences in SHD and N-TIDIGITS are

non-repetitive and it is di�cult to di�erentiate between classes solely based on spatial information. DVSGesture (Amir et al., 2017), SHD (Cramer

et al., 2022), N-TIDIGITS (Anumula et al., 2018), DVSPlane (Afshar et al., 2019).

can include a combination of convolutional layers and fully

connected (FC) structures with recurrent connections.

Another difficulty in training SNNs is dealing with neurons

that fail to generate any spikes within the given time window,

commonly referred to as inactive neurons. This issue is particularly

predominant in training based on the first-spike time, as the error

is only propagated through the first output spike. Consequently,

the weights associated with subsequent spikes cannot be updated,

leading to a lower firing rate and increasing inactivity in their

neurons. Additional strategies are usually necessary to solve this

problem, such as weight initialization (Bohte et al., 2002), large

penalty on inactive neurons (Mostafa, 2018; Comşa et al., 2022),

and synchronization pulses as temporal biases (Comşa et al., 2022).

Hence, in this study, we design strategies to facilitate the training

based on FS timings, specifically for event sequences. First, we

assign the error of inactive neurons across multiple steps rather

than just one. Second, the time window is enlarged by adding

empty sequences to reduce the number of inactive neurons that

generate spikes beyond the observed window due to significant

time delay. Finally, to enhance the performance of FS coding,

we apply smaller values of time constant and threshold in the

initial layers to effectively extract local features, while we use large

values in the final layers to facilitate decision-making based on

previous stimuli.

In the experiments, we make a comprehensive comparison

of FS and FR coding schemes on several commonly used visual

and auditory neuromorphic datasets, including DVSGesture (Amir

et al., 2017), SHD (Cramer et al., 2022), N-TIDIGITS (Anumula

et al., 2018), and DVSPlane (Afshar et al., 2019). These data

sequences demonstrate different levels of temporal structures,

as shown in Figure 1. Results show that FS coding achieves

comparable accuracy with FR coding, although typically with a

lower temporal delay. There is a trade-off between classification

accuracy and the first-spike latency. An appropriate temporal delay

allows the network to make accurate decisions after receiving

sufficient information. Furthermore, the FS models exhibit distinct

neuronal behavior on different types of data sequences. In

particular, the networks based on FS coding demonstrate enhanced

performance and superior energy efficiency on audio data

sequences with very rich temporal structures. On the other hand,

when processing visual data sequences containing repetitive signals

and rich spatial information, FS and FRmodels demonstrate similar

neuronal dynamics and produce similar spike counts.

2. Materials and methods

Consider a stream of events emitted by a neuromorphic sensor,

E = {ei, i = 1, 2, · · · ,M}, over a certain time window. An event

ei in continuous space and time can be represented as a function

ei(x, t) = piδ(x−xi, t− ti), which means that an event with polarity

pi is emitted at the location xi and at the timestamp ti. The polarity

pi = ±1 represents whether the brightness change is positive or

negative. To reduce computational cost, we transform E into a

discretized spatio-temporal representation E as the input of SNNs.

The input tensor contains T temporal bins by accumulating raw

events at a resolution of 1t. Each pixel location takes the number

of positive or negative events within each temporal bin. In this

setup, every pixel is associated with two channels to indicate the

polarity of events. As a result, for a vision sensor with an image

plane of dimensions H × W, the input E forms a 4-D tensor of

size 2 × H × W × T. As audio sensors have no polarity applied,

the input E is represented as a 2-D tensor with dimensions F × T,

where F denotes the number of channels for the audio sensor.

In terms of the coding schemes of SNNs, spike trains can be

encoded into different formats to convey information (Guo et al.,
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2021). Figure 2A presents the comparison of spike-based coding

schemes in decision-making. FR coding focuses on the average

spike count within a certain time window. In population coding,

several neurons in each population capture different features of

input stimuli over time, and their responses are combined to make

a decision (Panzeri et al., 2015). In burst coding, a burst of spikes

is emitted at one time, in which information is carried in the

spike count and the inter-spike interval within the burst (Izhikevich

et al., 2003). Traditional TTFS coding restricts each neuron to fire

at most once and information is conveyed in the exact timings,

while our FS coding only focuses on the first spike of output

neurons, since, in FS, the output neuron that fires first determines

the classification outcome.

A standard multi-layer SNN architecture is used in this study,

and is implemented using either convolutional layers or fully

connected layers based on the required task. The overall dynamics

is shown in Figure 2B. It takes the spatio-temporal representation

of events E as the input, and each neuron generates a spike train

of length T. In the output layer, FR or FS coding are used for

classification. The models using FR or FS coding are denoted as

the FR or FS model in the rest of the article. For the FR model,

the predicted class is determined by the highest firing rate. For the

FS model, output spike trains are encoded into temporal codes to

obtain FS timing for each neuron. The predicted class in this case

depends on the earliest spike across all the output neurons.

Our SNN model can be seen as a hybrid system in which

multiple spikes are transmitted in hidden layers, but only the

first output spike is utilized to make a decision. However, the

information within the hidden layers not only depends on the firing

rate (FR) of neurons but also considers the order in which the spikes

occur. This is because the first-spike timing is emphasized in the

output layer, introducing the aspect of spike order as an informative

factor. This distinguishes it from standard FR coding, where only

the spike count over a certain time window holds significance.

We introduce the SNN model with discrete time encoding in

Section 2.1, the error propagation through FS timings in Section

2.2, and strategies facilitating the training based on FS timings in

Section 2.3.

2.1. SNN model and time encoding

In this subsection, we introduce the current-based leaky

integrate-and-fire (CUBA-LIF) neuron model in Section 2.1.1 and

then extend it to a multi-layer SNN for event sequences in Section

2.1.2. In our SNN model, binary spikes are transmitted and

processed between layers, and discrete time encoding is applied

to the spike trains of the output layer to obtain the FS timings of

the system.

2.1.1. Neuron model
One of the most commonly used neuron model is the CUBA-

LIF neuron. Consider a set of presynaptic neurons j = 1, 2, · · · , J

connected to a postsynaptic neuron i, then the dynamics of the

CUBA-LIF model is as follows:

τs
dIi(t)

dt
= −Ii(t)+

∑

j

wij

∑

tj,m<t

δ(t − tj,m),

τm
dUi(t)

dt
= −(Ui(t)− Ur)+ Ii(t),

(1)

where τm and τs are the time constant of membrane potential U(t)

and synaptic current I(t), respectively, and δ(t) is the Dirac function

representing a spike function. Here, tj,m < t is the firing time of the

mth spike generated by the jth presynaptic neuron. Moreover, the

synaptic weight between neurons i and j is denoted as wij, and Ur is

the resting potential, where we set Ur = 0.

The condition that neuron i fires a spike is when the membrane

potential U(t) reaches a threshold θ . After spiking, the potential

drops below Ur and then recovers to Ur within a refractory period.

In our model, the refractory period is ignored, which means Ui(t)

is reset to Ur = 0 instantly.

2.1.2. SNN model with discrete time encoding
The CUBA-LIF neuron model is then discretized to construct

a multi-layer SNN. Given an SNN model with L layers, the

membrane potential U l,n is evolved through layers l = 1, 2, · · · , L

and time steps n = 1, 2, · · · ,T. When the membrane potential

of neuron i in layer l at time step n is greater than a threshold:

U l,n
i ≥ θ , a spike is generated and is denoted as sl,ni = 1. Otherwise

sl,ni = 0.

We follow the same discretization scheme used by Neftci et al.

(2019). The update of synaptic current Il,ni , membrane potential

U l,n
i , and spike firing from step n to n+ 1 are as follows:

Il,n+1
i =βIl,ni +

Q(l−1)
∑

j=1

wijs
l−1,n+1
j +

Q(l)
∑

k=1

viks
l,n+1
k

, (2)

U l,n+1
i = αU l,n

i (1− sl,ni )+ (1− α)Il,ni , (3)

sl,n+1
i = f (U l,n+1

i ), (4)

where α = e−
1t
τm and β = e−

1t
τs . Moreover, in our models,

τ = τs = τm. The last term in Eq. (2) represents optional recurrent

connections in the fully connected layer, where vik is the weight of

a recurrent connection between the kth and ith neuron in the same

layer l. The number of neurons in the lth layer is denoted asQ(l). In

Eq. (3), the membrane potentialU l,n
i is reset by multiplying 1− sl,ni .

Finally, the spiking process can be described as a step function of

the membrane potential:

s = f (U) =

{

1, U ≥ θ ,

0, U < θ .
(5)

The forward propagation of a single neuron is shown as solid

arrows in Figure 3A. The synaptic current, membrane potential,

and spikes are updated in both spatial and temporal domains using

Eqs (3), (4).

The output spike trains of the network can be encoded into

different formats for classification. To obtain FS timings of neurons,

temporal coding is required to obtain the spike timings. We,

therefore, apply discrete time encoding for spike trains of neurons
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FIGURE 2

Coding schemes and the SNN architecture. (A) Comparisons of di�erent spike-based coding in decision-making. Our proposed FS coding is only

applied to the output layer. (B) The SNN architecture for the classification problem using FR (top) and FS (bottom) coding for the output layer. The

input events are represented with spatio-temporal grids E. The output spike trains in the final layer are encoded into FR and FS timings for

classification. For FS coding, the predicted class corresponds to the neuron which fires the earliest spike, while for FR coding, the predicted class

corresponds to the neuron which fires more spikes.

in the last layer L. According to the time sequences, a spike is

encoded as its time step, but it is unclear how to encode a silent step

that does not generate a spike. Directly encoding it as infinity will

cause an error in the computation of the loss. We instead replace

it with a fixed large value, denoted as tinf , which should be greater

than T1t.

Specifically, the output time of the ith neuron at step n is

given by:

tL,ni = h(sL,ni ) =

{

n1t, sL,ni = 1,

tinf , sL,ni = 0,
(6)

where

tinf = (T + 1)1t. (7)

The discrete temporal coding process in the last layer L

is illustrated in Figure 3B. Spikes are encoded into discrete

timestamps in accordance with the time sequence, while other steps

are encoded with tinf .

Finally, the time of the first spike from the ith output neuron,

denoted as tFi , is given by the minimum of the temporal codes:

tFi = min
n

(tL,ni ). (8)

However, another concern arises when all the neurons fail to

fire within the time window. The network cannotmake a prediction

by the first spike, because it becomes challenging to determine

which neuron fires the first. To solve this problem, we utilize the

maximum membrane potential over time of each neuron Umax
i =

maxn(U
L,n
i ) to facilitate the prediction. The higher the membrane

potential, the higher the likelihood the neuron would fire earlier.

Therefore, the predicted label yP corresponds to either the neuron

that fires the first spike or the one with the highest membrane

potential if all the output neurons are inactive.

2.2. Backpropagation through FS timings

In this section, we propose a supervised learning framework for

FS coding. First, we define the loss function as the cross-entropy

loss based on the FS times of the output neurons. We use this to

minimize the FS time of the target neuron and maximize that of

non-target neurons:

LFS =−

C
∑

i=1

yi log
exp(−α0t

F
i )

∑C
j=1 exp(−α0t

F
j )

+ λt

∑

{i|tFi >T1t}

yi[exp(β0t
F
i )− 1],

(9)

where yi is the target label (0 or 1) of the ith class, C is the

number of output neurons (classes), and α0,β0 and λt are constant

coefficients, where α0 is used to control the speed of training and

prevent the exponential function from taking an excessively high

value. The second term is a constraint to penalize a target neuron

which never fires. For ease of notation, we use L to represent LFS

in the rest of the article.
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FIGURE 3

Forward and backward propagation in hidden and output layers. (A) Forward and backward propagation of a single neuron through spikes in the SNN

model. The jth neuron in layer l− 1 is connected to the ith neuron in layer l. Connections between s
l
i
and I

l
i
represent recurrent connections. (B)

iscrete temporal encoding and error assignment from time-to-spike of neuron i in the output layer L. Output spike train is encoded into discrete

times according to the time sequence, while the time of a silent step is encoded as a large value, denoted as tinf
i
. In the backpropagation, a Gaussian

filter is used to distribute error from one step to the others. (a) For a valid time of FS, the error ∂L

∂tF
i

is propagated to spikes sL,n
i

through a Gaussian

window; (b) for an inactive output neuron, the error is assigned to every time step. (c) As the Gaussian window size W increases, the error distribution

becomes more similar to the error generated by (d) FR, where each spike is assigned the same error.

To compare FS with FR coding, similarly, a cross-entropy loss

function maximizing the FR of the target neuron is used and is

given by:

LFR = −

C
∑

i=1

yi log
exp(α1fi)

∑C
j=1 exp(α1fj)

, (10)

where α1 is a constant value and fi =
1
T

∑T
n=1 s

L,n
i is the spike rate

within T steps of the ith neuron in the last layer L. Since the training

of FR usually does not suffer from inactive neurons, the constraint

used in Eq. (9) is not required here.

To learn the weights W = {wl
ij} and V = {vl

ik
}, since the

discretization described in Eqs (3), (4) effectively leads to an SNN

as visualized in Figure 3A, we can simply perform a standard

error backpropagation same as in conventional ANNs. However,

there remains two challenges for the learning process based on

FS timings. First, we have to propagate the error from the FS

time tFi to the postsynaptic spikes sL,ni at the output layer. We,

therefore, introduce a novel error assignment scheme in Section

2.2.1. Another obstacle is the non-differentiability of the spike

function in Eq. (4), which describes the relationship between

membrane potential and postsynaptic spikes. This can be overcome

by using a surrogate gradient to approximate that of the step

function (see Section 2.2.4).

2.2.1. Error propagation from FS times to spikes
The error of the FS time tFi is computed by the loss function,

denoted as ∂L

∂tFi
. To enable the flow of error throughout the entire

network, it is necessary to propagate the error for the single (first)
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step to all the associated spikes in the last layer. This process is

divided into two steps: first, from the FS time tFi to all steps tL,ni ,

and then from times tL,ni to spikes sL,ni . According to the chain rule,

the error of the spike in the output layer can be computed based on

the error of the FS time and related gradients as follows:

∂L

∂sL,ni

=
∂L

∂tFi

T
∑

m=1

∂tFi

∂tL,mi

∂tL,mi

∂sL,ni

. (11)

The key issue is to compute the gradient
∂tFi
∂tL,ni

and
∂tL,mi

∂sL,ni

.

Figure 3B illustrates the error assignment through these two steps.

2.2.2. From FS times to temporal codes
First, for active neurons, as the FS time is given by theminimum

of the temporal codes, the error of FS time is only related to the

corresponding time step, which means that the derivative of the FS

time with respect to temporal codes tL,ni is 1 only when tL,ni is the

first-spike time. Specifically,

∂tFi

∂tL,ni

=

{

1, tL,ni = tFi ,

0, otherwise.
(12)

However, for inactive neurons, propagating the error through

a single step will make the weights difficult to update. To address

this issue, the error ∂L

∂tFi
is assigned to all the other steps for inactive

neurons, which means
∂tFi
∂tL,ni

is always equal to 1. These two cases for

active and inactive neurons are illustrated in Figures 3B(a, b).

Note that the strategy for inactive neurons has opposite effects

on target and non-target neurons. This contrast arises from the

fact that the loss function aims to minimize the first-spike time

for target neurons while maximize it for non-target neurons.

Hence, assigning error to all time steps is equivalent to minimizing

(maximizing) the total firing time for target (non-target) neurons.

Consequently, this strategy promotes the activation of dormant

target neurons, while reinforcing the inactivity of non-target

neurons that are already inactive.

2.2.3. From temporal codes to spikes

The second gradient
∂tL,mi

∂sL,ni

cannot be computed directly.

In inference, temporal codes are exclusively linked to their

corresponding spikes at a single step. The timestamp tL,ni is

generated from sL,ni at the same step n. However, it is essential to

involve spikes occurring around step n (m 6= n) in the optimization

of spike time at step n. During the learning process, the change of

spike times results in the change of connections. If the optimization

only focuses on a single spike at step n and its corresponding

weights, the weight update would be inherently unstable. In the case

of target neurons, the learning process optimizes not only the spike

at step n but also the spikes and associated weights from earlier

steps (m < n) to reduce output times. For non-target neurons,

optimization should also involve spikes and related weights from

later steps (m > n). Furthermore, since spike times can only change

at most a few time steps at each iteration, the impact of error at step

n diminishes as the time step is far away from n. This means that

spikes closer to step n should receive a larger error assignment.

Therefore, a surrogate gradient needs to be designed to

distribute error from tL,mi to sL,ni . A Gaussian window is used to

ensure a smooth and gradual weight update. In addition, the error

of spikes should have an opposite sign to the error of times. The

reason is that decreasing the spike time is equivalent to increasing

the probability of spike firing in early steps, in other words,

increasing the value of spikes from 0 to 1. Specifically, our approach

is to distribute the error of time at step m to the spikes around it

through a negative Gaussian window:

∂tL,mi

∂sL,ni

= g(m− n), (13)

where g(x) is given by:

g(x) = −
A

2πσ
e
− x2

2σ2 , (14)

where A > 0 is the amplitude and σ = ⌊ TD⌋ is the standard

deviation, determined by the length of the sequence T and a

constant factor D.

The width of Gaussian window is determined by 3-sigma limit

and the length of whole sequence,W = min{6σ+1,T}. As depicted

in Figure 3B(c), when the factor D increases, both the standard

deviation σ and the window size W decrease, which means that

the error assignment only focuses on the time steps surrounding

the first spike. When D → ∞, σ → 0, and W → 1, the

error is only assigned to the current step. On the contrary, when

D → 0, σ → ∞, and W → T, the error is propagated to all

the steps with approximately the same value, which is similar to the

error propagation of the loss based on FR [see Figure 3B(d)]. The

parameters A and D are determined empirically. The value of A

should not be too small, usually around 2T, otherwise the training is

slow with a deteriorated performance. The values of D and window

size W have a significant impact on the performance which are

discussed further in Section 3.5.

2.2.4. Surrogate gradient descent training
through spikes

After propagating error from FS times to spikes in the output

layer, the error can be propagated through spikes in the rest of the

network. To solve the non-differentiability of the spike function, a

surrogate gradient (Zenke and Ganguli, 2018) is used to estimate

the derivative of postsynaptic spikes with respect to membrane

potential. Specifically, the gradient of the step function in Eq. (5)

is estimated using a fast sigmoid function in the backward pass:

f ′(U) ≈
1

(1+ ρ|U − θ |)2
. (15)

Having the error assignment from FS times to spikes and

surrogate gradients of spike function, the overall backpropagation

pipeline can be constructed. As shown in Figures 3A, B, the error

flows from time ∂L
∂tL,n

to spike ∂L
∂sL,n

in the last layer, given by

Eqs (12), (13). In each layer, the error of spikes ∂L

∂sl,n
is propagated

to membrane potential ∂L

∂U l,n through the surrogate gradient in
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Eq. (15) and then the error of synaptic current ∂L

∂Il,n
can be

calculated. Finally, the derivative of error with respect to weights

W
l,V l in each layer are calculated by taking the derivative of

Eq. (2):

∂L

∂W l
=

T
∑

n=1

∂L

∂Il,n

∂Il,n

∂Wn =

T
∑

n=1

∂L

∂Il,n
s
l−1,n, (16)

and

∂L

∂V l
=

T
∑

n=1

∂L

∂Il,n

∂Il,n

∂Vn =

T
∑

n=1

∂L

∂Il,n
s
l,n. (17)

2.3. Strategies facilitating training based on
FS timings

In addition to the computation of gradients, parameter

initialization is also crucial to the training of SNNs. Time constant

τ , threshold θ , temporal resolution 1t, the length of the sequence

T, and weight initialization have a great impact on the results. In

addition, training based on FS timings is more challenging because

only focusing on the first spike leads to more inactive neurons

during training. Thus, apart from the error assignment from time-

to-spike described in Section 2.2.1, other strategies can be used in

parameter settings to facilitate the training process.

2.3.1. Di�erent time constants and thresholds for
feature extraction and decision

An appropriate time constant τ and threshold θ can enhance

the performance of the system, which determine the firing rate and

neuron activity in the system. Empirically, we found that smaller

values of τ and θ in the first few layers but larger values for the final

layers leads to better performance on FS coding, which is consistent

with our intuition. Figure 4A illustrates the responses of neurons

with different τ and θ to the same input sequences. The neuron

with a small value of τ has a short memory due to the rapid decay

of its membrane potential. Meanwhile, a small θ is used to maintain

a high firing rate, thereby facilitating the transmission of sufficient

information. Therefore, small values of τ and θ are well-suited for

capturing local features in the initial layers.

On the contrary, the final layer requires a longer delay to make

a correct decision after enough information is accumulated. We

can see from Figure 4A that large values of τ and θ can help

keep a longer memory of previous stimuli, ensuring the target

output neuron fires the first spike after receiving enough spikes

from previous layers. Experiments in Section 3.3 confirm that an

appropriate longer time delay of the first spike leads to higher

accuracy of prediction.

2.3.2. Extension of time window with empty
sequences

One of the challenges in training FS-coded model is dealing

with inactive neurons. Having too many inactive neurons in the

network will stop the gradient flow and hamper the update of

weights, making the training more difficult. In the output layer,

particularly, there is no precise timing for the optimization of

inactive neurons. However, we found that some of them are only

inactive due to delay between layers which leads to spikes beyond

the observed time window, as visualized in Figure 4B.

We thus extend the input window by appending an empty

sequence to the end during training. We can see from Figure 4B

that the empty sequence allows the output neuron to fire a later

spike outside the original window. The length of empty sequence

TE is determined by time constant τ of the last layer empirically.

Usually, a network with a larger time constant is more likely to

exhibit a longer delay, therefore, a larger TE should be used in that

case. Note that this strategy is only used to facilitate training, and it

is useful to enhance accuracy when τ in the last layer is very large

and the original window size is relatively small. The downside of

this approach is a higher computation workload and a longer delay

of the target FS (see Section 3.3). For the experiments in Section 3,

we set TE = 0 unless otherwise specified.

3. Results

3.1. Experimental settings

We compare models using FS and FR coding schemes on

classification tasks. We avoid using unrealistic datasets, such as

N-MNIST (Orchard et al., 2015) and CIFAR10-DVS (Li et al.,

2017), in which the first spike is not meaningful because events are

generated by moving neuromorphic device around static images

and there are no significant temporal differences in their sequences

(Iyer et al., 2021). Instead, we test our model on realistic datasets

in which important information is encoded in spike timings. For

visual datasets DVSGesture (Amir et al., 2017) and DVSPlane

(Afshar et al., 2019), events are generated by real cameras capturing

dynamic scenes. For auditory datasets N-TIDIGITS (Anumula

et al., 2018) and SHD (Cramer et al., 2022), spikes are derived

by converting existing datasets using a neuromorphic device or a

realistic simulator. As shown in Figure 1, the temporal structures

of event sequences in these datasets are different. For example,

auditory signals in SHD and N-TIDIGITS are non-repetitive and

the temporal complexity is much higher than visual datasets, since

spatial information is crucial in the prediction of visual data. In

addition, signals in DVSGesture contain repetitive information,

in which a person performs the same gesture several times.

By contrast, DVSPlane exhibits more temporal complexity since

the movement is not periodic. We observed that FS and FR

models exhibit different behavior on these signals with varying

temporal structures.

In our settings, the architecture and parameters vary among

different tasks. Note that our aim is to make a comparison

between FR and FS codings rather than seeking highest accuracy,

hence relatively simple architectures are used in our study. The

notation of architecture remains consistent throughout the article.

For example, [2,32,32]-32C5S2-P2-64C3-FC128(R)-10 represents a

network with a [2,32,32] input, where the first convolutional (C)

layer contains 32 kernels (5 × 5) with a stride (S) of 2, followed

by a max pooling (P) (2 × 2) and 64 convolutional kernels (3

× 3) with a stride of 1 (default), and finally a fully connected

(FC) layer with 128 neurons with 10 recurrent (R) connection and
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FIGURE 4

Illustrations of strategies to facilitate training with the FS loss. (A) Dynamics of neurons with di�erent time constant τ and threshold θ . (Top) Input

spike sequence (all the weights are equal to 1). (Middle) The neuron with τ = 5ms, θ = 0.5 responds rapidly to local features. (Bottom) The neuron

with large parameters τ = 50ms, θ = 2 keeps a longer memory of input signals. (B) Illustration of how an active neuron with a large time delay can be

seen as inactive. We can see that there exists a delay for spikes propagating down the network, causing the neuron to fail to fire a spike within the

input window. By extending the time window with an empty sequence, the inactive neuron becomes active.

output classes. Weights are all initialized using Xavier uniform

distribution, and the Adam optimizer with a weight decay of 1e−4

is used. The parameter of surrogate gradient ρ is set to 5 in all the

cases. Notations for learning rate, batch size, and the number of

epochs are η, B, and Nep, respectively. We denote time constant

and threshold as τ1 and θ1 for those used in feature extraction, and

as τ2 and θ2 for those used in decision process. In a convolutional

SNN, τ1/θ1 are used in convolutional and pooling layers, and

τ2/θ2 are used in FC layers. For FC architecture, τ1/θ1 are used

in hidden layers while τ2/θ2 are used in the output layer. In our

experiments, τ1/θ1/θ2 are determined empirically to obtain the

optimal results. The value of τ2 affects time delay and accuracy

significantly, whereas the value of θ2 does not have a great impact

on the performance when τ2 is fixed.We, therefore, focus on τ2 and

test different values with τ2 = µτ1. Further details are introduced

in the following and in Table 1.

3.1.1. DVSGesture dataset
DVSGesture (Amir et al., 2017) is captured by DVS128 camera,

including 11 hand gestures recorded under three different lighting

conditions. Since gestures in the last class are random, we only

take the first 10 classes. Recordings are split into 1,078 and 264

samples for training and testing, respectively. Each sequence is

around 6 s, we clip 1.2 s in training and 2.5 s for testing, with

a temporal resolution 1t = 10 ms. The frame size is 128 ×

128, which is downsampled by 4 for the input. The architecture is

[2,32,32]-64C3-128C3-P2-128C3-P2-FC128(R)-10.

3.1.2. SHD dataset
Spiking Heidelberg Dataset (SHD) is a dynamic audio dataset

generated using Lauscher, an artificial cochlea model, including 20

classes of spoken digits from 0 to 9 in both German and English
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TABLE 1 Hyperparameters for di�erent tasks.

Neuron FS FR Training

1t τ1 θ1 θ2 α0 λ β0 A D α1 η Nep B

DVSGesture 10 ms 50 ms 0.5 1 0.1 0.01 0.02 300 4 10 1e−4 40 16

SHD 10 ms 50 ms 5 10 0.2 0.01 0.02 200 16 20 1e−3 80 128

N-TIDIGITS 5 ms 25 ms 1 2 0.1 0.01 0.02 500 16 20 1e−3 200 128

DVSPlane 2 ms 10 ms 0.5 2 0.1 0.01 0.02 500 8 15 3e−4 50 16

languages. A total of 7,736 samples are used for training and 2,264

samples for testing. Each sequence is around 1 s. We clip 0.8 s

and 1 s in training and testing, respectively, and 1t = 10 ms.

The architecture is 700-FC256(R)-20, in which the time constant

in the hidden layer is initialized with τ1 but related variables α,β

are trainable using the method by Perez-Nieves et al. (2021).

3.1.3. N-TIDIGITS dataset
N-TIDIGITS Dataset (Anumula et al., 2018) transforms

TIDIGITS dataset into spikes with the dynamic audio sensor,

CochleaAMS1b. It includes 11 classes of spoken numbers 0–9 and a

word “oh." The length of sequences is around 0.08–2.46 s but most

of the sequences are <1.2 s. 1t = 5ms and T = 250 are used in all

sequences. Training and testing datatsets include 2,463 and 2,486

samples, respectively. The architecture is 64-FC256(R)-FC256(R)-

11, in which time constant in hidden layers are trainable.

3.1.4. DVSPlane dataset
DVSPlane dataset (Afshar et al., 2019) is captured by an

asynchronous time-based image sensor (ATIS). Here, four different

airplane models are dropped free-hand from varying heights and

distances in front of the camera. The length of sequences is 242

± 21 ms. We set 1t = 2 ms and T = 100 in training, and

T = 120 in testing. The 800 samples are split into 640 and

160 samples for training and testing. The image with a size of

304 × 240 is downsampled by 4 as input. The architecture is

[2,76,60]-32C5S2-64C3-P2-128C3-P2-FC256(R)-4.

3.1.5. Evaluation
The results are compared in terms of accuracy, time delay, and

spike count. If not specified, the accuracy of the FS or FR model is

evaluated in a manner that is consistent with its training.

As shown in Figure 5, the accuracy increases with longer time

window. We, therefore, evaluate time delay as time when reaching

50 or 90% of the peak accuracy within the given time window,

denoted as td(50%) and td(90%), respectively.

In terms of energy consumption, many studies calculate the

number of synaptic operations as a measure. However, these

metrics are usually employed when comparing power consumption

between SNNs and ANNs, or between different architectures.

They usually involve multiplying the number of connections by

spikes (Wu et al., 2022), or factoring in firing rate, time step, and

FLOPs (Zhou et al., 2023). Nonetheless, in our settings, we only

change the coding scheme in the output layer while maintaining

FIGURE 5

An example of accuracy variation with increasing time window size.

The time delay td is evaluated using the time when the accuracy

reaches 50% (dashed line) or 90% (dotted line) of the peak value

within the given time window.

the same architectures. In addition, FS coding scheme does

not introduce additional operations during inference. Therefore,

energy consumption mainly depends on the spike count in the

system. Here, we use the average number of spikes per neuron in

the system (denoted as Ns) to evaluate power consumption.

Furthermore, to test the required number of spikes for correct

classification, an optional constraint for the spike count is added

in the loss function to constrain the total number of spikes in the

system, i.e., Ls = λs|Ns − Ñs|, where Ñs is the target average

spike count per neuron and λs is a constant value. The range of

λs extends from 0.1 to 3, and we empirically adjusted it for various

FS and FR models. Results under different spike count constraints

are discussed in Sections 3.3 and 3.4.

3.2. Results overview

We compare the results of models using FS and FR codings,

respectively, on the four datasets. During the training of FS models,

an empty sequence is added with lengths TE = 40 and TE = 20

for DVSGesture and SHD data sequences, respectively. As shown

in Table 2, we can see that the FS model demonstrates comparable

performance with the FR model. We also tested different time

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1266003
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1266003

constant τ2 for decision layers. For FS models, a larger τ2 leads

to a higher accuracy on both metrics, but the time delay td also

increases. In contrast, for FRmodels, τ2 does not affect the accuracy

significantly. It seems that a longer first-time latency encodes more

information. The relationship between accuracy and time delay is

further discussed in Section 3.3. In addition, the response time td
of the FR model is shorter than the FS model overall. Note that the

disparity between time delays for FR and FS models is large when

reaching 50% accuracy, but the gap is reduced when achieving 90%

of the best performance in some cases, especially for models with

small time constants.

One benefit of using FS coding is the reduction in the number

of spikes, thereby leading to better energy efficiency. We can see

from Table 2 that the number of spikesNs in an FS system is usually

smaller than the number in an FR system, especially for SHD and

N-TIDIGITS classification. Further experiments demonstrate that

FS models are robust with fewer spikes, as shown in Section 3.4.

Furthermore, we generated the output spike raster plots to

analyze the neuronal activities of the FS and FR systems. As

depicted in Figure 6, non-target neurons of an FS model fire

fewer spikes than an FR model, which reduces the likelihood of

misclassification based on FR. The reason is that the first time of the

non-target neuron is optimized to the end of the sequence, which

reduces the probability of firing in the whole sequence significantly.

This phenomenon allows the FS model to make decisions based

on FR as well. Further results on data sequences with different

temporal structures are analyzed in Section 3.5.

To validate the effectiveness of FS coding, further experiments

are conducted onmodels using adaptive LIF neurons in Section 3.6.

3.3. Trade-o� between accuracy and time
delay

During training, we found that it is easier to train FS models

when time constant is relatively large and a proper empty sequence

is added. Results also indicate that there is a trade-off between

accuracy and response time. The two main factors that affect time

delay, time constant and length of empty sequences, are analyzed in

the following.

3.3.1. Time constant
As observed from Table 2, the FS model with a larger time

constant τ2 in the last layers leads to higher accuracy and fewer

spikes in the system overall, but at a cost of longer time delay.

3.3.2. Time window and empty sequence
Another factor that affects time delay is the length of the input

time window, which is determined by the original length of data T

and the length of added empty sequence TE. First, we used a fixed

T and tested different TE values on the DVSGesture dataset. The

model with τ2 = 12τ1 is tested because the empty sequence is added

only when the original window size T is relatively small for a long

time delay (large τ2). As shown in Table 3, an increasing TE leads to

a longer time delay and a higher overall accuracy.

Furthermore, different length T of input data is tested for the

model with τ2 = τ1, where TE = 0 for all the trials. The second

column in Table 3 shows that the accuracy is higher with a larger

window size.

3.3.3. Accuracy vs. time delay under spike count
constraints

We further imposed different spike count constraints to FS and

FR models with different time constant τ2. The time delay and

corresponding accuracy of each trial are displayed in Figure 7. We

can see that the time delay is mainly determined by time constant.

FRmodels usually exhibit shorter time delay than FSmodels, except

for DVSPlane. It is clear that FS models for SHD and N-TIDIGITS

datasets achieve higher accuracy with longer time delay. The spike

raster plots of SHD and N-TIDIGITS classifications in Figure 6

also indicate that FS models achieve higher accuracy with longer

time delays and fewer spikes, while FR models respond faster but

more spikes produced by non-target neurons interfere with the

classification. For DVSGesture and DVSPlane datasets, although

the relationship between FS and FR models is not obvious, the best

FS results are generated when we have larger temporal latency.

It is also worth noting that there are points with longer

td but lower accuracy under the same time constant. These

points represent the models with smaller number of spikes, which

highlights that time delay tends to be longer with fewer spikes.

Overall, fewer spikes in the system usually lead to a lower accuracy

and longer time delay. The relationship between accuracy and spike

count is further discussed in Section 3.4.

To summarize, appropriate time delay ensures that the first

spike makes a correct decision. In other words, the first spike

encodes more information with a longer time delay. However, a

model with a larger τ2 has a risk of lacking sufficient spikes to

make a decision due to a lower output firing rate. In addition, it

becomes more difficult to improve the accuracy as the cost of time

delay increases, because the accuracy is not only determined by

time delay but also limited by the model itself and other factors.

3.4. Energy e�ciency

In SNNs, the power consumption mainly depends on the

mean spike activity and the number of synaptic operations

(Parameshwara et al., 2021). When deploying SNNs on

neuromorphic hardware such as the Intel Loihi (Davies et al.,

2018), reducing the number of spikes in the systems could leads to

gains in energy efficiency.

Table 2 illustrates that FS systems produce fewer spikes than

FR systems overall, especially on SHD and N-TIDIGITS datasets.

DVSGesture and DVSPlane classifications with CNN architecture

generate approximately the same number of spikes in both systems.

The FS system with a larger time constant is usually more energy

efficient, while the FR system generates fewer spikes with a

smaller τ2.

As mentioned in Section 3.3, reducing the number of

spikes through a spike count constraint results in a decline in

performance. Figure 8 presents the relationship between accuracy
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TABLE 2 Comparison of FR and FS models with di�erent time constant τ2 for decision layers (τ2 = µτ1) in terms of accuracy (Acc), spike count (Ns), and

time delay (td).

Trained using FR Trained using FS

µ Acc(%)↑ Ns ↓ td(50%) ↓ td(90%) ↓ Acc (%)↑ Ns ↓ td(50%) ↓ td(90%) ↓

DVSGesture

1 94.0 10.0 36.2 58.6 90.1 10.2 38.2 56.8

4 94.2 9.5 41.6 58.8 89.7 9.6 41.8 59.0

12 95.1 11.0 45.4 60.2 92.8 8.9 61.6 77.6

SHD

1 79.3 26.8 28.8 46.2 78.3 24.9 33.8 47.2

4 78.8 31.0 30.8 47.2 85.5 12.6 48.4 67.0

12 77.8 35.7 33.0 49.4 87.6 9.0 58.0 74.8

N-TIDIGITS

1 88.2 10.6 74.4 133.0 87.6 12.1 88.0 129.4

4 88.7 11.4 76.6 136.8 89.3 5.4 94.4 137.8

8 88.1 11.5 80.6 139.4 89.3 5.2 98.2 144.0

DVSPlane

1 83.0 1.3 57.6 84.4 87.6 2.0 52.0 65.2

4 85.4 1.5 68.0 85.8 90.5 2.0 54.6 67.6

8 89.3 1.8 67.8 82.8 92.7 1.9 62.0 77.0

The results are the average of 5 trials. The bold values represent the best results obtained when comparing the FR and FS systems for each dataset.

FIGURE 6

Representative output spike raster plots of correct prediction using models trained with FR (above, blue) and FS (bottom, red), respectively, τ2 = 4τ1

in all the models. Training with FR leads to faster responses but non-target neurons fire more spikes, while the FS coding leads to lower firing rate and

reduces the likelihood of misclassification because non-target neurons fire fewer spikes.

TABLE 3 Results of DVSGesture classification with di�erent length of data sequence T and added empty sequence TE (Nep = 50).

T = 120, τ2 = 12τ1 TE = 0, τ2 = τ1

TE Acc(%) ↑ td(50%) ↓ td(90%) ↓ T Acc (%) ↑ td(50%) ↓ td(90%) ↓

0 92.4 59 82 60 81.1 29 35

20 93.6 64 95 80 86.0 35 44

40 93.6 65 97 100 88.3 36 48

60 93.9 66 99 120 90.9 38 53

80 93.9 77 114 140 89.4 48 82

A larger window size T + TE leads to higher accuracy but a longer time delay. The bold values represent the best results in each column.

and average spike countNs for models with different time constants

τ2, in which red and blue curves represent results of FS and

FR models, respectively. We can see that the accuracy of FR

models decreases significantly overall, while the FS modes is more

stable with fewer spikes, especially for SHD and N-TIDIGITS

tasks. For DVSGesture dataset, the original spike counts of FS

and FR models are close, so accuracy of both models drops

as the spike count decreases. Note that the original Ns of FS

models is larger than FR models in DVSPlane classification,

but the accuracy of FR models decreases more significantly.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1266003
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1266003

FIGURE 7

Relationship between accuracy and time delay td for models with di�erent time constants τ2 under di�erent spike count constraints. Red: FS models.

Blue: FR models. Darker colors indicate results with larger target average spike count Ñs.

In addition, the FS model with a large τ2 is more robust to

reduced number of spikes. Overall, FS models with a large time

constant are more energy efficient and more robust to the spike

count constraint.

3.5. Performance and behavior on event
sequences with di�erent temporal
structures

From Table 2, we can see that the performance varies on

different datasets. Overall, the FS system model outperforms the

FR model on SHD/N-TIDIGITS/DVSPlane datasets, whereas its

performance on DVSGesture task is relatively inferior. These

differences are due to different temporal structures in the

input sequences. As illustrated in Figure 1, in the DVSGesture

dataset, the same gesture is repeated several times. The target

neuron is expected to keep firing and make a consistent

decision. In contrast, the data pattern of the audio data is non-

repetitive. The frequencies of spoken digit numbers are changing

over time within a short period, so that the neuron do not

have to keep firing after a prediction has been made. Data

sequences in DVSPlane are also non-repetitive, but the spatial

features do not change significantly during the dropping of

an airplane.

3.5.1. Neuron activities
To better compare the firing patterns between FS and FR

models, apart from Figure 6, we aggregated all the output spikes

generated in response to different input signals for each class in

a single raster plot, as shown in Figure 9. Each color corresponds

to the output spikes from a single trial. An ideal case is that each

neuron generates spikes of only one color, such as FS-DVSGesture

in Figure 9. This indicates that only the target neuron is active while

the other neurons remain inactive. On the other hand, mixed colors

(such as FR-SHD) indicate that the non-target neurons fire more

spikes thereby affecting classification.

As shown in Figures 6, 9, it is notable that FS models exhibit

distinct neuronal behavior on different types of data. For the

visual signals in DVSGesture and DVSPlane, FS models produce

periodic firing pattern similar to those produced by FR models,

in which the target neuron keeps firing to consistently make a

prediction. However, for the SHD data sequences without temporal

repetition, FS systems generate much fewer spikes than FR systems

and the target neuron almost stops firing after the classification has

been made.

The distinct neuronal activities of SHD also illustrate why FS

coding can outperform FR coding even though the FS coding

makes decisions based on only a portion of the given input spikes.

First, FS models usually exhibit a longer temporal delay than

FR models. This highlights that ensuring high accuracy demands

sufficient input information. The time delay indicates theminimum

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1266003
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1266003

FIGURE 8

Accuracy with di�erent spike count Ns for models with di�erent time constant τ2. Red: FS models. Blue: FR models.

required information for accurate decision-making. From FS-SHD

in Figure 9, the time delay varies notably across different trials.

This indicates that different lengths of input data are necessary for

making correct decisions. While FR coding utilizes entire given

input data, it can include redundant information. As shown by

FR-SHD in Figure 9, output neurons start firing at approximately

the same time across different trials, even when the available

information is not enough for correct decision-making. Non-target

neurons generate more spikes that disrupt the decision process,

leading to a lack of precision in decision-making.

The unique output spike pattern suggests that FS models is also

capable of achieving accurate classifications based on FR. In Table 4,

both FS and FR accuracies are tested on the two types of models.

Results demonstrate that FS models performs well on FR and

sometimes even better than FR models, although it is trained based

on FS timings. However, FR models struggle to predict accurately

based on FS.

3.5.2. Gaussian window size in error propagation
Another interesting observation is that the choice of Gaussian

window size in the error propagation is related to the data type.

We observed that repetitive visual data achieves better performance

with a larger Gaussian window W (i.e., with a smaller D), while

non-repetitive audio sequences prefer a smaller value of W.

Specifically, we obtain optimal results using D = 16 for SHD

and N-TIDIGITS, and D = 4, D = 8 for DVSGesture and

DVSPlane, respectively. A larger window size in error propagation

means that the error of FS times is propagated to a wider time

range and more spikes are optimized. As a result, the firing patterns

are more similar to rate coding with a higher firing rate but the

precise timing of spikes is lost. On the contrary, with a smaller

window size, the error is propagated to fewer spikes where the

precise timing is emphasized. Table 5 shows the results of the

FS model on repetitive (DVSGesture) and non-repetitive (SHD)

data with different Gaussian window size W. As W decreases, the

firing rate of the target neuron decreases since fewer spikes are

optimized, leading to a drop in the FR accuracy. Nevertheless,

there are distinct behaviors in the FS accuracy of repetitive and

non-repetitive signals. The FS accuracy of repetitive data follows a

similar trend to FR accuracy, but it improves with a smaller window

on non-repetitive data, as the precise timing is more important in

this case.

We can, therefore, conclude that FS coding is better suited for

the classification of non-repetitive dat and when precise timing of

the first spike is required. FR neurons should be used for repetitive

signals or the cases in which a consistent and stable prediction

is required.

3.6. Results of models using AdLIF neurons

To further validate the effectiveness of the FS coding, we

conducted further experiments by replacing CUBA-LIF neurons
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FIGURE 9

Output spike raster plots of FR and FS systems for di�erent types of data. Each figure illustrates the output spikes generated in response to various

input signals that belong to di�erent classes. Each color corresponds to the output spikes from a single trial. We can observe that the neuronal

activities of FS and FR systems are significantly di�erent on the SHD dataset with rich temporal structures, whereas for the signals with temporal

repetition (DVSGesture), the output spike patterns of both systems are similar.

TABLE 4 The accuracy of FS and FR models with di�erent time constants τ2 for decision layers (τ2 = µτ1).

Trained using FR loss (%) Trained using FS loss (%)

µ Acc (FS)↑ Acc (FR)↑ Acc (FS)↑ Acc (FR)↑

DVSGesture

1 72.3 94.0 90.1 93.7

4 81.0 94.2 89.7 94.3

12 82.6 95.1 92.8 94.6

SHD

1 34.3 79.3 78.3 70.5

4 39.4 78.8 85.5 79.1

12 42.8 77.8 87.6 79.4

N-TIDIGITS

1 47.9 88.2 87.6 75.6

4 47.4 88.7 89.3 87.0

8 51.0 88.1 89.3 88.0

DVSPlane

1 69.5 83.0 87.6 88.5

4 76.5 85.4 90.5 90.3

8 82.0 89.3 92.7 90.0

The results are the average of 5 trials. Both accuracy based on FS and FR are tested. Acc (FS) and Acc (FR) indicate accuracy when testing using FS and FR, respectively. The bold values represent

the best results obtained when comparing the FR and FS accuracy for each model.

with adaptive LIF (AdLIF) neurons (Bittar and Garner, 2022)

in hidden layers. We tested the FC models for the SHD and

NTIDIGITS tasks and recurrent connections are removed. Note

that CUBA-LIF neurons with fixed parameters are still used in the

output layer, because we found that this type of neuron can enjoy

longer delay for accurate decision-making. We only tested models

with large time constant in the output layer and utilized batch

normalization and dropout strategy in hidden layers to obtain the

best accuracy. Detailed parameter settings are listed in Appendix.

Table 6 presents comparison results between FS and FR models

utilizing AdLIF neurons. The same conclusion can be drawn

from these results as those derived from models using CUBA-

LIF neurons. The FS coding leads to higher accuracy and superior

energy efficiency (fewer spikes) than FR coding on data sequences

with rich temporal structures. On the other hand, FSmodels exhibit

longer time delay compared to FRmodels, but the gap is reduced as

the accuracy reaches 90% of its peak value. Furthermore, compared

to the results of SHD and NTIDIGITS in Table 2, the models with
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TABLE 5 Comparison of results on repetitive visual data (DVSGesture) and non-repetitive audio data (SHD) with di�erent Gaussian window sizeW in

error assignment.

DVSGesture (τ2 = 4τ1) SHD (τ2 = 4τ1)

D W Acc (%)(FS) ↑ Acc (%) (FR) ↑ D W Acc (%) (FS) ↑ Acc(%) (FR) ↑

4 120 89.0 94.3 4 120 82.9 81.8

8 91 88.6 93.2 8 73 84.5 80.3

12 61 86.7 88.6 16 37 85.6 77.3

16 46 88.6 90.2 32 19 85.5 76.5

As the window sizeW decreases, the FR accuracy drops due to a lower firing rate. The FS accuracy of repetitive signals experiences a decline as well, whereas that of non-repetitive signals sees

an opposite trend where the precise timing is important. The bold values represent the best results in each column.

TABLE 6 Comparison of FR and FS models with AdLIF neurons.

AdLIF LossAcc (%)↑ Ns ↓td(50%) ↓td(90%) ↓

SHD
FR 90.18 7.24 28.4 57.8

FS 94.08 3.65 55.0 77.2

NTIDIGITS
FR 91.11 13.19 64.6 122.0

FS 92.25 6.19 88.8 129.4

The results are the average of 5 trials. The bold values represent the best results obtained when

comparing the FR and FS models for each dataset.

AdLIF neurons exhibit significant accuracy improvement than the

models employing CUBA-LIF neurons. This highlights that our

approach is flexible and works well with various neuron types.

This also demonstrates that the FS coding scheme has potential to

achieve higher accuracy for data sequences with complex temporal

structures if employing advanced architectures and strategies. The

comparison results with other state-of-the-art methods is presented

in the Appendix.

4. Conclusion

In this study, we introduce a novel decision-making scheme

based on FS coding for realistic event sequences by encoding FS

timings of output neurons, and propose a supervised training

framework based on FS timings. In the forward pass, discrete

temporal coding is applied to the spike trains in the output layer.

In the backpropagation, we propose error assignment from FS

times to spikes through a Gaussian window and then leverage a

surrogate gradient descent method for spikes to achieve supervised

learning. Additional strategies are designed to facilitate training and

mitigate the influence of inactive neurons, such as adding empty

sequences and using different time constants and thresholds for

feature extraction and decision layers.

In the experiments, we test the FS coding scheme on classifying

various types of event data with rich temporal structures and

make a comprehensive comparison with FR coding. Our results

provide insights into the distinct mechanisms underlying FS and

FR codings. First, FS coding demonstrates comparable performance

with FR coding, but there is a trade-off between accuracy and

time delay. A relatively longer temporal latency in the first

spike helps encode more information, leading to higher FS

accuracy. Furthermore, models based on FS and FR codings

demonstrate distinct neuronal behavior on different types of data

sequences in terms of firing patterns and sparsity. In particular,

FS systems are much more energy efficient than FR systems for

non-repetitive audio sequences with highly complex temporal

structures. In contrast, for visual data sequences with temporal

repetition and spatial information, the behavior of FS and FR

models is more aligned. The FS systems tend to exhibit longer

response time compared to FR systems. Future research could

focus on exploring strategies to reduce the temporal delay of the

first spike.
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Appendix

For the experiments in Section 3.6, we replaced the CUBA-

LIF neurons in hidden layers with AdLIF neurons (Bittar and

Garner, 2022) and trained with the FS loss. This adjustment

introduces parameters related to adaptation, including adaptation

time constant τw, and recovery variables a and b. According to

Bittar and Garner (2022), τw is initialized with 100 ms, and a and b

are constrained in the range of a ∈ [−1, 1], b ∈ [0, 2]. However, in

our models, we set a ∈ [0, 1] and b ∈ [0, 1]. We observed that this

setting leads to more stable training and improved performance.

During training, these parameters are trainable along with τm.

In particular, for the SHD task, the architecture is 700-FC256-

FC256-20, τ1 = 5ms, τ2 = 12τ1, θ1 = 0.5, θ2 = 10. For the

NTIDIGITS task, the architecture is 64-FC256-FC256-11, τ1 =

5ms, τ2 = 8τ1, θ1 = 0.5, θ2 = 10. Other training parameters keep

the same with the models using CUBA-LIF neurons. In addition,

batch normalization (BN) and dropout (DP) are used in each

hidden layer. Specifically, a single layer comprises linear operations

+ BN + neuron + DP. The dropout rate is set to 0.25.

Table A1 presents comparison results of models utilizing

CUBA-LIF and AdLIF neurons and the results of other state-

of-the-art methods on DVSGesture/SHD/NTIDIGITS datasets.

We can see that the performance of models with CUBA-

LIF neurons is generally worse, particularly in the case of

DVSGesture, indicating that FS coding is not suited for sequences

involving temporal repetition. In contrast, models with AdLIF

neurons exhibit significant accuracy improvement, achieving

comparable performance with state-of-the-art methods, especially

for SHD dataset.

TABLE A1 Result comparison of FS models with other methods.

Method Acc (%)

DVSGesture

Hetero. RSNN (Perez-Nieves et al., 2021) 82.9

SLAYER (Shrestha and Orchard, 2018) 93.64± 0.49

DECOLLE (Kaiser et al., 2020) 95.54

SLAYER + SpikeMax (Shrestha et al., 2022) 95.83± 0.48

PLIF (Fang et al., 2021) (STBP) 97.57

STSC-SNN (Yu et al., 2022) 98.96

Ours (CUBA-LIF) 92.8

SHD

Hetero. RSNN (Perez-Nieves et al., 2021) 82.7± 0.8

RSNN with data aug. + noise (Cramer et al.,

2022)

83.2± 1.3

Adaptive SRNN (Yin et al., 2021) 90.4

TA-SNN (Yao et al., 2021) 91.08

STSC-SNN (Yu et al., 2022) 92.36

RadLIF (Bittar and Garner, 2022) 94.62

SNN with learned delays (Hammouamri et al.,

2023)

95.07 ± 0.24

Ours (CUBA-LIF) 87.6

Ours (AdLIF) 94.08

NTIDIGITS

GRU-RNN (Anumula et al., 2018) 90.9

Phased-LSTM (Anumula et al., 2018) 91.25

ST-RSBP (Zhang and Li, 2019) 93.63± 0.27

SLAYER + spike-rate (Shrestha et al., 2022) 94.19 ± 0.18

SLAYER + SpikeMax (Shrestha et al., 2022) 93.21± 0.32

Ours (CUBA-LIF) 89.3

Ours (AdLIF) 92.25

The bold values represent the best results for each dataset.
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