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Background: Subdural electrocorticography (ECoG) signals have been proposed 
as a stable, good-quality source for brain-machine interfaces (BMIs), with a 
higher spatial and temporal resolution than electroencephalography (EEG). 
However, long-term implantation may lead to chronic inflammatory reactions 
and connective tissue encapsulation, resulting in a decline in signal recording 
quality. However, no study has reported the effects of the surrounding tissue on 
signal recording and device functionality thus far.

Methods: In this study, we implanted a wireless recording device with a customized 
32-electrode-ECoG array subdurally in two nonhuman primates for 15  months. 
We evaluated the neural activities recorded from and wirelessly transmitted to 
the devices and the chronic tissue reactions around the electrodes. In addition, 
we measured the gain factor of the newly formed ventral fibrous tissue in vivo.

Results: Time-frequency analyses of the acute and chronic phases showed similar 
signal features. The average root mean square voltage and power spectral density 
showed relatively stable signal quality after chronic implantation. Histological 
examination revealed thickening of the reactive tissue around the electrode 
array; however, no evident inflammation in the cortex. From gain factor analysis, 
we found that tissue proliferation under electrodes reduced the amplitude power 
of signals.

Conclusion: This study suggests that subdural ECoG may provide chronic signal 
recordings for future clinical applications and neuroscience research. This study 
also highlights the need to reduce proliferation of reactive tissue ventral to the 
electrodes to enhance long-term stability.
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1. Introduction

Electrocorticography (ECoG) is widely used to accurately record 
neural signals, with electrodes placed either epidurally or subdurally. 
Thus, we can measure the signal amplitude at the millivolt (mV) 
level, which is significantly higher than scalp electroencephalography 
(EEG), and is less vulnerable to artifacts (Haynes and Rees, 2006; 
Baars and Gage, 2010). Unlike intracortical microneedle electrodes, 
ECoG electrodes do not penetrate the cortical tissue, avoiding 
blood–brain barrier damage, thereby potentially mitigating the 
inflammatory response and extending its functional duration 
(Campbell and Wu, 2018; Yan et al., 2020). Clinically, ECoG has 
been used to diagnose epileptogenic zones in presurgical monitoring 
since the 1940s (Nakasato et al., 1994). Nowadays, there is growing 
interest in using chronic ECoG electrodes in brain-machine interface 
(BMI, also known as brain-computer interface) applications to 
control neuro-prosthetic limbs or synthesize speech from neural 
activity in paralyzed patients (Bouchard et al., 2013; Vansteensel 
et al., 2016; Anumanchipalli et al., 2019; Benabid et al., 2019; Miller 
et al., 2020).

In contrast to clinical use, in which electrodes are generally 
implanted for no more than 30 days for epilepsy monitoring, for BMI 
applications, it is crucial to ensure long-term safety and stable 
functionality to deliver high-quality neurophysiological data. An ideal 
device requires good biocompatibility, high selectivity, low 
invasiveness, and a long working period (Alahi et al., 2021). Several 
studies have shown that ECoG recordings can record high gamma 
frequency (from 90 to 200 Hz) activity with reliable performance over 
multiple years (Chao et al., 2010; Ryapolova-Webb et al., 2014; Nurse 
et al., 2018; Larzabal et al., 2021). We previously observed minimal 
tissue reactions of the subdural electrode array after a 6-month-
implantation in beagles (Yan et al., 2020). Some longer-term studies 
have also shown a stereotypical foreign body response with 
inflammatory cell accumulation and connective tissue proliferation at 
the tissue-array interface on both the dorsal (dura mater side) and 
ventral (arachnoid/brain tissue side; Degenhart et al., 2016). Despite 
the studies on evaluating the host-tissue response of implanted 
electrodes, little is known regarding the conductive properties of the 
newly formed surrounding tissue. In particular, it is not clear how the 
ventral side of the connective tissue between the brain and the 
electrode array affects the quality of signals. Some studies have 
reported that encapsulation with both dural thickening and newly 
formed fibrous tissue may dislodge the implants (Schendel et al., 2013, 
2014). On the ventral side, the newly formed tissue thickened the 
distance between the signal source and electrodes and increased the 
1-kHz-electrical impedance (Henle et al., 2011; Mestais et al., 2015). 
This would reduce the quality of the signal recording. The correlation 
between long-term tissue reactions and neural signal quality is not 
determined yet (Degenhart et al., 2016; Kaiju et al., 2017).

However, the functional results of long-term recordings and 
histological evaluations in such systems are still limited, and further 
research is required to facilitate the optimization of device design and 
manufacturing. In this study, we explored both host-tissue response 
and recording function of a customized wireless ECoG device after 
15 months of its implantation. We evaluated cortical tissue changes 
and fibrosis at the implant site and the device performance by auditory 
steady-state response (ASSR) testing and spectrogram analysis. 
We also assessed the signal stability by comparing the root mean 

square (RMS) voltage and power spectral density (PSD) results in the 
acute and chronic phases.

2. Materials and methods

2.1. Ethics approval and consent to 
participate

The Institutional Review Boards approved this study for animal 
experiments at both Astellas Pharma Inc. (D-T20002-01) and Osaka 
University (02-007-000). All experiments in this study were performed 
at the Tsukuba Research Center of Astellas Pharma Inc., which is 
accredited by AAALAC International. Studies involving animals are 
reported in accordance with the ARRIVE guidelines (Percie du Sert 
et al., 2020).

2.2. Wireless implantable device

We used a customized wireless implantable ECoG recording 
device in non-human primates (Figure 1A). The device consisted of a 
subdural silicon-based 4 × 8 electrode array and a wireless recording 
unit (Figure 1B). The recording electrodes were 1.0 mm in diameter, 
with an interelectrode spacing of 3.0 or 2.5 mm to ensure wide cortical 
coverage. The wireless recording unit consisted of microelectronic, 
wireless telemetry components and batteries assembled within a 
titanium casing fixed on the skull by a screw (Figures 1C,D). The 
bottom section of the casing contained an analog front-end (AFE) 
chip (Yoshida et al., 2011) to amplify 32-ch signals with peak-to-peak 
noise less than 6 μV, to perform bandpass filtering, and to convert 
analog voltage signals to 14-bit digital data at a sampling rate of 
1,000 Hz. The data management unit transfers ECoG data at the 
maximum effective speed of 2.0 Mbps from the measurement units to 
the external receiver. In the external receiving system, we used an 
in-house data monitoring software package to monitor real-time data 
recording. The software can receive and display 32-ch signals, and 
enable adjustment of some parameter settings, such as gain, 
bandpass filter.

2.3. Implantation and electrocorticography 
recording

To record brain signals, we implanted the devices in two 6-year-
old male cynomolgus monkeys (weighing 6.8 and 6.9 kg, respectively, 
obtained from Shin Nippon Biomedical Laboratories Ltd., Tokyo, 
Japan). After general isoflurane (2–4%), a J-shaped skin incision was 
made on the midline from the nasion to the inion and then curved to 
the left ear lobe. Bleeding was carefully coagulated using a bipolar 
coagulator. Then, a 30 × 20 mm square craniotomy was performed on 
the left temporoparietal bone under microscope. A 10 × 20 mm 
horseshoe-shaped dural membrane flap was cut and folded to expose 
the subdural area. Our electrode array was placed over left auditory 
and somatosensory cortex. Finally, the dural membrane was sutured 
water-tight, with a layer of artificial dural membrane (Neoveil, Gunze, 
Japan) and adjuvant sealant hydrogel (Adherus, Striker, Tokyo, Japan). 
The bone flap was fixed with two sets of titanium plates and screws. 
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The device casing was fixed to the middle line on frontoparietal skull 
by using titanium screws. The dead space between the skull and the 
device was filled with dental cement (GC Corporation, Tokyo, Japan) 
to prevent infection. We left the top section of casing exposed, because 
the assembly was too bulky to allow complete skin closure.

Two weeks after the surgery (acute phase), we  subjected the 
monkeys to ASSR followed by Ketamine tests on two different 
consecutive days. For ASSR testing, the monkeys were individually 
positioned in primate chairs (O’HARA & CO., LTD., Tokyo, Japan) for 
signal recording. The antennas for wireless recordings were placed 
1.5 m in front of the monkey. The monkeys were then exposed to 
auditory stimuli via two loudspeakers, which consisted of click sounds 
presented with a 500-ms duration of 40-Hz trains at 1,100-ms 
intertrain intervals and repeated 200 times/trial. In the Ketamine tests, 
the monkeys were placed in a cage allowing free movement. 
Spontaneous ECoG signals were monitored for 60 min to obtain 
baseline data. After this baseline, intramuscular (im) injections of 
ketamine were administered at a dose of 3.5 mg/kg. The monkeys were 
then placed back into the cage allowing for free moving with 
spontaneous ECoG monitor for 60 min after ketamine injection. After 
15 months of the implantation (chronic phase), we performed ASSR 
and Ketamine tests again using the same procedure to compare the 
functional performance and complete the electrophysiological  
experiments.

2.4. Signal processing

Raw ECoG data were analyzed offline using MATLAB 
(MathWorks Inc., R2016a, Natick, MA, United States). Raw data were 
bandpass filtered at 0.1–200 Hz. For the ASSR analysis, ECoG data 
were segmented into 1,100-ms epochs concurrent with the train 
stimulus. ASSRs averaged over 200 epochs were analyzed. Spectrogram 
analyses were performed using a 256-point fast Fourier transform 
(FFT; baseline: −100–50 ms) with a Hamming window (10%). For the 
time-frequency analysis of ketamine administration, waveforms were 
transformed to the frequency domain using an FFT and a Hamming 
window with a 50% overlap between data blocks and a block size of 
1,024. The spectrograms were then averaged in 1-min bins to develop 
a heat map.

2.5. Measurement of the ventral tissue gain

To measure the transfer function of the newly formed tissue 
between the electrode array and cortex, we used a previously published 
method (Torres Valderrama et al., 2010). In general, assuming that the 
tissue behaves as a linear, time-invariant system characterized by a 
gain function G f( ) , the power spectral density after 2 weeks of 
implantation P fbef ( ), is related to that after 15 months P faft ( ), by 

FIGURE 1

Photographs of the implantable wireless 32-ch ECoG device. (A) Monkey with a wireless recording device implanted on top of the skull. (B) The 
32-channel silicone-based subdural electrode array, with a thickness of 0.7  mm. (C) Measurement units (from top to bottom: skull side surface, 
connector part, intermediate layer separating measurement and power units, a 32-ch amplifier AFE chip and a 2.4-GHz wireless data transfer module). 
(D) A photograph of the device ready for implantation.
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P f G f P faft bef( ) = ( ) ( ) . Under the assumption of stationarity, the 
estimate of the gain function G f



( ) isgiven by

 

( ) ( )

( )
,aft

bef

P f
G f

P f
=






where ( )befP f

 and ( )aftP f

 are the estimates of the power 
spectral density after acute and chronic implantation, respectively. The 
presence of the newly formed tissue between the brain surface and 
array is represented by the frequency-dependent gain factor G f



( ) . 
Non-functional electrodes were excluded from this analysis.

2.6. Measurement of the power spectral 
density

To compute the power spectra, FFT with Hamming windows was 
applied to the signal. The μV2 power values were calculated using the 
pop_spectopo.m function in EEGLAB (Delorme and Makeig, 2004) 
with Welch’s power spectral density estimate (5-s window length, 80% 
overlap; Delorme and Makeig, 2004). The spectrogram of the mean 
PSD across the electrode channels and animals was then computed 
and averaged in 1-min bins to develop a heatmap of the spectrogram.

2.7. Measurement of the root mean square

To assess signal stability, we  calculated the root mean square 
(RMS) voltage for 60-min recordings after ketamine injections. RMS 
voltage is a widespread characteristic that represents the average 
voltage level over a certain period (Larzabal et al., 2021). The average 
RMS signal was computed in the 0.1–200 Hz frequency range in both 
acute and chronic phases.

2.8. Explantation and 
immunohistochemistry

Fifteen months after implantation and completion of 
electrophysiology experiments, both monkeys were euthanized, and 
their entire bodies were perfused transcardially with 10% formalin. 
After fixation, the implanted device was carefully removed under a 
microscope. To avoid damaging the brain tissue, we extracted the grid 
electrodes using a surgical microscope. The entire brain, dura, and 
surrounding tissue were then fixed in 10% formalin and embedded in 
paraffin for further histological evaluation.

We coronally sectioned four slices of the cortical and surrounding 
tissues from both the implanted (left) and non-implanted control 
(right) sides of the brain for comparison. All slides were processed 
under the same conditions to minimize operational errors. Sections 
were processed for Nissl staining and immunohistochemical staining of 
neuronal nuclei (NeuN, 1:1,000, Millipore), glial fibrillary acidic protein 
(GFAP, 1:500, Diagnostic BioSystems), ionized calcium-binding adapter 
molecule 1 (Iba-1, 1:500, GeneTex), and vimentin (Vim, 1:500, Leica). 
The tissues were first blocked for 10 min in sodium citrate buffer (0.1 M 

citric acid, 0.1 M sodium citrate, pH 6.0) at 121°C. After inactivation of 
endogenous peroxidase with 3% H2O2 in methanol for 15 min at room 
temperature, the tissues were incubated with primary antibodies 
overnight at 4°C. Following washes in phosphate buffer saline (0.05 M 
PBS, pH 7.6), the tissue was probed with anti-mouse IgG antibody 
labeled with peroxidase secondary antibody (Histofine Simple Stain 
MAX PO; Nichirei, Jp) for 30 min at room temperature. The sections 
were visualized using 3,3′-diaminobenzidine tetrahydrochloride 
(Nichirei) at room temperature. The sections were subsequently 
counterstained with Mayer’s hematoxylin and examined under a 
microscope. Images of the sections were captured using a microscope 
(BZ-X800, Keyence, Japan) at 4× and 20× magnification, manually 
outlined, and quantitatively measured using BZ-X800 software.

The encapsulating tissues from the ventral and dorsal sites, and 
the control dural membrane, were identified under the microscope 
and the tissue thicknesses were determined by averaging 10 sampling 
points on each section (in total, n = 40 per group). Comparisons 
between the ventral and dorsal encapsulations were performed using 
paired t-test.

2.9. Statistics

Prism v9.0 (GraphPad Software Inc., La Jolla CA) was used for all 
statistical analyses. The data are shown as mean ± SD, and the level of 
statistical significance is set at p < 0.05.

3. Results

3.1. Signal quality

To estimate the signal quality, we plotted the mean RMS, PSD, and 
gain for both monkeys and compared the results between the acute 
and chronic phases. PSD was computed over an hour after ketamine 
administration. As shown in Figures 2A,B, the frequency-dependent 
PSD and median signal power decreased as the frequency increased. 
After 15 months of implantation, the PSD decreased over all frequency 
bands in both monkeys, and was more evident in monkey 1. The 
estimate of the gain of the newly formed ventral tissue was computed 
based on the signals recorded during the acute and chronic phases 
(Figure 2C). The curve represents the averaged results for 31 channels 
(the channel with poor recordings was excluded from this analysis). 
The results showed that tissue proliferation between the brain surface 
and electrodes reduced the amplitude (power) of ECoG signals. The 
effect in monkey 1 was dramatically greater than that in monkey 2, 
15 months after implantation. The average RMS voltages (shown in 
Figure 2D) for monkey 1 remained at 60% from 50.8 μV (SD = 9.4) to 
29.2 μV (SD = 19.2). While for monkey 2, the value remained at 
approximately 80% from 39.8 μV (SD = 5.7) to 32.8 μV (SD = 3.5). In 
summary, the implants saw a roughly 20–40% reduction in their RMS 
after 15 months.

3.2. Time-frequency analysis

To test the long-term recording performance, we compared the 
time-frequency analysis of ASSR and ketamine tests between their 
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acute and chronic phases for both monkeys. The results for each 
monkey are shown separately in Figure 3. After 15 months from the 
implantation, raw ECoG signals were recorded and transmitted 
from most electrodes (62 of 64  in total). For each monkey, the 
signals recorded from one electrode indicated malfunctioning. In 
monkey 1, channel 21 showed abnormal responses, and in monkey 
2, channel 23 failed to manifest a clear output. All other electrodes 
demonstrate adequate function to detect cortical signals. 

Time-frequency spectrogram analysis showed typical ASSR 
responses at 40 Hz with 80/120 Hz harmony echoes and a 
characteristic increase in broadband gamma (>30 Hz) activity after 
ketamine injection. Similar results were observed in the acute and 
chronic phases in both monkeys. These combined results 
demonstrate this wireless neural interface to perform well during 
chronic ECoG recording in nearly all electrodes over a 
15-month period.

FIGURE 2

Signal quality and stability over 15  months. (A) Mean results of power spectral density (PSD) of both acute and chronic phases for two monkeys. 
(B) Median power spectral density with standard deviation across four frequency bands. (C) Estimate of the gain of tissue proliferation on the ventral 
side in vivo. The lines correspond to the mean results computed from 31 channels for each monkey (the channel with poor recording was excluded). 
(D) Comparison of the root-mean square (RMS) voltage in the acute and chronic phases in both monkeys. (Acute phase: 2  weeks after surgery; chronic 
phase: 15  months after implantation).
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3.3. Dural reactions

Throughout the implantation period, we did not observe any 
adverse effects or abnormal symptomatic motor behavior in either 
monkey. After sacrifice, we did not observe any macroscopic signs 
of tissue defects, except for thickened connective tissue formation 
in the dural membrane and encapsulation of the electrode array. 
However, the electrode array was easily extracted from the 
encapsulating tissue. The proliferated fibrous tissue tightly adhered 
to the dural membrane (Figure  4A). The brain parenchyma 
underneath the encapsulated electrodes was mechanically  
depressed.

Nissl staining of the surrounding tissue revealed fibrous 
proliferation on both epidural and subdural sides of the dura mater. 
Dorsal encapsulation included the newly formed tissue (NT) and 
reactive dura mater (RDM), and gradually became thicker from the 
edge toward the center, while its thickness was much greater than that 
of ventral encapsulation (only newly formed tissue). The average 
thickness of the dorsal encapsulation (1,760 ± 701 μm) was 
significantly greater than that on the ventral side (661 ± 339 μm, t-test, 
p < 0.01; Figure 4B).

Immunohistochemical examination showed GFAP, Iba-1, and 
Vim expression patterns in the surrounding tissue (Figures 4C1–C4 
for monkey 1, Supplementary Figure 1 for monkey 2). GFAP-positive 

FIGURE 3

Implanted electrodes array and comparison of the recording performance. (A,B) Show the 32-channel array and its implantation area on brain surface 
(red square represents location of channel 14). (C,D) Show the time-frequency analysis of ketamine tests and ASSR between 2  weeks (left column) and 
60  weeks (right column). The upper rows of spectrograms in (C,D) show the results of ketamine test (one-hour-baseline and one-hour-recording after 
ketamine); the lower rows show the results of average 40-Hz ASSR between −0.2 and 0.8  s. Each box represents an electrode in the 4  ×  8 array. 32 
channels are shown in an order from upper left (ch 1) to lower right (ch 32). [Dotted boxes in (C,D) indicate malfunctioning channels. Red boxes 
represent locations of channel 14].
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astrocytes were not observed, indicating the absence of astrogliosis in 
the encapsulation. We  found Iba-1-labeled macrophages and 
Vim-labeled fibroblasts with increased densities in the NT-RDM and 
NT-array borders and the outer layers of RDM and NT. These results 
indicated that the accumulation of inflammatory macrophages and 
meningeal-derived fibroblasts resulted in newly formed connective 
tissue in the subdural spaces between the electrode array, cortex 
surface, and dural membrane.

3.4. Brain tissue reactions

We then performed brain tissue immunohistochemistry to 
evaluate cortical cytoarchitecture reactions at the implanted sites to 
detect signs of chronic inflammation. We did not observe abnormal 
neuronal morphology from Nissl or NeuN staining on either side. 
Results from monkey 1 were shown in Figure 5 (we showed monkey 
2 in Supplementary Figure 2). The signal of GFAP-labeled astrocytes 
was highly increased in the glia limitans and in layer I of the brain 
cortex (Figure 5A), compared to the deeper layers and the contralateral 
side (Figure 5B). Astrogliosis in glia limitans increased its thickness, 
and we did not observe any loss of continuity for the glia limitans. 
Iba-1-labeled immunohistochemistry showed the presence of reactive 

microglial cells, with the appearance of a large, round cellular body 
and short, thick, or retracted branches (Figure  5C). On the 
contralateral side, resting microglia are composed of long-branching 
processes and a small cellular body (Figure 5D). We did not observe 
similar concentration of microglia in glia limitans on the contralateral, 
control hemisphere. These results indicate that the electrode array 
induced a mild brain tissue response only to the most superficial 
cortical layers over a 15-month period.

4. Discussion

In this study, we aimed to validate the long-term biocompatibility 
of the implanted electrode array and casing, and assess the quality of 
the ECoG signal after 15 months of implantation. Previously, 
we published evaluation results of the electrode array and device in 
the acute phase (Yan et al., 2020, 2022). As a follow-up analysis of the 
device, we computed the average RMS and PSD of the signal, plotted 
the time-frequency spectrogram of the raw data, examined the post-
mortem histology results, and compared the results with those of the 
acute phase. In addition, we first studied the effects of the formation 
of connective tissue between the brain surface and the electrode array 
on the quality of ECoG signals. Our results demonstrate the relative 

FIGURE 4

Dura reactions over 15  months of the implantation. (A) Macroscopic observation of tissue encapsulation on the implanted site for monkey 1 (cortical 
surface was colored with blue mesh, sections of thickened dura were colored with yellow). (B) Mean thickness of the dorsal and ventral encapsulation 
for both monkeys. (C1–C4) Representative Nissl (C1), Vim (C2), GFAP (C3), and Iba-1 (C4) expression patterns in the capsulation from monkey 1. (NT: 
newformed tissue; RDM: reactive dural membrane).
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stability of the signal and less compatibility of the device due to a 
foreign body reaction in two monkeys after 15 months of 
the implantation.

4.1. Long-term biocompatibility

We observed typical fibrotic growth encapsulating the electrode 
array, with shallow mechanical depression of the brain parenchyma 
after 15 months. A previous study suggested that the thickened 
reactive tissue merely induced superficial compressive deformity by 
subdural implants but did not affect the normal layering structure of 
the mildly compressed brain tissue (Degenhart et al., 2016). Over the 
chronic phase, the brain was able to accomodate the presence of the 
new tissue without detectable alteration in function. Fibrous 
connective tissue was observed at both the dorsal and ventral of the 
electrodes. Microscopic observation showed that the accumulation of 
inflammatory macrophages and meningeal-derived fibroblasts led to 
newly formed connective tissue in the subdural space, resulting in the 
proliferation of the dural membrane with newly formed tissues in the 
epidural space between the membrane and skull. This is similar to 
previous reports that progressive fibrous overgrowth completely 
encapsulated electrodes as early as 1 month after implantation 
(Schendel et  al., 2013, 2014; Degenhart et  al., 2016). Tissue 
encapsulation is the final stage of anti-inflammatory wound healing 
and persists chronically throughout the lifetime of the implant 
(Anderson et al., 2008; Lynn et al., 2011). We also observed a gradient 
where the surrounding tissue more closely represented the newly 
formed fibrous tissue as a foreign body response, and reactive dura 

mater thickening with the newly formed tissue on the epidural side 
more closely as a traumatic reaction of durotomy and craniotomy. As 
there were only leptomeninges separating the brain and array at the 
time of implantation, it is assumed that the ventral encapsulation grew 
de novo post-implantation (Degenhart et al., 2016; Romanelli et al., 
2018). Therefore, further effort should be  focused on reducing 
ventral encapsulation.

We then evaluated brain tissue to detect signs of inflammation. 
We  observed an increase in astrogliosis in layer I  and limitans 
compared to the contralateral side. This expression pattern is 
considered a native immune response to trauma or chronic foreign 
body implantation to establish a physical and immunological barrier 
(Peters and Sethares, 2002; Griffith and Humphrey, 2006). Microglial 
activation was observed under the electrode array, with no aggregation 
in limitans nor movement to the peripheral area. This indicated that 
microglial changes were residual after operative damage and not 
actively responding to subdural implants (Kozai et al., 2012; Roth 
et al., 2014; Degenhart et al., 2016). Overall, the devices were well-
tolerated for 15 months.

4.2. Electrocorticography recording quality

We have shown the time-frequency spectrogram results of the 
40-Hz ASSR, and ketamine-induced power increase in the broad 
gamma and high-gamma bands (Yan et al., 2022). These two well-
established neuroscientific biomarkers were used to evaluate 
functionality of the device and to show its capacity to detect signals. 
The 40-Hz ASSR can be used to interpret and differentiate the neural 

FIGURE 5

Comparison of immunohistochemical results between implant (left side) and contralateral sites (right side) from monkey 1. (A,B) Signal of astrocytes 
labeled with GFAP under implant (A) and contralateral site (B). CD: Microglia labeled with Iba-1 under implant (C) and contralateral site (D). (White 
arrows indicate reactive microglial cells. L: left, implant site: R: right, control site).
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reaction to sound stimuli at millisecond precision. Acute ketamine 
administration induces a state of high neuronal excitability and thus 
increases broadband gamma activity. In this chronic experiment, 
we demonstrated similar results to those obtained in the acute phase. 
The signal recording and data transmission functions performed well 
after 15 months of implantation. In each array with 32 electrodes, only 
one failed to show good recording capability.

PSD is commonly used to quantitatively assess the power of each 
frequency in ECoG recordings. Generally, ECoG signal amplitudes 
decrease as the frequency increases, which is characteristic of 
mammalian signals (Buzsaki and Draguhn, 2004). RMS voltage is a 
widely used index for assessing the stability of an ECoG signal. 
We found a decrease in PSD and RMS values for both monkeys after 
15 months of implantation, which can be attributed to tissue formation 
on the ventral side. This is similar to previous reports showing that 
PSD is higher in subdural recordings than in epidural (Bundy et al., 
2014; Sun et al., 2018), and the RMS voltages showed decrease over 1 
or 2 years (Ryapolova-Webb et al., 2014; Swann et al., 2018; Larzabal 
et al., 2021).

We then computed the gain of the newly formed tissue and 
demonstrated that the attenuated amplitude of the ECoG signals is 
possible because of the presence of the tissue between the brain 
surface and the electrode array. This result is similar to that of a 
previous study (Torres Valderrama et al., 2010), which studied the 
normal human dura mater. However, the reactive tissue is much 
thicker than the normal dura mater, and the differences in PSD, RMS, 
and gain between the two monkeys are assumed to originate from the 
thicker tissue (ventral side) in monkey 1. We did not directly apply 
electrical signals to the dura mater. The estimate of the gain depended 
on neural activity signals, which are susceptible to ketamine injection. 
Although long-term tissue reactions decreased the amplitude of ECoG 
signals, its effect was limited. In terms of signal quality, the analysis 
and performance of the power spectral features remained similar in 
both monkeys.

4.3. Chronic failure mode analysis

Several factors can lead to the failure of BMI implants. Chronic 
factors can be  broadly subdivided into biological, material, and 
mechanical failures (Prasad et  al., 2012; Takmakov et  al., 2015; 
Delbeke et al., 2020). Biological failures are defined as those related to 
inflammatory reactive tissue responses to implanted electrodes 
(Karumbaiah et  al., 2012; Kozai et  al., 2014). Encapsulation of 
meningeal tissue and fibrogenesis can increase the distance between 
foreign bodies and the brain surface, leading to sensor failure (Polikov 
et al., 2005; Prasad et al., 2012). Approximately 24% of the failures are 
chronic biological failures (Barrese et al., 2013). Material failures are 
related to the material degradation of the connector (Simeral et al., 
2011; Barrese et  al., 2013), decomposition or delamination of 
insulation (Barrese et  al., 2013), corrosion of metallic electrodes 
(Prasad et  al., 2012), crack propagation, and ionic contamination 
(Prasad et  al., 2014; Sankar et  al., 2014; Kozai et  al., 2015a,b). 
Mechanical failures are related to physical factors that eliminate an 
electrode’s conductive path from the sensor recording site to the signal 
processors, such as breakage of the cable or loss of polymeric 
insulation (Moxon et  al., 2009; Prasad et  al., 2012). In chronic 
implants, the host response at the tissue-electrode interface eventually 

leads to mechanical failure and signal degradation (Campbell and 
Wu, 2018).

Our data showed that it was feasible to record useful signals from 
the device for more than 1 year, but the recording quality, number of 
channels, and signal amplitude diminished over long periods. The 
post-explanation examination of the device did not show failures on 
the electrodes, silicone array, or cables. The aforementioned 
histological analysis did not reveal any biological failure. The major 
chronic problem was supposed to be a biomechanical factor from the 
grossly observed meningeal encapsulation that distanced the electrode 
array from the brain surface. This is a major contributing factor to the 
reduction in the power and signal quality over a long period.

4.4. Comparison to epidural implants

Considering lower invasiveness, some studies used epidural 
electrode arrays such as WIMAGINE (Sauter-Starace et al., 2019). 
Different from subdural implantation, epidural electrodes were 
implanted in the space between dura mater and skull. Because of the 
separation by dura mater, the electrode array exerted less effect on 
brain tissue. Without durotomy and water-tight sutures, it was easier 
and safer to perform implantation surgery. However, because of a 
larger distance between electrode and brain surfaces, PSD results from 
epidural implants were obviously lower than that from subdural 
electrodes. Especially for high gamma activity, higher signal power is 
required for BMI applications.

4.5. Implications

When designing the subdural ECoG device, a key element could 
alleviate inflammatory reactions at the electrode-tissue interface, 
especially ventral encapsulation. Fibroblasts play a critical role in this 
“structural immunity” response to tissue injury. They initiate 
inflammation in the early stages by expressing chemokine synthesis 
and regulation of hematopoietic cells. Immune cells then respond and 
provoke a cascade of events to clear the invasive microorganisms and 
form the collagenous envelope (Krausgruber et al., 2020; Armingol 
et al., 2021). To reduce local inflammation and electrode degradation 
while maintaining electrical sensitivity, multiple strategies such as 
altering the shape of the array substrate, increasing array flexibility, 
anti-fouling coating of the array substrate, and releasing anti-
inflammatory drugs from the array substrate or electrodes (Degenhart 
et al., 2016; Gulino et al., 2019), have been suggested.

4.6. Limitations

This study has several limitations. There is no impedance 
measuring instrument in our device; therefore, we could not measure 
the contact impedance during the experiments. Several studies have 
continuously measured impedance over a long period and found a 
close relationship with chronic inflammatory reactions. Signal 
amplitude attenuation should correlate with impedance change 
(Schendel et al., 2014; Larzabal et al., 2021). In addition, we only tested 
the device in two phases, after 2 weeks and after 15 months. The lack 
of continuous measurements made it impossible to investigate the 
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detailed changes we observed between the acute and chronic phases. 
In this study, we were not able to close the scalp because of the size and 
bulk of the titanium casing. Despite our use of dental cement to 
minimize dead space, the lack of complete closure increased the risk 
of infection and may have enhanced the inflammatory responses that 
led to the tissue thickening that we observed. Future designs should 
aim to test fully implantable devices with wireless charging technology 
to determine if fully enclosed devices might be  associated with 
reduced thickening of encapsulating tissue in the chronic recording 
phase. Lastly, our study is limited by a small sample size, with more 
studies needed to confirm our conclusions. We believe that our results 
provide useful arguments on the chronic host response, long-term 
functionality of the ECoG device, and characterization of the influence 
of the ventral connective tissue on signal detection over a long period 
of time.”

5. Conclusion

Fifteen months after implantation, we evaluated the functionality 
and biocompatibility of the wireless ECoG recording device in two 
awake monkey models. The mean RMS and PSD results showed 
decrease after 15 months, and time-frequency analysis of ASSR and 
ketamine experiments showed similar results for signal feature 
detection compared to the acute phase. A post-mortem examination 
showed thickening of the reactive tissue around the electrode array, 
but no evident inflammation in the cortex. In addition, for the first 
time, we calculated the attenuation (gain factor) of the ECoG signals 
by ventral tissue proliferation in vivo. We suggest that reducing the 
thickness of the ventral tissue would benefit subdural signal recording 
performance. The outcome of this preclinical study confirms its ability 
to record neural activity through fibrous proliferation and transmits 
data wirelessly through the scalp over a long-term period. This 
represents a major step toward future clinical trials and 
neuroscientific studies.
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