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Hearing impairment is a global health problem. Stem cell therapy has become a 
cutting-edge approach to tissue regeneration. In this review, the recent advances 
in stem cell therapy for hearing loss have been discussed. Nanomaterials can 
modulate the stem cell microenvironment to augment the therapeutic effects 
further. The potential of combining nanomaterials with stem cells for repairing 
and regenerating damaged inner ear hair cells (HCs) and spiral ganglion neurons 
(SGNs) has also been discussed. Stem cell-derived exosomes can contribute to 
the repair and regeneration of damaged tissue, and the research progress on 
exosome-based hearing loss treatment has been summarized as well. Despite 
stem cell therapy’s technical and practical limitations, the findings reported so far 
are promising and warrant further investigation for eventual clinical translation.
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Introduction

Hearing impairment is one of the most prevalent sensory disorders worldwide, affecting 
millions. Hearing aids and cochlear implants cannot restore normal hearing, warranting new 
therapeutic approaches (Lieu et al., 2020). Stem cell therapy has gained considerable attention 
over the years due to its substantial regenerative potential.

Depending on the location of the damage in the auditory system, deafness is divided into 
conductive and sensorineural types (Seddon et al., 2012). Conductive deafness occurs due to 
lesions in the tympanic membrane and the auditory tuberosity, which impede sound 
transmission to the inner ear (Lauer et al., 2019). On the other hand, sensorineural deafness is 
mainly the result of lesions in the auditory center, including the inner ear and the auditory nerve. 
HCs and SGNs are crucial in transmitting peripheral acoustic signals (Nayagam et al., 2011; 
Moser and Starr, 2016). However, mammalian cochlear HCs do not regenerate spontaneously 
after injury (Swan et al., 2008; Omichi et al., 2019). Causes of sensorineural deafness include 
noise, aging, drug cause hearing loss, genetics, bacterial and viral infections, immunological 
diseases, and endolymph fluid (Meniere’s disease) (Wang and Puel, 2018; Plontke et al., 2022). 
Currently, induction of stem cell differentiation and replacement of damaged HCs and SGNs 
are increasingly considered feasible treatment options for auditory regeneration.
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Historical overview of stem cell research

The origin of stem cell therapy dates back to 1888. when German 
zoologists Theodor Heinrich Boveri and Valentin Haecker introduced the 
concept of stem cells, they identified various cell populations in the 
embryo that could differentiate into specific cell types (Ramalho-Santos 
and Willenbring, 2007). In 1961, Till and Mc (1961) discovered that stem 
cells obtained from mouse bone marrow cells, which could differentiate 
into various cell types, and termed pluripotent stem cells (PSCs). Reynolds 
and Weiss (1992) isolated pluripotent neural stem cells (NSCs) from the 
forebrain of adult mammals in 1992. Thomson et al. (1998) first isolated 
human embryonic stem cells (hESCs) from embryos in 1998. In 1999, 
Pittenger et  al. showed that bone marrow-derived human adult 
mesenchymal stem cells (BM-MSCs) can differentiate into multiple cell 
types, thus demonstrating the pluripotency of adult stem cells (ASCs) in 
vitro. BM-MSCs exist in almost all tissues and are crucial for maintaining 
tissue homeostasis through their self-renewal capacity (Pittenger et al., 
1999; Tuan et al., 2003). Huawei et al. identified PSCs in the inner ear of 
adult mice and found that these cells could self-renew and differentiate 
into HC-like cells (HCLs) when cultured in vitro 16 (Li et al., 2003a). 
Takahashi and Yamanaka used the four transcription factors Oct3/4, 
Sox2, c-Myc, and KLF4 to transform mouse fibroblasts into induced 
pluripotent stem cells (iPSCs) for the first time (Takahashi and Yamanaka, 
2006; Takahashi et al., 2007). This groundbreaking 2006 study paved the 
way for reprogramming mature somatic cells into a pluripotent state and 
opened new avenues for stem cell research. For this discovery, Shinya 
Yamanaka and John Gurdon received the Nobel Prize in Physiology or 
Medicine in 2012 (Figure 1) (Johnson and Cohen, 2012). Over the past 
decade, stem cell-based therapies have garnered considerable attention in 
hearing loss treatment.

The diversity of stem cells in regenerative 
medicine

Stem cells are a group of undifferentiated cells that can self-renew 
and differentiate into one or more cell types at different times of life 
(Ho et al., 2012; Hao et al., 2020). Based on their origin, stem cells can 
be categorized into various types, such as embryonic stem cells (ESCs), 
iPSCs, adult or somatic stem cells, and NSCs (Bongso and Richards, 
2004; Ilic and Polak, 2011; Bond et al., 2015).

ESCs are pluripotent stem cells derived from the inner cell mass 
of blastocysts formed 5–6 days after fertilization (Evans and Kaufman, 
1981). All three ectoderm, mesoderm, and endoderm germ layers can 
be differentiated from ESCs (Yao et al., 2006). ESCs can be obtained 
by culturing inner cell masses isolated from trophoblasts under 
specific conditions (Bongso, 2006).

IPSCs are produced by reprogramming mature somatic cells into 
ESC-like cells through genetic or chemical intervention (Yamanaka, 
2012; Hockemeyer and Jaenisch, 2016). IPSCs are suitable models for 
investigating disease treatment, drug discovery, and regenerative 
medicine because they can self-renew and differentiate into various 
cell types (Ohnuki and Takahashi, 2015). Somatic cells can 
be reprogrammed to iPSCs by transducing them with the Oct4, Sox2, 
Klf4, and c-Myc transcription factors (Takahashi et  al., 2007). In 
addition, certain chemicals or microenvironmental factors have also 
been used to stimulate the generation of iPSCs.

Adult or somatic stem cells are undifferentiated cells derived from 
various adult tissues with pluripotency, self-renewal, and limited 
differentiation potential (Zakrzewski et al., 2019). MSCs are the most 
common adult or somatic stem cells. Among them, BM-MSCs have 
limited differentiation capacity for osteocytes, chondrocytes, and 
adipocytes (Caplan, 2010). Although their differentiation capacity is 
limited, they exhibit anti-inflammatory properties and augment tissue 
regeneration (Ilancheran et al., 2009; Moodley et al., 2010).

NSCs have remarkable self-renewal and differentiation capabilities 
and continuously generate new neurons and glial cells (Xing et al., 
2021). They play crucial roles in embryonic development and post-natal 
growth, particularly in the brain and spinal cord, wherein they help 
maintain neural tissue homeostasis and regenerative capacity (Shao 
et al., 2019). NSCs are also the seed cells for neural stem cell therapy and 
can promote nerve regeneration and restore function when implanted 
into damaged nerve tissue (Wang et al., 2019). The clinical applicability 
of NSCs is constantly being explored for treating neurological diseases.

Stem cell therapy for hearing impairment

Due to their capacity to differentiate into numerous cell types and 
repair tissues that have been damaged, stem cells may offer a 
promising treatment option for hearing loss (Bacakova et al., 2018; 
Camp et al., 2018). The ESCs, iPSCs, and ASCs have been tested for 

FIGURE 1

The timeline of major discoveries and breakthroughs in stem cell research.

https://doi.org/10.3389/fnins.2023.1259889
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Fang et al. 10.3389/fnins.2023.1259889

Frontiers in Neuroscience 03 frontiersin.org

treating hearing impairment (Boer et al., 2009; Stojkovic et al., 2021; 
Zine et  al., 2021). Nevertheless, each variety has advantages and 
disadvantages concerning differentiated future potential applicability 
and immunogenicity (Figure  2) (He et  al., 2021). In hearing loss 
research, stem cells have successfully generated HCLs in vitro (Li et al., 
2003b; Takeda et al., 2018).

ESCs for treating hearing loss

Recent studies have shown that hESCs can be differentiated in 
vitro into cochlear sensory epithelial cells containing HCs using a 
three-dimensional culture system (Koehler et al., 2013). In addition, 
hESCs have also been differentiated into purified ear nerve precursor 
cells and spiral ganglion-like cells, which can survive for extended 
periods in vitro (Matsuoka et al., 2017). hESC-derived precursor cells 
transplanted into the cochlear region of Pou4f3DTR/+ mice with 
selective diphtheria toxin-induced HC ablation were viable and 
differentiated into HC-like and SC-like cells (Takeda et al., 2021). 
These findings suggest hESCs may be a potential treatment for hearing 
impairment and warrant further investigation.

IPSCs for the treatment of deafness

Recently, iPSCs have become known as a potential biological 
treatment for deafness. IPSCs derived from human urinary cells 
obtained from donors in good health were differentiated into HCLs 
with the morphological and electrophysiological characteristics of 

inner ear HCs. These HCLs established synaptic connections with the 
SGNs that were co-cultured. In addition, the transplanted iPSCs 
migrated to the organ of Corti site of resident HCs, differentiated into 
HCLs, and established synaptic links with the native SGNs (Chen 
J. et  al., 2018). Somatic cells from patients with myosin7a and 
myosin15a mutations were also reprogrammed into iPSCs, and the 
mutations were corrected using gene editing techniques. Restoring 
gene function in iPSCs enabled differentiated HCLs to regain 
morphology and functioning (Chen et al., 2016; Tang et al., 2016). 
Similarly, iPSCs derived from patients with A8344G and trmu 
mutations in mitochondrial DNA were differentiated into inner ear 
HCLs. These cells exhibited normal electrophysiological properties 
after gene restoration (Chen  Y. C. et al., 2018; Chen and Guan, 2022). 
These cellular models can elucidate the functional connection between 
inner ear HCs development and mitochondrial DNA. Additionally, 
human iPSCs derived from skin cells of patients with connexin 26 
mutations, encoded by GJB2, were differentiated into auditory neural 
progenitor and hair cell precursor cells (Fukunaga et  al., 2021). 
Connexin 26 mutations are a common cause of hereditary deafness. 
Overall, these findings provide novel insights and highlight potential 
therapeutic uses of iPSCs for treating hearing loss.

The therapeutic potential of MSCs for 
hearing loss

Although ESCs and iPSCs can differentiate into inner ear HCs, their 
application in medicine is limited due to the risk of tumorigenicity. Direct 
reprogramming of fibroblasts into HCLs of the inner ear could be a viable 

FIGURE 2

Stem cell treatment for hearing impairment mechanisms. 1) ESCs are able to differentiate into that resemble SGNs, SCs, and HCs, offering potential 
replacement strategies. 2) A particular strategy can be realized by stimulating iPSCs from patients who have hearing loss for developing into HCLs. 3) A 
range of growth factors and cytokines are secreted by MSCs, which may help prevent hearing loss. 4) NSCs together with nanomaterials hold promise 
for protecting against hearing loss. 5) The inner ear precursor cells are capable of being stimulated to develop into HCs and SGNs, offering another 
avenue for regeneration. 6) Exosomes derived from stem cells demonstrate potential in preventing sensorineural hearing loss.
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alternative. Mouse Embryonic Fibroblasts can be differentiated into HCLs 
via mesenchymal-to-epithelial transition, followed by increased the 
expression of three important transcription factors, Sox2, Eya1 and Six1, 
to induce ear-sensory epithelial cell characteristics (Yang et al., 2021). 
Conductive hearing loss is commonly caused by cerumen embolism and 
chronic otitis media, leading to perforation of the tympanic membrane 
and erosion of the auditory ossicles due to recurrent infections. While the 
tympanic membrane can be regenerated using fascia or perichondrium, 
stem cells are essential for effectively enhancing hearing (Goncalves et al., 
2017; Maharajan et al., 2020). In the rat model of subacute tympanic 
membrane perforation, bioprinted polycaprolactone/collagen/alginate-
mesenchymal stem cell scaffolds have demonstrated efficacy and 
feasibility for subacute tympanic membrane regeneration (Jang et al., 
2017). BM-MSCs have also been shown to promote healing in a chronic 
tympanic membrane perforation rat model (Shahal et al., 2022). Other 
ossicles or cartilage may be utilized to surgery restore hearing in cases of 
bone erosion. Additionally, MSCs have demonstrated promise in the 
therapy of conductive hearing loss (Maharajan et al., 2020). The resident 
MSCs protect the cochlear epithelium and prevent noise-induced hearing 
damage by secreting various growth factors and cytokines (Warnecke 
et al., 2021a). Moreover, pre-treatment of MSCs with deferoxamine can 
enhance their homing ability, which refers to the migration ability to 
damaged sites, through activation of the PI3K/AKT signaling pathway 
(Peyvandi et al., 2018).

NSCs for hearing loss

There have been considerable efforts in recent years to treat 
sensorineural hearing loss by inducing the regeneration of damaged 
auditory HCs and SGNs (Wang and Puel, 2018; Shu et al., 2019). The 
combination of nanomaterials and stem cells is a promising new 
therapeutic approach against hearing loss that combines the 
proliferation capacity of the stem cells with the tissue-targeting ability 
of the nanocarriers (Chang et al., 2020; Zhang et al., 2022). Several 
studies have demonstrated that stem cells and nanomaterials can 
support auditory regeneration by accelerating the repairing of 
damaged tissues (Zhong et al., 2016; Hu et al., 2021).

Graphene, a single layer of carbon atoms arranged in a hexagonal 
lattice, has been shown to play a critical role in tissue reconstruction 
(Kim et al., 2013; Akhavan, 2016; Guo et al., 2016). Autologous tissue 
grafts of perforated tympanic membranes can restore low-frequency 
hearing but often impair high-frequency hearing. In a rat deafness 
model, thin multilayer graphene membranes restored broadband 
hearing by inducing tympanic membrane repair (Li C. et al., 2022). In 
addition, the electrical stimulation device was developed by the 
combination of a cochlear implant and NSCs cultured on a graphene 
substrate. The machine was biocompatible and induced regeneration 
of NSCs in response to high-frequency, high-amplitude electroacoustic 
stimulation (Guo et al., 2021).

Magnetic nanoparticles are widely used in biomedical applications 
such as magnetic labeling, magnetic imaging, tumor treatment, and 
drug delivery due to their good biocompatibility (Lin et al., 2021; de 
Vincentiis et al., 2023). Superparamagnetic iron oxide nanoparticles 
can promote the proliferation of NSCs in a static magnetic field by 
enhancing cell cycle progression (Li et al., 2021). Furthermore, the 
directed growth of cochlear spiral neurons can be  regulated by 
magnetic field-induced self-assembly of magnetic nanoparticles into 
multi-directional nanowires (Xia et al., 2022).

GelMA hydrogel is synthesized from methacrylic anhydride (MA) 
and gelatin. It is an ideal scaffold for 3D cell culture, tissue engineering, 
and biological 3D printing due to its excellent biocompatibility and 
visible light-curing properties (Fan et al., 2018; Cai C. et al., 2022). 
Composite scaffolds of super-aligned carbon nanotubes and GelMA 
promote the SGNs growth and orientation (Hu et al., 2022). Grooved 
GelMA-MXene enhanced the adhesion, differentiation, and directed 
proliferation of NSCs in vitro (Cai J. et al., 2022). Ti3C2Tx MXene, 
composed of transition metals, carbides, nitrides, or carbonitrides, 
exhibits a large surface area, adjustable surface functional groups, and 
good electrical conductivity (Rasool et al., 2016; Wu et al., 2021; Serles 
et al., 2022). It can enhance the proliferation and neural differentiation 
of NSCs, and promote the development of SGN growth cones and 
neurite growth by delivering electrical stimuli (Guo et al., 2022; Liao 
et al., 2022; Li Y. et al., 2022).

Inner ear progenitors for auditory 
regeneration

HCs and supporting cells (SCs) are critical inner ear components 
that arise from a common sensory progenitor. Inner ear progenitor 
cells are pluripotent cells with self-renewal ability that can differentiate 
into HCs under suitable induction conditions. During embryonic 
development, signaling pathway regulation plays vital roles in the 
formation of the organ of Corti. Activation of the Wnt pathway and 
inhibition of the Notch pathway promote partial regeneration of HCs 
(Mizutari et al., 2013; Shi et al., 2014; Li et al., 2015). Lgr5, a receptor 
of the Wnt pathway, is also a marker of cochlear stem cells (Chai et al., 
2012; Shi et al., 2013; Bramhall et al., 2014). Under specific conditions, 
Lgr5-expressing Sertoli cells can transdifferentiate into HCs 
postnatally (McLean et al., 2017). Additionally, Sox2 is crucial for cell 
division and differentiation during development. Inner ear epithelial 
cells of Sox2 haploinsufficient mice showed increased differentiation 
and proliferation, resulting in expanded HCs and SCs and eventual 
regeneration of cochlear function. Sox2 haploinsufficiency also 
activates the cochlear Wnt pathway, further enhancing regeneration 
(Atkinson et al., 2018; Steevens et al., 2019).

The let-7 microRNA is a conserved activator that promotes 
proliferative quiescence and terminal differentiation by repressing 
CHD7, which controls progenitor cell behavior during cochlear 
development. Inhibition of let-7  in chicken auditory organ slices 
prolonged pre-sensory cell differentiation and proliferation (Evsen 
et  al., 2020; Nie et  al., 2022). In mice, the RNA-binding protein 
LIN28B promotes HC generation from auditory SCs via the mTOR 
pathway during embryonic development (Li and Doetzlhofer, 2020). 
The Yap-Lin28a axis can also activate Wnt signaling and promote 
inner ear cell regeneration by inhibiting let-7 expression (Kempfle 
et al., 2020; Ye et al., 2020). Knockdown of Foxg1 in neonatal mouse 
SCs promoted their transdifferentiation into HCs (Zhang et al., 2020). 
Furthermore, the Yap/Tead complex regulates a proliferation gene 
network in cochlear progenitors. Tead transcription factors directly 
bind regulatory elements of stem cell and cell cycle genes. In Sox2-
positive cells, Yap as a Tead activator is rapidly degraded (Gnedeva 
et al., 2020; Currey et al., 2021). The transcriptional repressors TBX2 
and TBX3 play essential roles in cochlear morphogenesis (García-
Añoveros et al., 2022; Kaiser et al., 2022). Loss of Tbx2 causes cochlear 
hypoplasia, while Tbx3 mutants exhibit inner ear morphogenesis 
defects (Vitelli et al., 2003; Kaiser et al., 2021; Bi et al., 2022; Kaiser 
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et  al., 2022). The transcription factor ATOH1 promotes HC 
differentiation by upregulating Pou4f3, which facilitates ATOH1 
binding and activation of other target genes (Yu et al., 2021; Costa 
et al., 2022). As a transcriptional activator of Sonic hedgehog (Shh), 
Gli2 is negatively regulated by Suppressor of Fused Homolog (Sufu). 
Controlling Gli2 is critical for regulating cochlear HC differentiation, 
as Sufu inhibition can disrupt Atoh1 expression and delay 
differentiation (Yin et al., 2019; Qin et al., 2022). Overexpression of 
Rps14 in the mouse cochlea promotes SC proliferation by activating 
Wnt signaling and inducing HC regeneration (Xu et al., 2023). These 
studies show that co-regulation of the Wnt, Notch and Shh pathways 
promotes HCs regeneration, and provides a new insight for the 
potential application of HC regeneration.

Stem cell-derived exosomes have broad 
therapeutic prospects in hearing 
impairment

A class of small extracellular vesicles called exosomes that 
diameters ranging between 30 and 150 nm (Kalluri and LeBleu, 2020). 
Many cells, such as immune cells, cancer cells, and stem cells, can 
secrete exosomes (Yang et al., 2019; Cully, 2021). Exosomes derived 
from various cell types are highly heterogeneous. However, stem cell-
derived exosomes have multiple mechanisms for repairing tissue 
damage, including promotion of cell proliferation and survival, 
enhancement of angiogenesis, and inhibition of inflammation and 
oxidation. For example, exosomes secreted by adipose-derived 
mesenchymal stem cells that are enriched in miR-25-3p induced 
neuroprotection through activation of autophagic flux (Kuang et al., 
2020). The formation of exosomes through the endocytic pathway 
includes the following process: cytoplasmic membrane invagination, 
encapsulating some extracellular components and cell membrane 
proteins to form early endosomes (ESEs), followed by fusion between 
different ESEs to form late endosomes (LSEs), and further formation 
of multivesicular bodies (MVBs) (Chang et al., 2021). MVBs contain 
many intraluminal vesicles (ILVs) that may be released into exosomes 
(Han et al., 2022). MVBs are degraded by fusion with lysosomes or by 
fusing with the plasma membrane, releasing their substances, 
including ILVs, which are the final exosomes (Figure  3) (Kumar 
et al., 2020).

Exosomes deliver the vesicle’s load, such as lipids, proteins, and 
other molecules, to the destination cells (Sun et al., 2020). Studies 
show that these exosomes can promote the regeneration of damaged 
tissues, modulate cellular immune responses, and reduce cellular 
inflammatory responses by activating specific signaling pathways (Dai 
et al., 2020; Ocansey et al., 2020; Xu et al., 2020; Cao et al., 2021; Isaac 
et al., 2021). Exosomes derived from stem cells can help regenerate 
neurons and synapses, alleviating the symptoms of neurodegenerative 
disorders (Vogel et al., 2018; Riazifar et al., 2019; Guo et al., 2020; 
Fayazi et al., 2021). Moreover, exosomes play an important role in 
cochlear sensory HCs protection. After stress stimulation, the cochlear 
SCs can release exosomes containing heat shock protein 70 (HSP70). 
To prevent the death of HCs, HSP70 takes a paracrine method to act 
on toll-like receptor 4 (TLR4) (Breglio et al., 2020; Muller, 2020). 
Another study showed that extracellular vesicles from human 
vestibular schwannomas are able to damage cochlear HCs and SGNs, 
leading to hearing loss (Soares et al., 2016).

Exosomes have also been demonstrated to protect against drug-
induced hearing loss. For example, in response to cisplatin and other 
drugs via the HSP70 pathway, exosomes secreted by BM-MSCs 
reduced the apoptosis of mouse cochlear HCs (Park et  al., 2021). 
Furthermore, human MSCs were able to regenerate SGNs and restore 
hearing in mice with autoimmune sensorineural deafness induced by 
β-tubulin through paracrine activity (Tsai et al., 2021). Furthermore, 
human MSCs were able to regenerate SGNs and restore hearing in 
mice with autoimmune sensorineural deafness induced by β-tubulin 
through paracrine activity (Yoo et al., 2015). Human MSC-derived 
extracellular vesicles also protect against noise-induced deafness in 
mice (Warnecke et al., 2020; Huang et al., 2023).

Clinical trials of stem cell therapy for 
deafness

Although multiple cellular and animal studies have demonstrated the 
security and feasibility of stem cell treatment for deafness, stem cell-based 
clinical trials for deafness treatment are still scarce. Alpha mannosidase 
deficiency is a rare genetic disorder that can lead to multi-organ 
dysfunction and cognitive deficits. One clinical study showed that five 
patients with α-mannosidase deficiency significantly improved their 
symptoms after transplantation of the allogeneic hematopoietic stem cells 
(Grewal et al., 2004). Blood cells, nerve cells, and cardiomyocytes can 
differentiate from umbilical cord stem cells. Studies have shown that after 
transplanting stem cells from autologous cord blood, auditory function is 
restored in children with acquired sensorineural hearing loss 
(Baumgartner et al., 2018; Sun and Yang, 2020). miR-22-3p, a microRNA 
relatively highly expressed in mesenchymal stem cell-derived exosomes, 
reduces inflammation by inhibiting expression of NLRP3. Additionally, 
mesenchymal stem cell-derived exosomes significantly inhibit expression 
of the pro-inflammatory factors TNF-α, IL-1β, and iNOS while 
promoting expression of the anti-inflammatory factor IL-10, thereby 
suppressing inflammation (Liu et al., 2020; Wang et al., 2023). In a clinical 
trial concluded in 2021, human umbilical cord MSCs-derived extracellular 
capsules were transplanted into the inner ear, reducing the inflammatory 
side effects caused by cochlear implantation (Warnecke et al., 2021b).

Conclusion

This review discusses the present status of the use of MSCs, ESCs, 
iPSCs, inner ear progenitor cells, and NSCs in the repair and 
regeneration of auditory impairment. MSCs are easily accessible and 
expandable and are, therefore, the most commonly used stem cell type. 
ESCs and iPSCs have strong differentiation potential, but their clinical 
application is limited due to ethical and safety concerns. Cells that can 
differentiate into cochlear HC and spiral neurons are inner ear 
progenitor cells, a type of ASCs. Although several preclinical and clinical 
studies have proved the therapeutic potential of stem cells in auditory 
impairment, Stem cell therapy also has some significant limitations, such 
as safety and feasibility. Specifically speaking, stem cell transplantation 
carries risk of tumourigenesis and immune rejection after 
transplantation, and existing delivery methods for stem cells can affect 
their therapeutic efficiency. In addition, the ethical issues also need to 
be addressed. In the future, the source of stem cells and the time and cell 
dosage for treatment will be  optimized, More and more superior 
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biomaterials and targeted delivery modalities will be developed. Overall, 
stem cell therapy is a brilliant way to restore hearing loss.
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