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Background: Amyotrophic Lateral Sclerosis (ALS) is a devastating  
neurodegenerative disorder characterized by the progressive loss of motor 
neurons. Despite extensive research, the exact etiology of ALS remains elusive. 
Emerging evidence highlights the critical role of the immune system in ALS 
pathogenesis and progression. Damage-Associated Molecular Patterns (DAMPs) 
are endogenous molecules released by stressed or damaged cells, acting 
as danger signals and activating immune responses. However, their specific 
involvement in ALS remains unclear.

Methods: We obtained single-cell RNA sequencing (scRNA-seq) data of ALS from 
the primary motor cortex in the Gene Expression Omnibus (GEO) database. To 
better understand genes associated with DAMPs, we performed analyses on cell–
cell communication and trajectory. The abundance of immune-infiltrating cells 
was assessed using the single-sample Gene Set Enrichment Analysis (ssGSEA) 
method. We performed univariate Cox analysis to construct the risk model and 
utilized the least absolute shrinkage and selection operator (LASSO) analysis. 
Finally, we identified potential small molecule drugs targeting ALS by screening 
the Connectivity Map database (CMap) and confirmed their potential through 
molecular docking analysis.

Results: Our study annotated 10 cell types, with the expression of genes 
related to DAMPs predominantly observed in microglia. Analysis of intercellular 
communication revealed 12 ligand-receptor pairs in the pathways associated 
with DAMPs, where microglial cells acted as ligands. Among these pairs, the 
SPP1-CD44 pair demonstrated the greatest contribution. Furthermore, trajectory 
analysis demonstrated distinct differentiation fates of different microglial states. 
Additionally, we  constructed a risk model incorporating four genes (TRPM2, 
ROCK1, HSP90AA1, and HSPA4). The validity of the risk model was supported 
by multivariate analysis. Moreover, external validation from dataset GSE112681 
confirmed the predictive power of the model, which yielded consistent results 
with datasets GSE112676 and GSE112680. Lastly, the molecular docking analysis 
suggested that five compounds, namely mead-acid, nifedipine, nifekalant, 
androstenol, and hydrastine, hold promise as potential candidates for the 
treatment of ALS.

Conclusion: Taken together, our study demonstrated that DAMP entities were 
predominantly observed in microglial cells within the context of ALS. The 
utilization of a prognostic risk model can accurately predict ALS patient survival. 
Additionally, genes related to DAMPs may present viable drug targets for ALS 
therapy.
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1. Introduction

The neurodegenerative disease amyotrophic lateral sclerosis (ALS) 
affects motor neurons in the upper and lower limbs. Presently, there 
is no effective treatment for this condition. The global prevalence rate 
of ALS is 4.42 per 100,000 individuals, with an escalating incidence 
with advancing age (Ingre et al., 2015; Xu et al., 2020). ALS can impact 
the muscles in the spinal cord and the bulbar area, in addition to the 
respiratory system (Brown and Al-Chalabi, 2017). The clinical 
heterogeneity of ALS poses a challenge for diagnosis, and the etiology 
remains unclear, particularly in the absence of diagnostic tests 
(Bordoni et al., 2020). Moreover, proof is scarce regarding intervention 
strategies for ALS. Despite being approved by the FDA, Rilutek and 
Radicava have demonstrated limited effectiveness in managing ALS 
symptoms (Jaiswal, 2019). Moreover, the majority of patients succumb 
to the disease within 3 to 4 years of exhibiting symptoms (van Es et al., 
2017). Thus, it is crucial to gain a comprehensive 
comprehension of ALS.

Damage-Associated Molecular Patterns (DAMPs) encompass a 
collection of molecules capable of initiating and perpetuating immune 
responses within non-infectious inflammatory contexts (Thundyil and 
Lim, 2015). Typically sequestered within cellular confines, these 
molecules are exclusively released into the extracellular milieu after 
cellular damage or exposure to stressors. In this extracellular domain, 
they assume a pivotal role as potent activators of the immune system. 
DAMPs exhibit an affinity for diverse receptors, encompassing toll-
like receptors (TLRs) and the receptor for advanced glycation end 
products (RAGE), thereby eliciting intricate signaling cascades that 
culminate in inflammatory and immune responses (Cruickshank 
et  al., 2018; Roh and Sohn, 2018; Vaes et  al., 2021). Hence, the 
understanding and comprehensive knowledge of DAMPs’ 
functionality assumes paramount importance in delineating the 
pathogenic underpinnings of an array of diseases, encompassing but 
not limited to cancer and neurodegenerative disorders. In tumors, 
DAMPs are widely regarded as one of the most auspicious approaches 
for eradicating tumor cells. The primary role of DAMPs is to activate 
the immune system’s reaction to cancer, which leads to the 
mobilization of anti-tumor cells, the secretion of anti-cancer 
cytokines, and the suppression of tumor development (Ashrafizadeh 
et  al., 2020). In a multitude of cancer types, various immune cell 
populations are activated in response to DAMPs. Illustrative instances 
from diverse categories of cancer serve to underscore this 
phenomenon. For instance, Myeloid-derived suppressor cells 
(MDSCs) are activated upon encountering DAMPs in breast cancer 
(Vrakas et al., 2015). In the context of Lung Cancer: DAMPs activate 
dendritic cells, prompting an immune response that frequently 
contributes to inflammatory conditions during the progression of the 
tumor (Solari et  al., 2020). In the context of Pancreatic Cancer: 
Tumor-associated macrophages (TAMs) are recognized for their 
activation in reaction to DAMPs (Naqvi et al., 2018). Notably, in the 
context of ALS, various studies have indicated an increase in specific 
DAMPs. For instance, the levels of Toll-like receptor 4 (TLR4), a 

prominent DAMP, were found to be  significantly elevated in the 
activated microglia of sporadic ALS cases (Casula et  al., 2011). 
Moreover, the interaction between misfolded wild-type SOD1, a 
protein often mutated in familial ALS, and TLR4, triggers 
neuroinflammatory processes resulting in neurotoxic effects (Lee 
et  al., 2015). Hence, it indicates a potential therapeutic target for 
slowing the progression of ALS, with treatments aimed at preventing 
DAMP formation or inhibiting their receptor activation.

This study primarily elucidated the involvement of DAMPs in ALS 
through two distinct perspectives. Firstly, at the single-cell level, 
we  identified the presence of DAMPs-inducing conditions in 
ALS. Furthermore, we  developed a novel and validated prognostic 
model for ALS at the bulk RNA-seq level, examining the clinical 
significance and immune cell infiltration status of both high and 
low-risk cohorts. Additionally, we  utilized molecular docking 
technology to anticipate potential drug candidates, thereby furnishing 
a theoretical foundation for the advancement of ALS medication. Lastly, 
we investigated the potential use of these genes as drugs of choice.

2. Methods

2.1. Single-cell RNA sequencing data 
processing

The study utilized GSE174332, which consisted of 17 cases with 
ALS and 17 pathologically normal controls (PN) with comparable sex 
distributions, for RNA sequencing analysis of the primary motor 
cortex (Pineda et al., 2021). To ensure the selection of single cells, the 
DoubletFinder package, version 2.0.3, was employed and specific 
criteria were applied, including nFeature RNA > 200, percent 
mitochondria>20%, and nCount RNA > 1,000, to eliminate doublets 
and deceased cells. Cells that did not meet the criteria of having at 
least 6,000 genes, a total of more than 200 genes, or mitochondrial 
genes greater than 20% were excluded from the analysis (Figure 1F). 
The gene expression data was standardized and adjusted using the 
“Lognormalizer” technique.

To differentiate each sample, a set of 3,000 genes with high 
variability (HVGs) was employed, using a “vst” approach and a 
“harmony” R package for batch correction. The application of 
“FindNeighbors,” “FindClusters,” and “runUMAP” functions from 
Seurat produced a 2D map that displayed clusters that had undergone 
a dimensionality reduction (Hao et  al., 2021). The automation of 
relevant cell-type annotation within this structure was facilitated 
through the utilization of the ACTIONet R package. The runACTIONet 
function was implemented with a depth set to 30, followed by the 
application of the annotate.cells.using.markers function for cell 
annotation. The resulting annotations were integrated into the Seurat 
object. The classification of cells into 26 distinct clusters was carried out 
using FindClusters with a resolution of 0.3. These clusters were 
subsequently categorized into 22 cell types using the ACTIONet R 
package. The veracity of these classifications was validated via manual 
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examination of the output from the “FindAllMarkers” algorithm. The 
algorithm “FindAllMarkers” was employed to filter genes with a logfc 
of 0.25, which was considered to indicate minimal disparities (Sinha 
et al., 2018). Afterward, the markers underwent filtration by applying 
a revised p-value thresholdof below 0.05. To evaluate the difference in 
gene expression levels between groups, the Wilcoxon rank sum test was 
employed. A heatmap was constructed using 30 selected DAMPs based 
on identifying 10 cell types. The flowchart of our study was shown in 
Figure 2.

2.2. Go, KEGG, and GSEA

A GSEA analysis was conducted to detect genes exhibiting 
significant differential expression across various cell groups. To 

perform GO and KEGG enrichment analysis on the differentially 
expressed genes of microglia and OPC (log2FC > 0.25, adj p value 
<0.05), the GSE174332 dataset was utilized. Subsequently, the 
enrichment outcomes were compared between the two 
cell populations.

2.3. Cellchat in amyotrophic lateral 
sclerosis

Firstly, the CellChat and patchwork packages were utilized for 
generating CellChat objects, establishing ligand-receptor 
interaction databases, and preprocessing expression data. 
Secondly, to calculate the CellChat network, we used the “trimean” 
function to estimate communication probability. Data frames 

FIGURE 1

Data processing and defining cell types. (A) Umap of the 22 cell clusters. (B) The cell types were identified by marker genes. Abbreviations: Ex, 
Excitatory; In, Inhibitory (C) The expression of cell types in ALS and PN. (D) Proportion of cells in ALS and PN. (E) Expression levels of top 5 marker 
genes for each cell type. (F) Gene data detected in each cell, the total number of molecules detected in the cell; the X-axis and color represent 
different sample numbers, and the Y-axis represents the number of detected genes.
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were then extracted from the CellChat network, signaling 
pathways were used to determine communication, and cellular 
communication networks were computationally integrated 
(Figure 3C). Thirdly, signaling pathways associated with DAMPs 
were visualized. Each ligand-receptor pair was calculated 
according to its contribution to each pathway, and the regulatory 
role of ligand-receptor pairs in cellular communication was shown 
in Figure 4.

2.4. Trajectory analysis of single cells

The cellular state undergoes continuous fluctuations throughout 
the course of development (Haghverdi et al., 2016; Sun et al., 2022). 
Microglial subsets undergo analysis utilizing a pseudo-time sequence, 
whereby markers distinctive to these subsets were utilized for cell 
categorization (Supplementary Table S3). This methodology facilitated 
the assessment of the overarching interplay between alterations in 

FIGURE 2

Flowchart of our study.
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FIGURE 3

(A) DAMPS marker gene heatmap in 10 cell types. (B) GSEA for differentially expressed genes between different cell types. (C) Circle plot showing the 
intercellular communication and the interaction strength between major cell types in ALS, colored according to each cell type; the thickness degree 
indicates the interaction strength between sender and receiver cell. (D) KEGG analysis of the differentially expressed genes between the Microglia and 
OPC clusters.
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cellular expression. The R package Monocle2 was used to generate 
single-cell pseudotime trajectory plots (Trapnell et al., 2014). This R 
package diminished the high-dimensional expression profile into 
lower-dimensional space using a machine learning technique (Qiu 
et  al., 2017). An object was created using the “newCellDataSet” 
function, with the parameter expression family set to neg binomial 
size. Only genes with an average expression of at least 0.1 were taken 
into account for the trajectory analysis. The function “reduce 
dimension” was utilized to perform dimension reduction, taking 
DEGs between the cell groups as input and setting the parameters 
method to “DDRTree” and max components to 2. The function “plot 
cell trajectory” was employed to organize and examine cells. The 
function “plot genes branched heatmap” was used to classify and 
visualize the genes identified using the branch expression analysis 
modeling (BEAM) analysis (Zhang et al., 2021).

2.5. Acquisition of datasets and 
damage-associated molecular 
pattern-related genes

The GEO database, maintained by NCBI, provides extensive gene 
expression information using microarray and sequence-based 

methods (Barrett et al., 2013). The present study included two datasets, 
namely GSE112676 and GSE112680. A total of 233 individuals 
diagnosed with ALS and 508 control subjects were examined in the 
study GSE112676. The dataset GSE112680, created with the use of 
Illumina HumanHT-12 Expression BeadChip (GPL10558), consisted 
of 164 individuals diagnosed with ALS and 137 individuals serving as 
controls. The Illumina platform served as the basis for the GSE112676 
and GSE112680 datasets, which contain identical clinicopathological 
information on ALS patients. Included in this data are the time when 
symptoms first appeared (known as age at onset), the affected area 
(either the bulbar region or the spinal region), the individual’s gender 
(male or female), the duration of follow-up, and the current condition 
(whether the patient is alive or deceased).

Moreover, the merging of the datasets was accomplished by 
employing the R package called inSilicoMerging (Taminau et  al., 
2012). Subsequently, the methodology by Johnson WE  et al. was 
employed to eliminate any potential batch effects (Johnson et  al., 
2006). In the two microarray datasets, the “ComBat” algorithm was 
applied to mitigate batch effects (Leek et al., 2012). To showcase the 
effectiveness of the normalization and batch correction techniques, 
UMAP analysis was performed on the microarray data both before 
and after applying these methods (Supplementary Figure S1). After 
removing the batch effect of GSE112676 and GSE112680, we identified 

FIGURE 4

Cell–cell communication between ALS and PN. (A) Microglia release ligands that act on 10 cells. (B) Circle plots illustrated and compared alterations in 
cell–cell communication between ALS and PN; SPP1-CD44 and SPP1  −  (ITGAV+ITGB1) expression in 10 cell types. (C) Contribution of each L  −  R pair. 
(D) SPP1 signaling pathway network.
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7,877 DEGs between ALS and control samples, which included 4,100 
upregulated and 3,777 downregulated genes (Supplementary Table S1).

Supplementary Table S2 presents the information on 30 genes 
associated with DAMPs, which were gathered based on prior research 
(Hernandez et al., 2016; Galluzzi et al., 2020; Gong et al., 2020).

2.6. Construction of the prognostic model

As a first step, a Cox regression analysis was conducted to identify 
potential prognostic DEGs (van Dijk et al., 2008). LASSO was used to 
perform regression analysis, with variables with p-values below 0.05 
selected for regression analysis (Tibshirani, 1997). To reduce the gene 
count and avoid overfitting, the LASSO regression analysis was applied 
in the final risk model using the R software “glmnet” package. 
Afterward, the genes discovered via LASSO regression were analyzed 
using multivariate Cox regression, leading to the creation of a 
prognostic model using the subsequent equation: Risk scores = sum of 
(coefficient × expression of a signature gene; Christensen, 1987). Based 
on the median risk score value, the patients were divided into high-risk 
and low-risk cohorts. To depict the discrepancy in survival and the 
condition of every individual, we utilized the R software’s “survminer” 
and “ggrisk” packages to create survival curves and risk plots. 
Additionally, ROC curves were generated using the R software’s 
“timeROC” package, evaluating the predictive capacity of the risk score 
for the overall survival (OS) of ALS patients over 1, 3, and 5 years.

2.7. Examining the clinical significance and 
enrichment of high-risk and low-risk 
groups

The potential of the risk score as an independent prognostic factor 
for ALS patients was investigated through Cox regression analysis 
using the R software, particularly the “survival” package. Furthermore, 
the forest plot package was employed to produce forest plots for both 
univariate and multivariate Cox regression analyses. Additionally, Cox 
proportional hazards regression was utilized to conduct univariate 
and multivariate logistic analyses, evaluating the prognostic 
significance of the risk score in combination with other clinical factors 
and the prognosis-related gene signature. We determined the hazard 
ratios (HR) and calculated the corresponding 95% confidence 
intervals (CI).To identify the pathways with the greatest level of 
enrichment between the high- and low-risk groups, the R software 
packages “clusterProfiler” and “enrich plot” were utilized for the Gene 
Set Enrichment Analysis (GSEA).

2.8. Immune infiltration

To assess the level of immune cell enrichment, earlier studies 
utilized gene sets, while ssGSEA (single-sample gene set enrichment 
analysis) was employed for determining infiltrating immune cells 
(Hänzelmann et al., 2013; Charoentong et al., 2017). The distribution 
of immune cell types is characterized by a relative abundance, with 0 
indicating the lowest and 1 indicating the highest. Additionally, the 
Wilcoxon test was used to compare samples obtained from individuals 
with ALS and controls.

2.9. Small molecule drug analysis and 
molecular docking

To predict small-molecule drugs targeted the ALS and control 
DEGs, the Connectivity Map (CMAP) from https://clue.io/ was 
employed. The connectivity score (median tau score) was computed 
to establish ranking and filtering, with a range of 100 to −100. A 
positive connectivity score of a compound results in comparable 
changes to the uploaded genes, while a negative connectivity score of 
a compound leads to opposite changes to the uploaded genes, 
indicating its potential as a promising drug. Perturbagens with 
connectivity scores below 95 were deemed significant candidates.

The drug candidate and its targets were analyzed for binding 
affinities and interaction modes using AutodockVina 1.2.2, a software 
for protein-ligand docking simulations (Morris et  al., 2008). Low 
binding energies between ligand and receptor result in a more stable 
conformation. The molecular structures of potential drugs were 
acquired from PubChem Compound (Wang et al., 2017).1 Meanwhile, 
the 3D coordinates of TRPM2 (PDB ID, 7AOV; resolution, 2.00 Å), 
ROCK1 (PDB ID, 5WNE; resolution, 2.60 Å), HSP90AA1 (PDB ID, 
4BQG; resolution, 1.90 Å), and HSPA4 (PDB ID, 3GLA; resolution, 
1.64 Å) were retrieved from the PDB.2 To perform docking analysis, 
the protein and molecular files were converted to PDBQT format, 
with the exclusion of water molecules and the inclusion of polar 
hydrogen atoms. To enable unrestricted molecular movement, the 
domain of each protein was encompassed by a centered grid box. The 
size of the grid box was set to 30 angstroms in length, width, and 
height, with a grid point spacing of 0.05 nanometers. The molecular 
docking studies were carried out using Autodock Vina 1.2.2.3

2.10. Statistical analysis

The present study utilized R Statistical Software (version 4.1.2) to 
analyze distinctions among the groups using Wilcox tests. Predictive 
models were developed using LASSO regression and Cox regression 
analyses. Using the Kaplan–Meier method, survival analysis was 
performed, and log-rank tests were used to assess differences between 
the groups. p < 0.05 defines statistical significance.

3. Results

3.1. Single-cell profiling in amyotrophic 
lateral sclerosis

The ScRNA sequencing dataset (GSE174332) comprises a total of 
199,556 cells, with 121,224 cells derived from ALS and 78,332 cells 
derived from pathologically normal controls (PN). A total of 176,253 
cells were retained through the filtration process, consisting of 109,196 
cells from ALS and 67,057 cells from PN. The cells were categorized 
into 22 different clusters (Figure 1A). Based on marker genes, the 
clusters were further classified into various cell types (Figures 1B,C). 

1 https://pubchem.ncbi.nlm.nih.gov/

2 http://www.rcsb.org/pdb/home/home.do

3 http://autodock.scripps.edu/
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Subpopulation analysis revealed seven excitatory and inhibitory 
neuron subtypes (Ex Neuron and In Neuron), respectively (Figure 1B). 
Figure 1D showed the different ratio of cell types between ALS and 
PN. Supplementary Figure S5 depicted the expression patterns of the 
top  5 marker genes across the 10 cell types. To gain a deeper 
comprehension of the attributes of every cell subcategory, 
we examined the marker genes linked to each subcategory. Figure 1E 
showed the violin plot illustrating the top five genes across all 
subpopulations. Our analysis identified 10 cell types, namely OPC 
(Oligodendrocyte precursor cell), Ex Neuron (Excitatory Neuron), In 
Neuron (Inhibitory Neuron), Mural, Fibroblast, Oligodendrocyte, 
Astrocyte, Endothelial, Microglia, and T cells.

The expression of DAMPs-related genes was primarily observed 
in microglia (Figure 3A). Figure 3B depicted the top 50 pathways of 
the utmost significance of GSEA analysis, categorized as immunity-
related, biosynthesis-related, apoptosis-related, etc. It was widely 
acknowledged that the manifestation of ALS was intricately linked to 
the aberrant expression of these pathways. Firstly, the TGF-β Signaling 
Pathway, an immunity-related pathway, is instrumental in modulating 
glial cell activation and inflammatory responses. Activated glial cells 
release an array of cytokines, thereby instigating inflammation and 
neurodegeneration (Si et al., 2015; Tripathi et al., 2017). Secondly, 
Steroid biosynthesis, a biosynthesis-related pathway, especially 
glucocorticoid biosynthesis, has exhibited anti-inflammatory and 
neuroprotective effects that could potentially confer benefits for 
individuals with ALS (McLeod et  al., 2020). Furthermore, the 
engagement of glial cells in the steroid biosynthesis pathway becomes 
evident through their active role in generating essential steroid 
intermediates and metabolites (Manna et al., 2015). Thirdly, the P53 
signaling pathway, a pathway closely linked to apoptosis, is primarily 
relevant to motor neurons. Renowned for its pivotal role in regulating 
apoptosis, this pathway has also exhibited intricate connections with 
ALS (Ranganathan and Bowser, 2010). Furthermore, The GSEA 
analysis revealed a notable concurrence between the top 50 pathways 
and the KEGG enrichment pathways associated with DAMPs-related 
genes (Supplementary Figure S6). Particularly, the steroid biosynthesis 
pathway exhibited the highest significance by ranking first among 
these shared pathways (Figure 3B). In comparison of genes expressed 
by microglial cells and OPCs, KEGG analysis revealed that 20 
pathways were enriched in each group (Figure 3D). Furthermore, a 
comprehensive KEGG analysis of other cell types has been visually 
presented in Supplementary Figure S7. Hence, the KEGG enrichment 
results revealed a strong association between the expression of genes 
related to microglial cells and pathways associated with DAMPs.

3.2. The amyotrophic lateral sclerosis cell 
chat results

ALS samples exhibited 12 unique ligand-receptor pairs within 
DAMP-related pathways, involving microglial cells as ligands when 
compared to PN. These pairs included APP-CD74, ENTPD1-
ADORA1, IL18-(IL18R1 + IL18RAP), MPZL1-MPZL1, PSAP-GPR37, 
PSAP-GPR37L1, PTPRC-CD22, SEMA4D-PLXNB1, SPP1-
(ITGA9 + ITGB1), SPP1-(ITGAV+ITGB1), and SPP1-CD44 
(Figure 4A). Among these pairs, the SPP1-CD44 ligand-receptor pair 
showed the highest level of contribution in ALS, while the SPP1-
(ITGAV+ITGB1) ligand-receptor pair exhibited the highest level of 

contribution in PN (Figure 4C). In the comparison between ALS and 
PN cells (Figure  4B), the majority of signals displayed a general 
decrease in ALS compared to PN. In ALS, the center was typically 
localized in microglial cells. However, this microglial-cell-centered 
pattern was disrupted as endothelial cells, astrocytes, T cells, and 
OPCs increasingly became involved in PN (Figure 4B). Moreover, the 
hierarchical diagrams depicted the autocrine and paracrine 
communication of cells within the signaling pathway. In the diagrams, 
solid circles represented the origin of the communication, while 
hollow circles indicated the destination. Consequently, it was observed 
that microglial cells served as the primary sources of communication 
in both ALS and PN (Figure 4D).

3.3. Trajectory results of single cells

Using Monocle software, we  performed a pseudo-time series 
analysis to confirm the development stages of different microglial 
groups. The results suggested that the four groups can be broadly 
classified into five distinct states of differentiation (Figures 5A,C). 
Figure  5B symbolized the temporal dimension of cellular 
differentiation. Developmental stages occur earlier as the color 
becomes darker. The findings indicated that cells in Cluster 1was in 
the initial phase of growth, whereas cells in Cluster 8 were in the final 
phase of development (Figure 5B).

To determine genes controlled in a manner specific to a branch, 
we created a heatmap (Figure 5D). The heatmap’s columns symbolize 
nearly consecutive points, whereas the genes were symbolized by the 
rows. When reading from the center of the heatmap toward the right, 
a lineage of quasi-time series becomes apparent, while reading toward 
the left uncovers a different lineage. The analysis revealed alterations 
in genes that were expressed differently and carried out various gene 
expression programs. The genes were categorized into six clusters 
associated with the promotion of skeletal muscle tissue regeneration, 
assembly of neurofibrillary tangles, migration of microglial cells, 
neuronal demise, development of neuromuscular junctions, 
and more.

3.4. Prognostic model construction and 
validation

To identify potential prognostic DAMPs-related DEGs in ALS, 
we conducted a univariate Cox regression analysis. After intersecting 
7,877 DEGs and 30 DAMPs-related genes, we obtained 19 DAMPs-
related DEGs, including TLR4, TLR2, NLRP3, FPR1, AIM2, FPR2, 
TREM1, TRPM2, TLR9, P2RX7, P2RY2, CGAS, CLEC4E, CLEC7A, 
IFIH1, CALR, ROCK1, HSP90AA1, and HSPA4. In total, four genes 
were identified as prognostic DEGs (p < 0.05; Supplementary Figure S2). 
Afterward, we conducted a LASSO regression analysis to decrease the 
amount of DEGs in the ultimate risk model. Through this step, 
we identified four genes (Figures 6A,B). Finally, using multivariate 
Cox analysis, we recognized four genes as independent prognostic 
DEGs. These genes included TRPM2, ROCK1, HSP90AA1, and 
HSPA4. According to the survival curve, patients classified as high-
risk had a lower overall survival (OS) rate compared to patients 
classified as low-risk (Figures 6B–D). Furthermore, the risk score 
exhibited excellent predictive accuracy for overall survival in these 
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subjects, with an area under the curve (AUC) of 0.74 and 0.78 for 
3-year and 5-year overall survival, respectively (Figure  6E). 
Comparable findings were noted in the GSE112681 dataset 
(Figures 6B,F,G). Figures were created to demonstrate the specific 
survival results of individual patients in the external validation groups 
(AUC = 0.95; Figure 6H). For this investigation, we employed the R 
program glmnet to combine information on survival time, survival 
status, and gene expression data. Additionally, we  utilized the 
lasso-cox technique for conducting regression analysis. Furthermore, 
we  established a 10-fold cross-validation technique to  

acquire the most suitable model. After setting the Lambda value to 
0.00127609072719019, we  ultimately acquired a total of  
four genes. The constructed model formula is  
RiskScore = 2.94049083002057*TRPM2 + 1.3768606558898*ROCK1 + 
0.868830633563441*HSP90AA1 + 1.08881045581752*HSPA4. The 
formulated model equation was incorporated into the individual cell 
data. The dot plot in Supplementary Figure S3 depicted the expression 
of four prognostic genes in the single-cell data. The scatter plot in 
Supplementary Figure S4 exhibited the dynamic manifestation of 
these four predictive genes with pseudo-temporal values.

FIGURE 5

Trajectory analysis of microglial cells. (A) Pseudotemporal trajectory of microglia cells subclusters using the Monocle algorithm. (B) Microglia cells 
evolved from dark blue to light blue. Darker blue represents an earlier stage of differentiation, while lighter blue indicates a later stage of differentiation. 
(C) Distribution of different states in microglia. (D) Differentially expressed genes along the pseudotime were hierarchically clustered into six 
subclusters. The top annotated GO terms in each cluster were provided.
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FIGURE 6

(A) LASSO regression of the 19 genes. (B) Cross-validation for optimizing the parameter in LASSO regression. (C) The distribution of risk score and 
survival status and a heatmap generated based on identified gene expression. (D) Kaplan–Meier curves of survival analysis. (E) ROC analysis for 
predicting the risk of death. (F) The distribution of risk score and survival status in GSE112681 and a heatmap generated based on identified gene 
expression. (G) Kaplan–Meier curves of survival analysis in ALS. (H) ROC analysis for predicting the risk of death in GSE112681. (I) Univariate Cox 
regression analysis revealed the association between patients’ survival and clinicopathological parameters. (J) Multivariate Cox regression analysis 
uncovered that only the risk score (p  <  0.05) was an independent prognostic factor for ALS patients. (K) Boxplot of high and low risk between different 
immune cells. – represents nonsense, * represents p  <  0.05, ** represents p  <  0.01; *** represents p  <  0.001. (L) GSEA to investigate the biological 
processes and pathways enriched in high- and low risk groups.
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3.5. Clinical significance and immune cell 
infiltration

We then performed a single-variable and multivariate Cox 
analysis on the risk score to determine if it could act as a standalone 
prognostic factor. According to Figures  6I,J, the univariate Cox 
regression analysis showed that there was a favorable correlation 
between solely the risk scores and the overall survival (HR 2.95, 95% 
CI 1.45–6.00, p = 0.003). Moreover, the multivariate analysis revealed 
a significant association between the prognostic risk score (HR 3.04, 
95% CI 1.47–6.30, p = 0.003) and the overall survival of individuals 
with ALS, indicating its potential as a standalone prognostic indicator. 
Moreover, we performed a GSEA to detect the pathways that exhibited 
significant enrichment. The results of our analysis showed significant 
enrichment of genes in the TGF beta signaling pathway, ubiquitin-
mediated proteolysis, p53 signaling pathway, and cell cycle (Figure 6L).

An inquiry was carried out to ascertain the association between 
immune-related genes and ALS by examining the infiltration of 
immune cells. A total of 28 immune cells infiltrating ALS were 
screened with values of p < 0.05, as shown in Figure 6K. The findings 
indicated that the high-risk group exhibited increased expression of 
activated B cells, activated CD8 and CD4 T cells, effector memory 
CD4 T and CD8 T cells, Gamma delta T cells, immature B cells, Type 
1 T helper cells, eosinophils, regulatory T cells, and plasmacytoid 
dendritic cells (p < 0.05). Conversely, the low-risk group demonstrated 
higher expression of central memory CD4 T cells, macrophages, 
MDSC (Myeloid-derived suppressor cells), natural killer T cells, and 
neutrophils (Figure 6K).

3.6. Molecular docking

The highest negative score was assigned to the top  5 small 
molecule compounds (mead-acid, nifedipine, nifekalant, 
androstenol, hydrastine) shown in Table 1, indicating their potential 
as drugs for ALS. Simultaneously, the 2D chemical structures of 
these compounds were obtained from PubChem (Figures 7A–E). 
Subsequently, to assess the binding affinity of the drug candidates 
with their respective targets, a molecular docking analysis was 
conducted. Using the Autodock Vina v.1.2.2 program, we employed 
five drug candidates to acquire the binding poses and interactions 
with four proteins. Accordingly, each interaction’s binding energy 
was calculated (Figure 7). Consequently, it was disclosed that the 
drug contenders displayed noticeable hydrogen bonding and robust 
electrostatic interactions with their protein targets, simultaneously 
effectively occupying the hydrophobic cavities of every target. 
Distinct colors are assigned to individual atoms, with hydrogen 

represented by white, carbon by green, oxygen by red, and nitrogen 
by blue. Furthermore, the visualization of the lowest binding energy 
between the small molecule compounds and the core target was 
conducted (Figures 7B,F–J). Among them, mead-acid exhibited a 
low binding energy of −5.127 kcal/mol for TRPM2, while nifedipine 
showed a low binding energy of −5.63 kcal/mol for HSP90AA1. 
Additionally, TRPM2 displayed low binding energies of −6.782 kcal/
mol and − 7.101 kcal/mol for nifekalant and androstenol, 
respectively. Furthermore, ROCK1 demonstrated a highly stable 
binding with hydrastine, as indicated by its low binding energy of 
−7.743 kcal/mol.

4. Discussion

ALS is a progressive neurodegenerative disease characterized by 
motor neuron degeneration (Schoser et al., 2001). Although the exact 
pathogenesis remains uncertain, emerging evidence suggests that the 
immune response plays crucial roles in the development and 
progression of ALS (Zhao et al., 2013; Jara et al., 2017; Wosiski-Kuhn 
et al., 2019; Passaro et al., 2021; Rodrigues Lima-Junior et al., 2021). 
DAMPs are endogenous molecules released in response to cellular 
damage or death (Zhang et al., 2010), and activate pattern recognition 
receptors (PRRs) in the immune system (Teissier and Boulanger, 
2019). Accordingly, DAMPs may hold valuable implications for 
predicting disease outcomes in ALS and their presence.

Hence, our study mainly explored the role of DAMPs in ALS and 
delved into it from the perspectives of single cell and transcriptome. 
Furthermore, we developed a novel, validated, and precise prognostic 
framework for ALS while examining the clinical significance and 
immune cell infiltration patterns in both high and low-risk cohorts. 
In addition, we utilized molecular docking technology to forecast 
potential drug candidates, thereby offering a theoretical foundation 
for the advancement of ALS medications.

From the perspective of single cells, first, 10 cell types were 
identified through quality control and dimensionality reduction 
clustering. A heatmap revealed that the expression of DAMP-related 
genes was predominantly observed in microglia. Analysis of KEGG 
enrichment results indicated a high association between microglial 
cell genes and DAMP-associated pathways, providing initial 
evidence that dying microglia in ALS may contribute to the 
progression of ALS through DAMPs. Secondly, we performed cell–
cell chat analysis to identify 12 ligand-receptor pairs in DAMP-
related pathways, wherein microglia acted as ligands. The pair SPP1-
CD44 exhibited the highest contribution, further validating the 
predominant occurrence of DAMP in microglia in ALS. Thirdly, 
DAMPs are released from damaged or dying cells to activate the 
innate immune system. Notably, microglia serve as intrinsic immune 
cells within the central nervous system. Hence, by exploring the 
considerable heterogeneity of microglia, we  identified distinct 
differentiation fates of microglial cells states using developmental 
trajectory analysis. Through the use of GSEA, we discovered that this 
pattern of differentiation is closely associated with neuro-
immune biology.

Initially, in terms of bulk RNA-seq, four genes (TRPM2, 
ROCK1, HSP90AA1, HSPA4) were recognized as prognostic DEGs 
(p < 0.05) following the analysis of univariate and multivariate Cox 
regression, and LASSO regression. In addition, a predictive risk 

TABLE 1 The top 5 compounds from Cmap’s database with the highest 
negative enrichment scores.

Rank Score Compound Description

1 −99.82 mead-acid KPL-1 tumor suppressor

2 −99.82 nifedipine Calcium channel blocker

3 −99.82 nifekalant Potassium channel blocker

4 −99.75 androstenol GABA receptor modulator

5 −99.75 hydrastine Tyrosine hydroxylase inhibitor
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model was developed based on the expression levels of four 
reference genes. Afterward, the individuals were categorized into 
groups of low and high risk depending on their overall survival. 
Furthermore, we  also discovered that the developed prognostic 
model exhibited autonomous predictive capability in forecasting 
the overall survival (OS) of individuals with ALS. To confirm the 
predictive capability, an additional validation dataset, GSE112681, 
was employed, and similar outcomes were noted in both GSE112676 
and GSE112680. Further investigation of the potential underlying 

mechanism was prompted by the robust predictive ability of the 
prognostic model. Furthermore, we  examined the variation in 
immune cell infiltration between ALS patients at high risk and low 
risk, taking into account the influence of the immune 
microenvironment on ALS prognosis. The high-risk group showed 
increased expression of activated B cells, activated CD4 T cells, 
activated CD8 T cells, effector memory CD4 T cells, gamma delta 
T cells, immature B cells, effector memory CD8 T cells, regulatory 
T cells, type 1 T helper cells, eosinophils, and plasmacytoid 

FIGURE 7

The molecular docking method of binding screened drugs to their targets. The 2D chemical structures of 5 small molecule drugs. (A) mead-acid 
(B) nifedipine (C) nifekalant (D) androstenol (E) hydrastine. Molecular docking diagram of small molecule drugs and target genes. (F) mead-acid – 
TRPM2 (G) nifedipine – HSP90AA1 (H) nifekalant – TRPM2 (I) androstenol – TRPM2 (J) hydrastine – ROCK1.
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dendritic cells (p < 0.05). On the other hand, the low-risk group 
exhibited higher expression of central memory CD4 T cells, natural 
killer T cells, macrophages, MDSC, and neutrophils. In general, the 
model proved to be appropriate for different detection data and 
accurately forecasted the prognosis and response to DAMP therapy 
in patients with ALS, thereby establishing a theoretical foundation 
for developing personalized treatment strategies.

Moreover, we  performed the functional investigation and 
molecular docking analysis, utilizing the genes (ROCK1, TRPM2, 
HSP90AA1, HSPA4) incorporated in the predictive model, to 
suggest a therapeutic strategy capable of altering unfavorable 
prognosis. To begin with, ROCK1, a serine/threonine kinase, has 
been widely recognized for its participation in diverse intracellular 
pathways, notably encompassing apoptosis and inflammation, both 
of which bear paramount significance in the pathological 
framework of ALS. Furthermore, Capitanio et  al. found that 
blocking ROCK1 activity in mutant SOD1 mice (a model of familial 
ALS) delayed disease onset and extended survival, indicating a 
direct influence of ROCK1 on ALS phenotype (Capitanio et al., 
2012). Moreover, The involvement of TRPM2  in the process of 
microglial activation, a distinctive feature of neuronal inflammation 
and degeneration observed in ALS, introduces an additional 
dimension to its conceivable influence on the ALS phenotype. As 
elucidated in a scholarly investigation conducted by Hermosura, 
et  al., the discerned evidence underscores the role of TRPM2-
mediated calcium ion (Ca2+) influx in fostering microglial 
activation, thereby culminating in a consequential exacerbation of 
neuroinflammation-associated detrimental effects (Hermosura and 
Garruto, 2007; Hermosura et  al., 2008). Also, HSP90AA1 and 
HSPA4’s chaperone function, which assists in the correct folding 
and stabilization of client proteins, becomes dysregulated in the 
context of ALS, thereby impacting the proteostasis network. This 
dysregulation not only compromises the proper functioning of 
motor neurons but also contributes to the aggregation of misfolded 
proteins, a characteristic hallmark of ALS pathology (Ciechanover 
and Kwon, 2015; Zuehlke et al., 2015; Serlidaki et al., 2020). Hence, 
the aforementioned literature has documented numerous instances 
in which the four genes have been demonstrated to actively 
contribute to shaping the ALS phenotype. Furthermore, Mead acid, 
an omega-9 fatty acid, is an indicator of essential fatty acid 
deficiency when found in high levels in the bloodstream (Retterstøl 
et al., 1995). Healthy controls (HC) and those with Alzheimer’s 
disease (AD) had higher levels of mead acid than HC, suggesting 
the importance of creating new dietary intervention methods to 
slow down the advancement of the condition (Iuliano et al., 2013). 
Secondly, nifedipine, known as a calcium channel blocker, markedly 
showed an ameliorating effect on the motor deficiencies of various 
motor neuronal degeneration models, specifically in ALS (Ikenaka 
et al., 2019). Thirdly, nifekalant, a pure potassium channel blocker, 
is extensively used to treat fatal ventricular tachyarrhythmia 
(Harayama et al., 2011). Fifthly, hydrastine is an alkaloid compound 
and possesses various medicinal properties, including anti-
inflammatory, antimicrobial, and antiviral effects. Earlier research 
indicated that the inhibition of GABA(A) receptors in the Lateral 
Hypothalamic Area (LHA) using hydrastine led to a reduction in 
both the proportion and reproduction of lymphocytes, thus 
facilitating cerebellar DAMP modulation (Wang et  al., 2011). 

Hence, these compounds were deemed promising ALS treatment 
candidates. Nevertheless, additional research is required to 
determine effective methods of drug delivery to specific targets. 
Using innovative biomaterials to construct drug delivery scaffolds 
may be a beneficial choice.

Our investigation exhibited several advantages. The hub genes 
were double-validated between single-cell transcriptome and 
microarray datasets. Moreover, the analysis of small molecule drug 
compounds for ALS involved the utilization of the CMAP database, 
which is a validated experimental drug database. Additionally, there 
are various constraints in the current investigation. Future work is 
needed as our findings are currently in the stages of analysis and 
speculation and have not yet been experimentally confirmed. 
Therefore, future research will focus on investigating the collective 
therapeutic benefits of these five specific medications at both the 
cellular and animal levels.

5. Conclusion

With scRNA-seq as well as bulk RNA-seq, we first examined the 
gene landscape of DAMPs in ALS. ALS patients were more likely to 
have DAMPs in their microglial cells. Our prognostic risk model 
demonstrated independent prognostic value. In addition, our study 
contributed to a deeper understanding of immune-infiltrating cells as 
they relate to ALS. The analysis of molecular docking on DAMPs-
related genes might offer new insights into potential ALS 
treatment strategies.
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