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Post-traumatic stress disorder (PTSD) affects up to 30% of veterans returning

from the combat zone. Unfortunately, a substantial proportion of them do not

remit with the current available treatments and thus continue to experience

long-term social, behavioral, and occupational dysfunction. Accumulating data

implies that the long-standing unremitting symptoms are related to changes

in brain activity and structure, mainly disruption in the frontolimbic circuit.

Hence, repair of brain structure and restoration of function could be a

potential aim of effective treatment. Hyperbaric oxygen therapy (HBOT) has been

effective in treating disruptions of brain structure and functions such as stroke,

traumatic brain injury, and fibromyalgia even years after the acute insult. These

favorable HBOT brain effects may be related to recent protocols that emphasize

frequent fluctuations in oxygen concentrations, which in turn contribute to

gene expression alterations and metabolic changes that induce neuronal stem

cell proliferation, mitochondrial multiplication, angiogenesis, and regulation of

the inflammatory cascade. Recently, clinical findings have also demonstrated

the beneficial effect of HBOT on veterans with treatment-resistant PTSD.

Moderation of intrusive symptoms, avoidance, mood and cognitive symptoms,

and hyperarousal were correlated with improved brain function and with diffusion

tensor imaging-defined structural changes. This article reviews the current data

on the regenerative biological effects of HBOT, and the ongoing research of its

use for veterans with PTSD.
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Introduction

Epidemiological studies have consistently revealed high prevalences of combat-
associated post-traumatic stress disorder (PTSD) among military personnel and veterans,
affecting up to 30% of those with a history of combat involvement (Marmar et al., 2015).
Rates of PTSD vary, depending on the specific conflict, as well as the duration and intensity
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of combat exposure (Hoge et al., 2008; Jankowsi, 2016).
Furthermore, increased risks have been reported among persons
with physical injuries (Hoge et al., 2008). Combat-associated
PTSD substantially impacts not only the mental and physical
health of individuals but also their social functioning and overall
quality of life.

The primary treatment options for PTSD typically involve
psychological therapies and pharmacotherapy. Most guidelines
recommend trauma-focused cognitive-behavioral therapy or
pharmacotherapy based on the clients’ preferences (Martin
et al., 2021). However, numerous studies have demonstrated
only marginal superiority of these treatments compared to
control conditions (Steenkamp et al., 2015), and also low
tolerability and high dropout rates (Hembree et al., 2003;
Imel et al., 2013). Moreover, real-world clinical settings have
shown even lower effectiveness and response rates (Nathan
et al., 2000; Hengartner, 2018). To gain insights into the
effectiveness of PTSD therapies in real-life situations, the
Israel Defense Forces Unit for Treatment of Combat-Related
PTSD has collected data on treatment outcomes. A retrospective
analysis of 709 veterans seeking treatment revealed that only
39% experienced significant clinical improvement; and the rate
of remission for intrusion symptoms was only 16% (Levi et al.,
2022). Together with other studies, this suggests that combat
veterans present particular challenges in treatment response
(Van der Kolk, 1994).

Treatment resistance in veterans with PTSD may be explained
by functional and structural brain changes, as evidenced by imaging
studies, particularly within the frontolimbic circuitry (Yehuda et al.,
2015). Such brain impairments underscore the potential benefit of
biological treatments.

In 2018, the VA Evidence-Based Synthesis Program for
traumatic brain injury (TBI) and/or PTSD stated that based
on the data available up to 2018, it was difficult to make
clear decisions regarding the use of HBOT for TBI and
PTSD (Peterson et al., 2018). However, since 2018 preclinical
as well as clinical data accumulated (Deru et al., 2018;
Lin et al., 2019; Lippert and Borlongan, 2019; Mozayeni
et al., 2019; Harch et al., 2020; Doenyas-Barak et al., 2022,
2023; Hadanny et al., 2022; MacLaughlin et al., 2023) and
contributed to our understanding of the potential role of HBOT
in PTSD treatment.

Pathophysiology and long-term
consequences of trauma

Accumulating evidence suggests that the pathophysiological
changes occurring during an acute traumatic event can lead to
long-term alterations in the structure and function of the brain.
The neurobiological cascade begins with an unbalanced surge
of stress hormones, characterized by a low ratio of cortisol to
catecholamine levels (Yehuda, 2002; Charney, 2004; Pitman et al.,
2012). Notable in the early stages following the traumatic event
changes in brain perfusion and metabolism can be observed
(Lucey et al., 1997; Bonne et al., 2003; Zhe et al., 2016; Ben-Zion
et al., 2020). Subsequent long-term changes primarily affect the

prefrontal cortex and the limbic system (Yehuda et al., 2015) and
correlate with reported clinical symptoms.

Studies have identified abnormalities in the medial prefrontal
cortex and the anterior cingulate cortex. Both these regions, when
impaired, have been associated with deficits in emotional regulation
and can serve as predictors of post-traumatic symptom severity
(Zhe et al., 2016). Furthermore, impaired connectivity, both
functional and structural, between the amygdala, the hippocampus,
and the frontal lobes have been demonstrated (Mueller et al., 2015).
These findings support the notion that dysfunction within the
frontolimbic circuitry contributes to the difficulty experienced by
individuals with PTSD in integrating cognitive control over the
emotional neural system.

In addition to alterations in brain metabolism and
activity, traumatic exposure has been linked to reduced
hippocampal volume, while preserved hippocampal volume
has been associated with better response to certain treatments
(Admon et al., 2013).

Hyperbaric oxygen therapy

Hyperbaric oxygen therapy (HBOT) involves the inhalation
of 100% oxygen at pressures exceeding 1 atmosphere absolute
(ATA). This enhances the amount of oxygen dissolved in the
plasma and subsequently the body tissues (Fosen and Thom,
2014). In the blood, oxygen is carried in two forms: a fraction
that is bound to hemoglobin and a free fraction dissolved
in the plasma. At physiologic normoxic conditions, i.e., at a
normal concentration of inspired oxygen (20.8%), at 1 ATA,
up to 99% of the oxygen is carried by hemoglobin, while the
fraction of oxygen dissolved in the plasma is small (Collins
et al., 2015). However, according to Henry’s law (Trayhurn,
2019), at an elevated pressure (such as breathing pure oxygen
under hyperbaric exposure), the dissolved amount can become
significant. At the cellular level, the oxygen pressure delivered
to the mitochondria at 1 ATA is 1–4 mmHg; while in a
hyperbaric environment of 2 ATA with 100% oxygen, the
pressure may increase by as much as 15-fold (Hadanny and
Efrati, 2020). While many beneficial effects of HBOT can be
attributed to the steep rise in tissue oxygenation, it is now
understood that the fluctuation in the combined action of
hyperoxia and hyperbaric pressure triggers both oxygen and
pressure-sensitive mechanisms.

One of the most powerful inducers of regenerative processes
is low oxygen, or hypoxia (Steenkamp et al., 2015). Interestingly,
at the cellular level, it is fluctuations of oxygen concentration and
not the absolute values that are sensed. The implication is that by
repeating intermittent fluctuations of oxygen, from high oxygen
pressures back to normal pressures, the cellular response is that of
“relative hypoxia” which in turn, induces the regenerative effects
of hypoxia. This is described as the “hyperoxic-hypoxic paradox”
(Hadanny and Efrati, 2020). This paradox induces a number
of physiological effects. These include: improved mitochondrial
function, multiplication, and migration; induction of the hypoxic
induced factor (HIF); neuronal stem cell proliferation; production
of vascular endothelial growth factor (VEGF); and an anti-
inflammatory effect. Each of these is described below.
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Improved mitochondrial function,
multiplication, and migration

At the cellular level, 80% of the available oxygen is used by
the mitochondria. The low oxygen level in this organelle renders
it a key oxygen sensor and an important signaler (Palmeira
et al., 2019). The effects of HBOT on mitochondrial function
and multiplication were demonstrated in several studies. In a
training mice model, HBOT facilitated mitochondrial oxidative
and glycolytic capacities and increased the expression of proteins
involved in mitochondrial biogenesis (Suzuki, 2017). Similar effects
were demonstrated among middle-aged athletes who were treated
by HBOT; the mitochondrial mass and the related maximal oxygen
phosphorylation capacity increased (Hadanny et al., 2022). Other
studies highlights the importance of mitochondrial function for
proper maintenance of neuronal function. One of the established
mechanisms is related to cell–cell signaling via the transfer of
mitochondria between astrocytes and neurons (Davis et al., 2014;
Hayakawa et al., 2016). Neurons can release and transfer damaged
mitochondria to astrocytes for disposal and recycling (Davis et al.,
2014), and astrocytes can release functional mitochondria that
enter into neurons (Hayakawa et al., 2016). HBOT facilitates these
mechanisms, and contributes to neuron resilience to inflammatory
insults (Palzur et al., 2008; Lippert and Borlongan, 2019) and to
recovery at the chronic delayed stage of various types of brain
injuries (Palzur et al., 2008; Lippert and Borlongan, 2019).

Hypoxic induced factor

Hypoxic induced factor is a transcription factor that responds
to changes in cellular oxygen supply (Hellwig-Bürgel et al., 2005).
In normoxic conditions, HIF is degraded by hydroxylation, in a
process that is regulated by the ratio of reactive oxygen species
(ROS) to scavenging activity. During hyperoxia, increased oxygen
availability enhances ROS production, but also the production of
ROS scavengers, including glutathione peroxidase and superoxide
dismutase. Upon return to normoxia, the level of scavengers is
increased, according to their inherent elimination half-life, which
is significantly longer than the ROS half-life. This results in a low
ratio of ROS/scavenging capacity, a state similar to that of the
hypoxic state, with increased HIF expression due to suppressed
HIF hydroxylation. The effect of repeated intermittent hyperoxia by
HBOT on HIF expression was demonstrated in a number of animal
models, and in various types of organs and cells (Salhanick et al.,
2006; Ren et al., 2008; Hu et al., 2014). Increased HIF expression
is neuroprotective and enhances regenerative effects in post-stroke
and spinal cord injuries (Angels Font et al., 2010). HIF activation
was shown to have a direct effect on hippocampal activity and on
hippocampal based memory performance (Adamcio et al., 2010;
Xing and Lu, 2016).

Neuronal stem cell proliferation

Hyperbaric oxygen therapy has been shown to induce
the proliferation and mobilization of hematopoietic and
mesenchymal stem cells (Milovanova et al., 2009; Thom et al., 2011;

Heyboer et al., 2014; Yang et al., 2017), as well as of neuronal stem
cells in the hippocampus and the periventricular region (Wang
et al., 2007; Yang et al., 2008; Zhang et al., 2010). This effect
contributes to regeneration following stroke, TBI, and vascular
dementia (Zhang et al., 2010; Lee et al., 2013; Yang et al., 2017), and
is facilitated by the elevation of stem cell factors that promote stem
cell proliferation (Thom et al., 2006) and stabilization of cAMP
responsive element binding protein (Mu et al., 2013).

Vascular endothelial growth factor
production

Vascular endothelial growth factor production is triggered by
HIF-1, and in turn activates vascular cells to initiate angiogenesis
and arteriogenesis. Angiogenesis is the budding of new capillaries
from existing vessels. Arteriogenesis is the remodeling of collateral
blood vessels that handle the increased flow, bypassing stenotic
regions of the original conduit arteries (Van Weel et al., 2008;
Semenza, 2011). VEGF also induces vasodilatation activity, as well
as microvascular permeability, which is needed for immediate
improvement of tissue ischemia (Semenza, 2011). VEGF was shown
to contribute to improved hippocampal activity and neurogenesis
(Hassouna et al., 2016).

Anti-inflammatory effect

Hyperbaric oxygen therapy reduces inflammatory reactions
(Vlodavsky et al., 2006), attenuates microgliosis and astrogliosis
reactions (Lim et al., 2013; Lavrnja et al., 2015), and promotes
blood–brain barrier integrity.

The cellular mechanisms mentioned above contribute to
improved cerebral integrity and plasticity. Examples include
regeneration of axonal white matter, angiogenesis, improvement
in global cerebral blood flow, and increased brain metabolism.
Accordingly, HBOT has been shown to improve the maturation,
myelination (Haapaniemi et al., 1998; Vilela et al., 2008; Chang
et al., 2009), and stimulation of axonal growth, thus enhancing
the functioning and communication of neurons (Mukoyama
et al., 1975; Bradshaw et al., 1996). In addition, HBOT initiates
and facilitates angiogenesis, which also contributes to axonal
regeneration (Kuffler, 2011; Lin et al., 2012; Duan et al., 2014;
Peng et al., 2014). HBOT improves regional cerebral vascular flow,
which is necessary for neurogenesis and synaptogenesis (Chen
et al., 2003; Jiang et al., 2005; Tal et al., 2015). In addition to
increased regional cerebral blood flow by angiogenesis, HBOT
improves global cerebral vascular flow (Neubauer and James,
1998; Rockswold et al., 2001, 2007; Zhou et al., 2007). Due to
increased blood flow and oxygenation, brain metabolism increases
significantly, as seen in positron emission tomography (PET) and
single photon emission computed tomography (SPECT) scans
(Boussi-Gross et al., 2013).

Long-lasting hibernating brain regions are commonly
demonstrated in various types of brain injury, such as following
concussion and stroke. HBOT targets the baseline pathophysiology
that is responsible for unrecovered brain tissue (Efrati and
Ben-Jacob, 2014), and induces cerebral plasticity and repair of
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chronically impaired brain functions. This improves the quality
of life of individuals after stroke or prolonged post-concussion
syndrome (PCS), even years after the acute event (Boussi-Gross
et al., 2013; Efrati et al., 2013; Tal et al., 2015; Yan et al., 2015; Harch
et al., 2017; Hadanny et al., 2018a; see Figure 1).

An evidence-based review of the use
of HBOT for veterans with PTSD

The effect of HBOT on the post-traumatic response has been
studied extensively in preclinical and clinical trials (Table 1).
Several preclinical studies using animal models have demonstrated
the salutary effects of HBOT on anxiety-related behavior, neuronal
plasticity, neurogenesis, and angiogenesis (Peng et al., 2010; Lin
et al., 2019; Fedida et al., in press). HBOT was shown to increase
the expression of brain-derived neurotrophic factor and laminin,
markers associated with neuronal plasticity and improved dendrite
morphology in the hippocampus. HBOT also attenuated the
fear response and anxiety-like behavior induced by traumatic
stress exposure.

Early clinical evidence for the potential use of HBOT in humans
with PTSD came from case reports. These described significant
improvements in PCS and PTSD symptoms following HBOT
(Harch et al., 2009; Eovaldi and Zanetti, 2010). A number of pilot
studies involving military personnel with prolonged PCS or TBI
were conducted after the publication of these case reports, and
demonstrated significant improvements in PTSD symptoms after
HBOT sessions (Neubauer and James, 1998; Rockswold et al.,
2007).

A pilot trial by Harch et al. (2012) included 16 military
persons with prolonged PCS due to mild-moderate TBI or blast
injury. Fifteen of them were also diagnosed with PTSD. Forty
60-min HBOT sessions of 1.5 ATA were prescribed. Following
HBOT, PTSD symptoms improved significantly, as reflected by
the decrease in the mean PTSD Checklist-Military (PCL-M), from
67.4± 10.5 to 47.1± 16 (P < 0.001).

A single-center, double-blind, randomized, sham-controlled,
randomized is always prospective trial (Wolf et al., 2012) at the U.S.
Air Force School of Aerospace Medicine evaluated the effect of 2.4
ATA HBOT vs. room air at 1.3 ATA (prescribed as sham) on post-
concussion and post-traumatic symptoms. Fifty military service
members with a history of TBI and post-concussion symptoms
received 30 sessions of one of the treatments over an 8-week period.
Post-traumatic symptoms were evaluated using PCL-M. The article
does not mention the number of participants who were diagnosed
with PTSD. However, following both the 2.4 ATA and 1.3 ATA
protocols, PCL-M improved significantly. Cognitive scores and
post-concussion symptoms also improved in both groups.

Miller et al. (2015) recruited 72 veterans with PCS
to a multicenter, double-blind, sham-controlled clinical trial.
The participants were randomized 1:1:1 to 40 HBOT sessions
administered at 1.5 ATA with 100% oxygen, 40 HBOT sessions
administered at 1.2 ATA with room air, or no supplemental
chamber procedures (standard care). At baseline, 66% of the
participants met the criteria for PTSD. Following the intervention,
the PTSD symptoms improved in the two active arms (the mean

changes of PTSD Checklist score were 11.4; 95% CI, 5.9 to 16.9 and
5.0; 95% CI,−1.7 to 11.6, respectively).

Notably, the use of a hyperbaric environment as a sham
treatment aims to enable blinding of group allocation in HBOT
trials. However, even a slight increase in oxygen and/or pressure
can have meaningful physiological effects, that invalidate the
sham condition as a true placebo control. It is well known that
any increase in atmospheric pressure, even without changing the
concentration, increases gas solubility (Henry’s law). For example,
1.05 ATA, the pressure at the Dead Sea, Israel (−436 m below sea-
level), can yield significant physiological effects (Kramer et al., 1998;
Abinader et al., 1999). Furthermore, among healthy volunteers,
stem cell progenitors were shown to increase by threefold following
10 sessions of 1.2 ATA with 21% oxygen (MacLaughlin et al., 2023).
Thus, improvement beyond expectation following sham treatment
in a hyperbaric environment suggests that such condition is
mistakenly regarded as sham. Accordingly, 1.3 ATA may well serve
as a low dosage active treatment rather than as a sham control.
Several studies addressed this issue by utilizing alternative methods
to provide a placebo-like control condition (Hadanny et al., 2022;
Zilberman-Itskovich et al., 2022).

Cifu et al. (2014) recruited 61 veterans with PCS to a double-
blind controlled study in which 40 sessions of 2 ATA HBOT were
prescribed with 10, 75, or 100% oxygen. The different protocols
aimed to enable participants blinding to the group allocation and
to serve as equivalents to the common 1.5 ATA 100% protocol,
the 2 ATA protocol, and to room air. While PCS did not improve
significantly in any of the groups, the PCL-M score decreased from
49.4 at baseline to 42.6 (P < 0.05) after treatment in the 2 ATA
100% oxygen group.

In another prospective case-control study, Harch et al. (2017)
recruited 30 active service members or veterans with PCS, with or
without PTSD. Upon recruitment, 10 of them had symptoms that
correlated with the diagnosis of PTSD. After 40, 60-min HBOT
sessions, PTSD symptoms improved, as reflected by a decrease in
PCL-M, from 63.4 + 15.9 to 46.8 + 16.5 (P < 0.001). Continued
symptom improvement was observed at 6 months follow-up.

In a retrospective study, Mozayeni et al. (2019) evaluated the
effect of 40–82 1.5 ATA HBOT sessions, on neurocognitive test
measures, among 32 persons with PCS due to mild TBI. Seven
persons (22%) had a diagnosis of PTSD in addition to post-
concussive symptoms. Compared to the patients without PTSD,
those with a diagnosis of PTSD showed more improvement in
fatigue and mood scales (mean change = −23.8 ± 25.1, CI: −32.9
to −14.7, P = 0.012), and in neurocognitive test scores (mean
change = 13 ± 31, CI: 2–25, P = 0.028). Notably, a longer HBOT
course was associated with better treatment response.

BIMA (Deru et al., 2018) was another randomized, double-
blind, sham-controlled trial of HBOT, for military personnel
with post-concussive symptoms, 3 months to 5 years after mild
TBI. Forty daily 1-h sessions were provided, with either 100%
oxygen at 1.5 ATA or air at 1.2 ATA. Seventy-one patients were
randomized, of whom 35 had PTSD. At 13 weeks, the participants
who received HBOT showed improvement in post-concussive and
PTSD symptoms, sleep quality, control of anger, and memory
outcomes, compared to the sham group. Some of the improvements
demonstrated after HBOT were greater among the participants
with PTSD than among participants with only PCS.
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FIGURE 1

The impact of traumatic events on cellular mechanisms, brain activity, and PTSD symptoms; and the potential benefits of hyperbaric oxygen therapy.
Acute stress-inducing events can lead to cellular hypoxia, and widespread mitochondrial damage. The acute event is followed by a
neuroinflammatory response and long-lasting mitochondrial dysfunction. An imbalance is commonly observed between the surge of
catecholamines and cortisol levels. This contributes to activation of the basolateral amygdala and reduced perfusion to the hippocampus.
Subsequently, the hyperactive amygdala, together with reduced activity in the prefrontal cortex and hippocampus, in addition to diminished
frontolimbic connectivity, contribute to difficulties in integrating traumatic memories. From a clinical perspective, events that trigger post-traumatic
symptoms result in a perceived overwhelming threat and often peritraumatic amnesia, which is presumably associated with hippocampal
malfunction. The incomplete acquisition of traumatic memories may contribute to their intrusive nature at a later time. Hyperbaric oxygen therapy
(HBOT) has been shown to enhance mitochondrial function and signaling. Additionally, fluctuations in cellular oxygen levels lead to increased
hypoxia-inducible factor (HIF) levels. These, in turn, contribute to the activation of genes involved in the repair process. This therapy also promotes
stem cell proliferation in various tissues, including neuronal stem cells in the brain. The enhanced activity and connectivity of the prefrontal cortex
play a role in achieving better frontolimbic balance. This potentially explains the improvement in hyperarousal symptoms. Furthermore, the
improved function of the hippocampus may facilitate the retrieval of inaccessible memories, aid in the processing of traumatic memories, and
reduce intrusive symptoms. PFC, prefrontal cortex.

Post-traumatic stress disorder was not the primary recruiting
criteria in any of the trials described above; rather, recruitment
was according to PCS. PCS and PTSD frequently co-occur

(Taylor et al., 2012), as TBI is a strong predictor of PTSD (Chen
et al., 2014). Some symptoms of PCS such as fatigue, irritability,
sleep disturbances, and concentration difficulties are also common
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in PTSD. Depression and emotional alterations also frequently
occur in both conditions. Thus, differentiating the effect of HBOT
on PCS from the effect on PTSD may be challenging.

The first randomized controlled study (Doenyas-Barak et al.,
2022) that aimed to evaluate the effect of HBOT on veterans
with combat-related PTSD without TBI was published in 2022.
The study included veterans who were diagnosed with combat-
associated PTSD according to the Israeli Ministry of Defense
criteria, and who failed to improve after at least one line of
psychological, and or pharmacological treatment. In addition
to meeting Ministry of Defense criteria, each participant was
evaluated at the time of recruitment by a psychiatrist with expertise
in the field of trauma, who validated the diagnosis based on the
Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-
5) criteria. Individuals were excluded from the trial if they had a
history of TBI, or any other brain pathology.

Thirty-five veterans were randomized to HBOT (N = 18)
or control (n = 17) groups; of them, 14 and 15, respectively,
completed the protocol. Following HBOT, clinical symptoms
improved significantly, according to the Clinician-Administered
PTSD Scale for DSM-5 (CAPS-5) inventory, while no change was
demonstrated in the control group. Improved brain activity was
seen in functional MRI in the left dorsolateral prefrontal, middle
temporal gyri, both thalami, left hippocampus, and left insula. The
DTI showed a significant increase in fractional anisotropy in the
fronto-limbic tracts, genu of the corpus callosum, and fornix.

Long-term follow-up (Doenyas-Barak et al., 2023), performed
704 ± 230 days after completion of the HBOT course,
demonstrated persistence of the treatment results. The mean
CAPS-5 score (26.6 ± 14.4) was significantly lower than at the
pre-HBOT evaluation, 47.5 ± 13.1, P < 0.001; and not statistically
different from the short-term post-HBOT evaluation, 28.6 ± 16.7,
P = 0.745. Moreover, for the CAPS-5 subcategory D (cognition and
mood symptoms), the mean score was significantly lower at the
long-term than short-term evaluation, 7.6 ± 5.1 vs. 10.0 ± 6.0,
P < 0.001. At the long-term compared to the pre-treatment
evaluation, higher percentages of the participants were living with
life partners [77% (n = 17) vs. 46% (n = 10), P = 0.011] and were
working [73% (n = 16) vs. 41% (n = 9), P = 0.033]. Improvements
in long-term follow-up were also consistent with medication use;
markedly, the number of benzodiazepine users decreased, from 10
(46%) to 4 (18%) (P = 0.07), and the median medically prescribed
cannabis dose decreased from a monthly 40.0 g (0–50) to 22.5 g
(0–30) per month (P = 0.046). The long-term beneficial effect,
more than 2 years after the last HBOT session, further supported
the regenerative effect of HBOT. Unlike pharmacotherapy, which
obligates permanent administration, or intensive psychotherapy,
whose effects do not persist after treatment cessation (Jaycox and
Foa, 1996; Hertzberg et al., 2002; Rapaport et al., 2002; Davidson,
2004), the biological benefit of HBOT persisted for years. These
results suggest that the regenerative effects induced by HBOT
promote lasting tissue repair and a new biological equilibrium.

As HBOT obligates daily arrival at the hyperbaric center, and
the expectation from the treatment is high, a potential placebo
effect should be considered. Thus, a second, placebo-controlled trial
with similar combat-related PTSD population is currently being
conducted by the Sagol center research group. To annul hyperbaric
conditions, but provide pressure sensation to the ears, the pressure
in the placebo condition is increased to 1.1 ATA during the first

5 min of the session, with hissing noise of circulating air. The
pressure is then decreased slowly during the next half hour, to 1.0
ATA, with an oxygen level of 21%. Positive outcomes of this study
may contribute to validation of the effect of HBOT on PTSD.

HBOT for PTSD induced by
childhood sexual abuse

An effect of HBOT was suggested among individuals
with PTSD induced by childhood sexual abuse. A prospective
randomized controlled clinical trial by Hadanny et al. (2018b)
included 30 women with fibromyalgia and a history of childhood
sexual abuse. Following 60 HBOT sessions at 2 ATA, entailing
100% oxygen for 90 min with 5-min air breaks every 20 min,
significant improvement was observed in fibromyalgia- and PTSD-
related symptoms. PTSD-related symptoms, such as somatization,
depression, and anxiety were correlated with improvements in
metabolic brain activity, as assessed by brain SPECT.

Adverse effects

Hyperbaric oxygen therapy is generally safe and well tolerated.
The vast majority of side effects are mild and reversible
(Camporesi and Bosco, 2014). Middle ear barotrauma is the most
common side effect of hyperbaric oxygen, with an incidence
of about 2% (Camporesi and Bosco, 2014), and a slightly
higher frequency among those who undergo multiple treatments
(Bessereau et al., 2010). Sinus barotrauma is another reversible
common complication of hyperbaric oxygen, and usually presents
in patients with upper respiratory tract infections or allergic rhinitis
(Camporesi and Bosco, 2014).

Some patients present with reversible myopia due to direct
oxygen toxicity to the lens. While its etiology is unclear, it
usually resolves within days to weeks after the last treatment
(Camporesi and Bosco, 2014).

Pulmonary barotrauma is an unusual side effect of HBOT,
provided that pneumothorax was excluded before initiating HBO
therapy (Leach et al., 1998). Other pulmonary adverse effects such
as pulmonary edema, chest tightness, and cough have rarely been
reported in conjunction with HBOT (Fan et al., 2017).

Seizures due to central nervous system oxygen toxicity are a
rare but dramatic consequence of HBOT (Hadanny et al., 2016;
Manning, 2016). Patients receiving glucocorticoids, insulin, thyroid
replacement, and sympathomimetic medications may be at higher
risk of oxygen toxicity of the central nervous system.

Hyperbaric oxygen therapy has also been associated with
hypoglycemia in some individuals with diabetes (Roth and Weiss,
1994). A retrospective analysis reported adverse events among
406 (17.4%) of 2,334 patients who underwent an HBOT course;
the overall incidence was 721:100,000 events per session (0.72%)
(Hadanny et al., 2016). Subjective symptoms of barotraumas
[otalgia (Hadanny et al., 2016), sinus pain] were reported by 79
(3.4%) individuals, while 215 (0.36%) had objective signs of middle
ear barotrauma per otoscopy and 16 (0.02%) had objective sinus
barotrauma. Only one individual had a HBOT related seizure.
A total of 58 (2.5%) individuals did not complete the prescribed
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TABLE 1 Summary of clinical trials.

References N with
PTSD/N total

TBI
comorbidity

Military ATA Number
of

sessions

Session
length
(min)

Placebo Imaging Outcome

Doenyas-Barak et al., 2022
(controlled trial)

35/35 None + 2 ATA 60 90 NA MRI Improved post-traumatic symptoms
(CAPS)

Harch et al., 2020 (controlled
single blind)

?/63 100% No 1.5 ATA 40 60 NA None Improved post-traumatic symptoms
(PCL), improved sleep quality

Mozayeni et al., 2019 7 100% Some 1.5 ATA 40–80 45 NA None Improved ANAMT4 mood score

Hadanny et al., 2018b 30 None None 2 ATA 60 90 NA SPECT and
MRI

Improved PTSD symptoms (PSS-I)

Deru et al., 2018 (randomized
controlled trial, BIMA study)

18 100% + 1.5 ATA 40 60 1.2 ATA None Improved post-traumatic symptoms
(PCL)

Harch et al., 2017
(case-control study)

10/29 100% + 1.5 ATA 40 60 NA SPECT Improved post-traumatic symptoms
(PCL)

Miller et al., 2015
(multicenter, double-blind,
sham-controlled clinical trial,
HOPPS trial)

47/72 100% + 1.5 ATA 40 60 1.2 ATA or standard care None The post-traumatic symptoms score
(PCL) improved in both treatment

groups, without a difference between
the groups

Cifu et al., 2014
(double-blind, randomized,
controlled trial)

?/50 100% + 2 ATA 40 60 10% O2 at 2 ATA (equivalent to
room air) or 75% O2 at 2 ATA

(equivalent to 1.5 ATA)

None Improved post-traumatic symptoms
(PCL) score at 100% 2 ATA group

Harch et al., 2012 (safety
study)

15/16 100% + 1.5 ATA 40 60 NA SPECT Improved post-traumatic symptoms
(PCL)

Wolf et al., 2012
(single-center, double-blind,
randomized,
sham-controlled, prospective
trial)

?/60 100% + 2.4 ATA 30 90 1.3 ATA None The PTSD symptoms score (PCL)
improved in both treatment groups,

without a difference between the
groups

Harch et al., 2009 (case
report)

1/1 100% + 1.5 39 60 NA SPECT Complete resolution of PTSD

Eovaldi and Zanetti, 2010
(case report)

1/1 (acute stress
response)

100% − 2.4 ATA 7 90 NA None Complete resolution of
post-traumatic symptoms

TBI, traumatic brain injury; ATA, atmosphere absolute; NA, not applicable; PCL, PTSD Checklist; SPECT, single photon emission tomography; CAPS-5, Clinician-Administered PTSD Scale for DSM-5PSS-I, the post-traumatic symptom scale interview.
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HBOT sessions due to side effects. The main reason for treatment
termination was middle ear barotrauma (55%).

Challenges specific to treating PTSD
with HBOT

Individuals with PTSD have often reported worsening of
symptoms during the HBOT course. Harch et al. (2012)
reported temporary worsening of emotional lability, depression,
and headache in four of 16 recruited persons. Miller et al.
(2015) reported worsening claustrophobia in one person. Among
individuals who were recruited to a study on fibromyalgia related
to child abuse, fibromyalgia symptoms worsened temporarily, at
about the 20th session in most (Hadanny et al., 2018b). As the
HBOT course progressed, symptoms resolved in all the patients.
By the end of the HBOT treatment, clinical improvement was
significant compared to baseline pre-HBOT assessments.

Among persons with fibromyalgia (Efrati et al., 2018), a unique
phenomenon of memory recollection was first reported. Similarly,
recollection of inaccessible memories was reported in 35.7% of
veterans with military-related PTSD (Doenyas-Barak et al., in
press). The memories surfaced mostly during the second month
of the treatment; and their recollection was accompanied by
temporary worsening of PTSD symptoms, and/or by somatic pain.
Most of the reported resurfaced memories were related to traumatic
events; nevertheless, it is important to note that changes in access to
non-traumatic memories cannot be ruled out. Furthermore, in the
majority of cases, the accuracy of these resurfaced memories could
not be verified. While memory recollection and the accompanied
distress may be considered adverse effects of the treatment, they
may also represent an “on target” effect that contributes to
hippocampal-based memory processing in individuals with PTSD.

Rare cases of hypomania associated with HBOT have raised
concern regarding the safety of this treatment for individuals with
a history of psychosis related to schizophrenia or bipolar disorder
(unpublished clinical data). While further research of these issues
is currently underway, we exclude persons with co-occurring PTSD
and recent or frequent psychosis from HBOT. Further, the potential
recollection of inaccessible traumatic memories and the potential
for worsening of PTSD-related symptoms during the course of
HBOT treatment, emphasizes the need for dedicated professional
medical staff with expertise in PTSD and HBOT. Additionally,
given that some cases of memory recollection have been reported in
patients without a known history of traumatic experiences (Efrati
et al., 2018), and considering that bipolar disorder or psychosis
can occur in non-traumatized populations, it is important that
all medical professionals in each HBOT center be trained in
handling such cases.

Discussion

Pre-clinical and clinical trials have shown that HBOT can
induce neuroplasticity and improve clinical outcomes of veterans
with treatment-resistant PTSD. The biological effects of HBOT
include improved mitochondrial function, stem cell proliferation,
angiogenesis, and neurogenesis. A number of case reports and 10

clinical trials, including six controlled trials, evaluated the effects
of HBOT on PTSD. All those studies indicated positive effects on
PTSD symptoms. As detailed above, particular attention should be
given to the methods used in the trials, the treatment protocol, the
duration of HBOT sessions, and the handling of the control group.
In the various studies, treatment pressures ranging from 1.5 ATA to
2.4 ATA were prescribed, demonstrating a high safety profile and
significant effects on PTSD symptoms when evaluated shortly after
treatment completion. In four of the mentioned trials (Wolf et al.,
2012; Cifu et al., 2014; Miller et al., 2015; Deru et al., 2018), the
control groups were treated with lower doses of HBOT, which were
shown to have some biological effects.

The number of sessions varied among the studies, ranging from
30 to 80 sessions. Although the different protocols were all proven
to be safe, the induction of neuroplasticity requires long treatment
courses. In our center, we prescribe 60 daily sessions, given 5 days
per week. However, the exact minimal effective dosage has not been
determined and further research is needed.

Most military-related clinical trials focused on evaluating
the effects of HBOT on PCS, whereby PTSD was a common
comorbidity and was also assessed. Therefore, the improvements in
post-traumatic symptoms observed in these trials may be partially
attributed to the alleviation of post-concussion symptoms. Thus
far, two clinical trials specifically excluded individuals with a
history of physical trauma (Hadanny et al., 2018b; Doenyas-Barak
et al., 2022), allowing for a clearer assessment of the effects of
HBOT on PTSD symptoms. Both trials demonstrated significant
improvement in clinical outcomes.

Taken together, HBOT presents a novel therapeutic approach
for PTSD, that targets the biological consequences of traumatic
events; by inducing a cascade of salutary physiological alterations
that culminate in regenerative neuroplasticity, it offers clinical
relief to many who had been suffering from long-term, persistent
symptoms of PTSD.

As over many years, HBOT has been used in clinical practice
for various indications, such as non-healing peripheral ischemic
wound, its safety profile is known. When administered by
a trained professional medical team and when using medical
standard hyperbaric chambers, HBOT is considered safe and the
potential side effects are typically self-remitting. However, certain
aspects are specifically relevant for individuals with PTSD, and
these need particular attention. During the HBOT treatment
course, recollection of traumatic memories may occur. Surfacing
of inaccessible memories were reported to occur in 35.7% of
individuals with military-related PTSD (Doenyas-Barak et al., in
press). The new memories surfaced mostly during the second
month of the treatment, and the surfacing was accompanied by
temporary worsening of PTSD symptoms. The distress resolved
gradually, during the course of a few days, and the memory could
be integrated into the participants’ narratives. It is highly important
that any medical team that treats patients with PTSD by HBOT be
aware of this phenomenon and know how to address it. In addition,
based on our center’s experience, we do not recommend exposure
therapy during HBOT sessions. The distress associated with
exposure techniques could potentially hinder progress. Instead,
we believe that strengthening self-regulatory techniques may

Frontiers in Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1259473
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1259473 October 19, 2023 Time: 17:12 # 9

Doenyas-Barak et al. 10.3389/fnins.2023.1259473

contribute to a safer treatment process and support neuroplasticity.
Therefore, collaboration with the treating psychologist is necessary
to ensure appropriate supplementary treatment.

While preclinical data contribute to our understanding of the
potential mechanisms underlying the beneficial effects of HBOT
on PTSD, further clinical trials are needed to assess their role
in patients with PTSD. The utilization of biomarkers in future
trials may help optimize and individualize the HBOT protocol.
The relatively new use of functional imaging of the brain, that
is being evaluated may also hold promise for individualizing the
HBOT protocol per patient pathology. More research and clinical
experience are also needed with regard to the accompanying
treatments and interventions that may further enhance the clinical
benefit gained by HBOT.
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