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The dorsal lateral geniculate 
nucleus and the pulvinar as 
essential partners for visual 
cortical functions
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In most neuroscience textbooks, the thalamus is presented as a structure that relays 
sensory signals from visual, auditory, somatosensory, and gustatory receptors 
to the cerebral cortex. But the function of the thalamic nuclei goes beyond 
the simple transfer of information. This is especially true for the second-order 
nuclei, but also applies to first-order nuclei. First order thalamic nuclei receive 
information from the periphery, like the dorsal lateral geniculate nucleus (dLGN), 
which receives a direct input from the retina. In contrast, second order thalamic 
nuclei, like the pulvinar, receive minor or no input from the periphery, with the 
bulk of their input derived from cortical areas. The dLGN refines the information 
received from the retina by temporal decorrelation, thereby transmitting the most 
“relevant” signals to the visual cortex. The pulvinar is closely linked to virtually all 
visual cortical areas, and there is growing evidence that it is necessary for normal 
cortical processing and for aspects of visual cognition. In this article, we  will 
discuss what we  know and do not know about these structures and propose 
some thoughts based on the knowledge gained during the course of our careers. 
We hope that these thoughts will arouse curiosity about the visual thalamus and 
its important role, especially for the next generation of neuroscientists.

KEYWORDS

vision, transthalamic cortical pathways, receptive fields, lateral posterior nucleus, 
thalamus

1. Foreword

Much has been accomplished since the first recordings were made from the mammalian 
dorsal lateral geniculate nucleus (dLGN) by Barlow, Fitzhugh and Kuffler in 1957. These 
pioneering investigators found that the visual receptive field properties of dLGN neurons were 
in many ways similar to those reported earlier for retinal ganglion cells by Kuffler (1953). These 
early studies, as well as the observations of Hubel (1960), laid the groundwork for the long-
maintained viewpoint that the dLGN functions largely to relay visual information from the 
retina to the primary visual cortex. Indeed, this notion can still be found in some neuroscience 
and medical textbooks today. Similarly, interest in the pulvinar, the largest thalamic nucleus in 
mammals, originally stems from its connectivity with the mesencephalon and the cortex. The 
pulvinar was also often considered as a relay nucleus, providing a route for signals from the 
superior colliculus, a structure involved in the control of fixation and eye movements, to the 
visual cortex.
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The problem with the term “relay” is that it suggests that 
information is transmitted without significant modification or 
transformation. We now know that this is not the case. Indeed, while 
the precise roles of the dLGN and the pulvinar in visual and extra-
visual functions are yet to be established, a rather substantial body of 
literature has clearly refuted the notion that these are “relay” nuclei. 
Our intent in this paper is to provide an overview of some of the key 
studies in this field and to propose some thoughts as to how this aspect 
of visual neuroscience could be advanced in future work.

2. The dorsal lateral geniculate nucleus

The dLGN is undoubtedly the most studied subcortical region of 
the visual brain (Werner and Chalupa, 2004). In mammals with front-
facing eyes, this knee-shaped structure is organized in distinct layers 
each receiving signals from one of the two eyes. Thus, information 
from the two eyes remains separate until it reaches the primary visual 
cortex where binocularity is formally established. Hubel (1960) was 
the first to record visual activity of optic tract units as well as those of 
dLGN neurons in the same animal preparation, which led him to 
conclude that the organization of the receptive fields of dLGN neurons 
are strikingly similar to those of retinal ganglion cells. Later, Enroth-
Cugell and Robson (1966) discovered three parallel retinal pathways 
(X, Y and W) that differ in spatial and temporal resolution, contrast 
sensitivity and conduction velocity. The latter were subsequently 
revealed in primates (Kaplan and Shapley, 1982), and it is now well 
established that the four dorsal layers (parvocellular) of the dLGN 
receive signals about form and color from X-type ganglion cells and 
the two ventral layers (magnocellular), receive signals about 
movement from Y-type ganglion cells. Ventral to each of the magno- 
and parvocellular layers lie the koniocellular layers, which contain a 
heterogenous group of neurons whose functions remain to be fully 
determined. While the main emphasis of these early studies was the 
role of the retinal input in the organization of dLGN receptive fields, 
subsequent anatomical studies showed that only about 10 percent of 
the synaptic contacts onto dLGN neurons derive from the retina. The 
astonishing conclusion from the anatomical evidence was that most 
of the input to the dLGN is from non-retinal sources, mainly the 
visual cortex and various brainstem nuclei (Jones, 1985).

How is it that the retina, which represents only about 10% of the 
dLGN afferents, has the strongest functional input? The answer, in 
part, comes from the work of Sherman and Guillery (1998). Based on 
several morphological and functional criteria, these authors have 
identified two types of inputs: drivers and modulators (type 2 and type 
1 projections, respectively). Essentially, drivers determine the main 
properties of the activity of their target cells, whereas modulators 
provide contextual modulation of the recipient neuron’s activity. 
Studies have shown that retinal ganglion cells provide a driver input 
to dLGN neurons, which in turn send driver signals to layer 4 neurons 
in V1. In return, layer 6 neurons of V1 projecting to the dLGN exert 
a modulatory influence (Figure  1). These laminar patterns are in 
accordance with the assumption made by several authors (cf, Jones, 
1985), that drivers and modulators terminate and originate from 
distinct cortical layers. For bottom-up projections, thalamocortical 
terminals ending in layer 4 are drivers, while those ending in layer 1 
are modulators. For top-down projections, cortico-thalamic cells in 

layer 5 provide driver signals, while those lying in layer 6 send 
modulatory signals. Thus, visual processing in the dLGN is 
continuously influenced by patterns of activity occurring in V1. By 
considering the visual response latency and conduction latency of 
corticogeniculate neurons, Briggs and Usrey (2007) estimated that 
cortical feedback signals can reach the dLGN within ∼50 ms of the 
presentation of a visual stimulus. It is acknowledged that these signals 
have little effect on the spatial characteristics of dLGN receptive fields 
inherited from retinal inputs or on their “sharpness” (Murphy and 
Sillito, 1987; Sillito and Jones, 2002; Webb et al., 2002). However, there 
is mounting evidence that the visual cortex enhances response 
precision of dLGN neurons by reducing their gain variability, thereby 
increasing their information coding capacity (Hasse and Briggs, 2017; 
Murphy et al., 2021; Spacek et al., 2022).

So, what does the dLGN do besides transferring retinal signals to 
the cortex? In most textbooks, one will learn that the dLGN is gating 
information according to the state of vigilance. Depending on the 
influence of signals from the reticular activating system of the 
brainstem, dLGN neurons will discharge with regularly spaced action 
potentials (tonic mode, often associated with arousal) or with clusters 
of spikes (burst mode, associated with sleep), dissociating the dLGN 
from external signals. We  invite the reader to consult the 
comprehensive reviews of Weyand (2016) and Ghodrati et al. (2017), 
who propose several functions of the dLGN reflecting the numerous 
non-retinal inputs that allow the dLGN to transform retinal signals in 
dynamic ways. We would like to mention here two notable facts. The 
tonic-burst mode of dLGN neurons is not solely related to arousal as 
previously thought. It has been shown that V1 feedback projections 
shift the firing mode of geniculate neurons between burst and tonic 
patterns (Sherman, 2001). Alitto et  al. (2019) showed that 
retinogeniculate communication is enhanced during the burst mode 
and visually evoked thalamic bursts, thereby augmenting retinal 
signals transmitted to cortex. Computational models suggest that 
burst neurons can encode stimulus features similarly to their tonic 
counterparts (Elijah et  al., 2015; Alitto et  al., 2019). Thus, by 
transitioning between the two modes in a dynamic way, cells in dLGN 
may allow the most relevant information to be transferred to the visual 
cortex during normal waking behavior. Another interesting fact is that 
the temporal aspect of retinal and dLGN responses differ considerably. 
This has led to the proposal that dLGN neurons improve visual coding 
by reducing redundancy through temporal decorrelation of the retinal 
signals, much in the same way that the retina improves efficiency by 
spatially decorrelating incoming images (Truccolo and Dong, 2001; 
Tan and Yao, 2009; Alexander et al., 2022).

Clearly, the dLGN is more than a “simple” relay nucleus. The 
retinal signals inputs to this thalamic structure are modulated by 
non-retinal inputs, such as those originating from the visual cortex, 
the mesencephalon, the thalamic reticular nucleus, the extraocular 
muscles, and the brainstem. The dLGN is not merely a gate that opens 
and closes, nor simply a linear filter. Its plays a fundamental role in 
regulating information transmission to the visual cortex as a function 
of the activity taking place in subcortical and cortical areas, thereby 
enhancing the message being transferred to the first site of cortical 
computation, i.e., V1 (Fisher et al., 2017). But is the dLGN involved in 
higher-level processing as proposed by some authors (Zabbah et al., 
2014; Ghodrati et al., 2017), or should we turn our attention to the 
pulvinar nucleus for that?
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3. The pulvinar nucleus

Situated next to the dLGN (the “knee”) is the pulvinar nucleus 
(the “cushion”). The pulvinar lies over the dorsolateral posterior 
thalamus and runs along the medial edge of the dLGN. The size and 
differentiation of the pulvinar increased strikingly during evolution, 
in parallel with the neocortex (Chalfin et al., 2007; Kaas and Baldwin, 
2019). Thus, it is the largest visual nucleus of the thalamus in primates 
and cats, which have been the two most studied species in pulvinar 
research. In both species, it has established extensive reciprocal 
connections with all visual cortical areas (see Casanova, 2004). Six 
subdivisions have been identified in the pulvinar of primates, 
including humans, and several representations of the visual field have 
been delineated (Bender, 1981; Arcaro et al., 2015; DeSimone et al., 
2015; Baldwin et al., 2017). In the cat, the lateral posterior-pulvinar 
complex is generally subdivided into three main regions (up to five 
have been proposed, Hutchins and Updyke, 1989), each containing a 
coarse representation of the contralateral visual field: the lateral and 
medial parts of lateral posterior nucleus (LPl and LPm) and the 
pulvinar per se, also named the striate-, tecto-, and retino-recipient 
zones of the complex, respectively (Berson and Graybiel, 1983; 
Abramson and Chalupa, 1985). The nomenclature of this nucleus 
across species is rather confusing. In animals like rodents and rabbits, 
it is named the lateral posterior (LP) nucleus. In cats, the two main 
subdivisions of the LP are also considered as the homolog of the 
primate pulvinar, while a portion of the cat pulvinar has been 
considered as part of the geniculate complex (Mason, 1978). A 
reevaluation of the terminology is necessary. For clarity, only the term 
“pulvinar” will be used thereafter.

While there is a plethora of studies on the dLGN and the primary 
visual cortex, fewer have focused on the pulvinar, particularly on the 
properties of its neurons. This is undoubtedly due to the difficulty of 
documenting the visual response properties of pulvinar cells, which 
are much more capricious than those of the dLGN and more sensitive 
to anesthetics. Interest in the pulvinar stems from the discovery of the 
existence of two visual systems (Schneider, 1969): one for 
discrimination (retina-dLGN-visual cortex) and the other for 
localization (retina-superior colliculus). At the time, some laboratories 
such as that of Donald B. Lindsley (Chalupa et al., 1972), focused their 
work on the pulvinar, as signals from the superior colliculus must pass 
through the pulvinar to reach the visual cortex, a research theme that 
has been addressed recently by Beltramo and Scanziani (2019). Unlike 
the dLGN, which receives its main visual inputs from the retina, the 
pulvinar gets its visual signals mainly from the neocortex and the 
mesencephalon. The strong cortical input is reflected in the response 
properties of its neurons, which remarkably resemble those found in 
the visual cortex (Bender, 1982; Chalupa and Abramson, 1988; 
Casanova et  al., 1989; Chalupa and Abramson, 1989). Essentially, 
pulvinar cells have large receptive fields, largely encompassing those 
of V1 neurons, with a complex cell-like organization (Casanova et al., 
1989; Piche et al., 2015). In contrast to dLGN neurons, most pulvinar 
cells are binocular, sensitive to retinal disparity, and selective for 
stimulus orientation and direction of motion. Moreover, in cats (as 
well as in humans), pulvinar neurons can signal the true direction of 
motion of complex stimuli such as plaid patterns and random dot 
kinematograms (Merabet et  al., 1998; Dumbrava et  al., 2001; 
Villeneuve et al., 2005; Thompson et al., 2012; Villeneuve et al., 2012). 
This level of computation is generally described in higher-order 

FIGURE 1

The main predicted laminar connections involving the pulvinar are based on the general rules proposed by Jones (1985), with additional constraints 
advanced by Crick and Koch (1998). The geniculo-cortical pathway is provided for comparison. Cortico-cortical projections are omitted for clarity. d: 
drivers, m: modulators. When in bold, d and m were confirmed functionally.
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cortical areas only, further suggesting that the pulvinar actively 
participates to the processing of visual signals transferred along the 
cortical hierarchy. Pattern-motion neurons were mostly found in the 
LPm subdivision of pulvinar. Differences between the response 
properties of the two main subregions of the pulvinar, the LPl and 
LPm, have been described and likely reflect the predominance of V1 
and collicular inputs targeting the LPl and LPm, respectively (Chalupa 
and Abramson, 1989; Piche et al., 2015). The interest of researchers 
toward the pulvinar was increased by the discovery that the activity of 
a subset of cells is linked to visual attention (Petersen et al., 1985). 
Subsequent studies on behaving monkeys and humans (normal and 
with lesions) have indeed confirmed that this nucleus is involved in 
visual attention, visuo-motor functions, target selection among 
distractors and feature binding (Chalupa et al., 1976; Ward et al., 2002; 
Danziger et al., 2004; Shipp, 2004; Zhou et al., 2016; Fiebelkorn et al., 
2019). In recent years, given it connectivity with the limbic system, the 
pulvinar has been linked with the visual processing of fearful stimuli 
(Ward et  al., 2005; Ren and Tao, 2020). Moreover, pulvinar is 
considered to play an important role in unconscious vision or 
blindsight (Cowey et al., 1994; Fox et al., 2020).

This array of functions associated with the pulvinar not only 
reflects the extensive connectivity of this thalamic complex with the 
neocortex but also illustrates why researchers are still struggling to 
assign a clear role to the pulvinar. This is why we must return to the 
roots and determine the nature of the signals being exchanged 
between the pulvinar and the visual cortex. As mentioned above, given 
its extensive reciprocal connectivity with the visual cortex, the 
pulvinar is in an exceptional position to regulate cortical processing 
along the visual hierarchy, both in the feedforward and feedback 
directions. For decades, the perception of external stimuli was 
considered to result solely from the processing of thalamic signals 
through direct cortico-cortical connections between hierarchically 
organized areas. We must now consider the fact that, besides direct 
communication between cortical areas through cortico-cortical 
connections, indirect communication through cortico-pulvinar-
cortical projections also occurs (Figure  1). Through these 
transthalamic pathways, each cortical area of the visual cortex is 
potentially only one thalamic synapse away from another cortical area, 
allowing a rapid modulation of cortical activity according to external 
signals and internal computations. What do we know about these 
transthalamic cortical pathways, which has been the subject of 
research by several laboratories (e.g., Rockland, 1996; Baldauf et al., 
2005; Huppe-Gourgues et al., 2006; Rockland, 2019). We know that 
V1 provides a strong driver input to the pulvinar from layer 5 complex 
cells (Casanova, 1993). Permanent or transient inactivation of V1 
results in an almost total disappearance of visual responses in the 
striate-recipient zone of the pulvinar in cats and primates, indicating 
that V1 is necessary for establishing the fundamental representation 
of the visual world in the pulvinar (Bender, 1983; Casanova et al., 
1997). The contribution of other areas to the subregions of the 
pulvinar is still not fully understood. Studies have shown that pattern-
motion neurons in the LPm of cats only disappear when both V1 and 
the ectosylvian cortex are lesioned (Merabet et al., 1998). Recently, 
Abbas Farishta et al. (2020) revealed that the ratio of type 1/type 2 
terminals (thus, putatively, the modulator/driver ratio) from layers 5 
and 6 neurons terminating in the pulvinar increases along the cortical 
hierarchy (Figure 2). This organizational scheme predicts that higher-
order visual cortical areas will primarily modulate activity in the 

pulvinar. A theoretical model based on this organization suggests that 
the pulvinar shows a bistable spiking activity, oscillatory or regular 
asynchronous spiking, whose responses are gated by the different 
activation of cortico-pulvinar projections from lower to higher-order 
areas (Cortes et  al., 2021), but this has yet to 
be demonstrated functionally.

A greater number of studies have explored the impact of the 
pulvinar on the visual cortex. However, during some of these studies, 
the understanding of drivers and modulators was either unknown or 
in its early stages. As a result, the visual stimuli and experimental 
approaches were not specifically designed to differentiate between 
these two types of signals (e.g., Minville and Casanova, 1998). Vanni 
et al. (2015) discovered that direct stimulation of the pulvinar and 
dLGN in tree shrews produced distinct spatiotemporal profiles of 
voltage-sensitive dye responses in the visual cortex. Stimulation of the 
dLGN resulted in rapid, strong, and localized responses in the primary 
visual cortex, characteristic of a driver input. On the other hand, 
pulvinar activation evoked only weak and diffuse responses in the 
same area, indicative of a modulatory input. Interestingly, pulvinar 
stimulation evoked fast and robust responses in higher-order visual 
areas. This finding supports the notion that the pulvinar predominantly 
projects to layer 1 of V1 (modulatory input) and layer 4 (driver input) 
in areas beyond V1 (Abramson and Chalupa, 1985). However, 
Logothetis et al. (2010) reported no compelling differences between 
the positive blood oxygen level-dependent (BOLD) signals in V1 and 
extrastriate cortical areas when the pulvinar was electrically stimulated 
in anesthetized monkeys. Subsequently, Roth et al. (2016) revealed a 
distinct organization of thalamic input from the dLGN (circumscribed 
and visuotopically organized) and the pulvinar (more distributed) in 
the primary visual cortex of mice. This suggests again that the pulvinar 
is more likely involved in the contextual modulation of activity in V1.

FIGURE 2

Simplified diagram illustrating the increase in modulator terminals 
(type 1) and the concomitant decrease in driver terminals (type 2) 
along the cortical hierarchy (refer to Abbas Farishta et al., 2020).
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In a different set of recordings conducted on macaque monkeys, 
Saalmann et al. (2012) demonstrated that the pulvinar is capable of 
synchronizing activity between cortical areas based on attentional 
allocation. This finding aligns with a study in cats showing that the 
pulvinar modulates the oscillatory information between areas 17 and 
21a in gamma and alpha bands for feedforward and feedback 
processing, respectively (Wrobel et  al., 2007; Cortes et  al., 2020). 
Together, these findings indicate that the pulvinar is involved in the 
mechanisms underlying oscillatory communication along the visual 
cortex. The role of the pulvinar in attentional processing was further 
suggested by Zhou et al. (2016), who showed that inactivation of the 
macaque pulvinar leads to a decrease in attentional effects on firing 
rates and gamma synchrony and coherence of neurons in area V4. 
Additionally, a more recent study conducted in ferrets demonstrated 
that fluctuations in pupil-linked arousal result in dynamic changes in 
frequencies along the thalamocortical network (Stitt et  al., 2018). 
During low arousal states, synchronized activity between the pulvinar 
and the posterior parietal cortex was characterized by alpha 
oscillations, while higher arousal states exhibited theta frequency 
bands. The authors proposed that the pulvinar may act as a gate or 
suppressor of incoming sensory information in the early stages of the 
visual cortex during low arousal but facilitate visual exploration and 
attentional selection during increased arousal. A similar pattern of 
synchronization was observed in recordings between the mediodorsal 
pulvinar, the frontal eye fields (FEF), and the lateral intraparietal 
region (LIP) of macaques by Fiebelkorn et al. (2019). According to 
these authors, the pulvinar may gate communication between cortical 
areas by aligning the phases of their oscillatory responses.

De Souza et al. (2020) conducted a study to examine the impact 
of the pulvinar on the contrast response function of neurons in two 
hierarchically distinct areas of the cat visual cortex. Their findings 
highlight the complexity of the functional relationship between the 
pulvinar and the cortex. In the primary visual cortex (V1), pulvinar 
inactivation resulted in a modest decrease in the response gain of 
neurons to contrast. This effect was less pronounced than the near-
complete suppression of activity observed in the supragranular layers 
of V1  in prosimian primates when the pulvinar is silenced 
(Purushothaman et al., 2012). Surprisingly, contrary to expectations 
based on anatomical evidence, pulvinar inactivation led to a significant 
increase in response gain in the majority of neurons in area 21a (often 
considered the homolog of primate area V4), with only a subset of 
cells exhibiting changes in contrast gain. Similar increases in response 
amplitude were also observed in area V2 of Cebus monkeys when the 
pulvinar was inactivated (Soares et al., 2004). The study by De Souza 
et al. (2020) demonstrates that the pulvinar can influence functions 
across the visual cortex through the modulation of neuronal activity. 
This suggests that the mechanisms underlying the transthalamic flow 
of information and its role in cortical contrast processing involve the 
pulvinar’s ability to modulate neuronal responses. The authors 
proposed a model that explains the observed changes in response gain 
in hierarchically distinct cortical areas based on the interaction 
between the pulvinar and feedforward visual cortex signals.

These findings underscore the significance of computational 
models in advancing our understanding of pulvinar functions. Over 
the years, various cognitive and computational models of visual 
perception have put forth roles for the pulvinar. Three decades ago, 
Mumford (1992) proposed that the thalamus, including nuclei like the 
pulvinar, functions as an active blackboard that maintains an updated 

representation of the visual world. This enables cortical areas to 
be informed about relevant changes in the visual scene, requiring new 
neuronal computations for planning action strategies. A more recent 
theoretical framework, known as predictive coding, also recognizes 
the unique role of the pulvinar in influencing cortical processing 
within and between cortical areas (Kanai et al., 2015; Haarsma et al., 
2021). In essence, predictive coding is a model of neuronal 
organization that suggests the brain constantly generates and updates 
an internal representation of its environment. The brain generates 
predictions about the state of the world based on stored sensory inputs 
and compares them to incoming sensory information, resulting in 
prediction errors. To contextualize and coordinate these predictions 
and prediction errors, the brain requires a regulatory mechanism that 
assigns “precision” to the message. Within this framework, the 
pulvinar could play a crucial role in processing the variability of 
cortical signals to modulate the transfer of feedforward and feedback 
information. Disruptions in this “precision-weighting” of neuronal 
activity have been proposed as a key mechanism underlying the 
pathogenesis of psychosis, including schizophrenia, which is 
characterized by dysfunctions in thalamocortical communication 
involving the pulvinar (Byne et  al., 2009; Adams et  al., 2013; 
Benarroch, 2015; Friston, 2022).

4. Future avenues of study and 
challenges

Our current understanding of the role of thalamic nuclei in vision, 
particularly the pulvinar and its associated pathways, still has 
significant gaps. It is crucial to acknowledge that a solid understanding 
of the anatomy is a prerequisite to comprehending the physiology. 
Therefore, we  must continue to characterize the anatomical 
organization of pathways involving the lateral geniculate nucleus and 
the pulvinar, and explore the effects of activating or silencing their 
specific components. The remarkable progress in technical approaches, 
such as optogenetics, may prove to be valuable in this pursuit. The 
ability to manipulate single cell types within an intact cortico-thalamic 
network can provide more precise information compared to 
conventional silencing techniques that affect all neuron classes. This 
technique, combined with connectomics approaches like three-
dimensional visualization of neural networks involving thalamic 
nuclei in transparent tissue and resting-state functional imaging, can 
unveil cortico-thalamic connectivity in both animal models and 
humans. With the knowledge we have acquired in recent years, it is 
crucial to refine our protocols when studying the impact of thalamic 
lesions on visual cognition and take advantage of technical 
advancements (e.g., the visualization of dLGN layers in fMRI studies). 
However, there are still some challenges to address. Research on the 
lateral geniculate nucleus may not be as glamorous as it once was, 
making it difficult to secure funding from granting agencies. 
Recording from pulvinar neurons is challenging, and only a limited 
number of laboratories have the expertise to do so. Furthermore, 
animal models are currently limited, with mice being the preferred 
model. However, mounting evidence suggests that the organization of 
transthalamic and cortico-cortical pathways in mice differs 
significantly from that of higher mammals.

Nevertheless, the visual thalamus remains a fascinating area of 
study for the next generation of neuroscientists. They now have access 
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to powerful tools that allow for investigations into the constituent 
nuclei and associated pathways, enabling a better understanding of the 
exact role of thalamic nuclei in sensory processing and the 
consequences of their dysfunction. This knowledge is essential for 
developing tools to restore vision and holds great promise for 
future research.
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