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Introduction:  High-order functional connectivity networks (FCNs) that reflect the 
connection relationships among multiple brain regions have become important 
tools for exploring the deep workings of the brain and revealing the mechanisms of 
brain diseases. The traditional high-order FCN constructed based on the “correlation 
of correlations” strategy, is a representative method for conducting whole-brain 
connectivity analysis and revealing global network characteristics. However, whole-
brain connectivity analysis may be affected by noise carried by less important brain 
regions, resulting in redundant information and affecting the accuracy and reliability 
of the analysis. Moreover, this type of analysis has a high computational complexity.

Methods: To address these issues, a new method for constructing high-order 
FCN based on hypergraphs is proposed in this article, which is used to accurately 
capture the real interaction relationships among brain regions. Specifically, first, 
a low-order FCN reflecting the connection relationships between pairs of brain 
regions based on resting-state functional Magnetic Resonance Imaging (rs-
fMRI) time series is constructed, the method first constructs the low-order FCN 
that reflects the connection relationships between pairs of brain regions based 
on rs-fMRI time series, and then selects the “good friends” of each brain region 
from hypergraph perspective, which refers to the local friend circles with closer 
relationships. Then, the rs-fMRI time series corresponding to the “good friends” in 
each brain region’s friend circle are averaged to obtain a sequence that reflects the 
intimacy between brain regions in each friend circle. Finally, hypergraph high-order 
FCN, which reflects the interaction relationships among multiple brain regions, is 
obtained by calculating the correlations based on the sequence of friend circles.

Results: The experimental results demonstrate that the proposed method 
outperforms traditional high-order FCN construction methods. Furthermore, 
integrating the high-order FCN constructed based on hypergraphs and the 
low-order FCN through feature fusion to achieve complementary information 
improves the accuracy of assisting in the diagnosis of brain diseases.

Discussion: In addition, the effectiveness of our method has only been validated 
in the diagnosis of ASD. For future work, we plan to extend this method to other 
brain connectivity patterns.
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1. Introduction

Functional connectivity networks (FCNs) based on resting-state 
functional magnetic resonance imaging (rs-fMRI) (Liu et al., 2008; 
Smith et al., 2013) reflect the connectivity between pairs of brain 
regions and provide a measure of temporal correlations in brain 
activity. However, the brain is a complex and highly efficient network, 
and FCNs only capture low-order interactions between brain regions, 
ignoring the complex high-order relationships among multiple brain 
regions. In order to comprehensively reflect the complex interaction 
patterns among multiple brain regions, some researchers have used a 
strategy based on “correlation of correlations” to construct high-order 
FCNs, and to explore deep-level functional connectivity interaction 
information (Plis et al., 2014; Chen et al., 2017; Guo et al., 2017; Zhou 
et al., 2018).

For example, Zhao et al. (2018) used a “correlation of correlations” 
strategy to construct multi-level high-order FCNs based on rs-fMRI 
data for diagnosing ASD, achieving a classification accuracy of 81%. 
Zhang et al. (2016) used second-order correlations based on Pearson’s 
correlation (Pc) to reflect the complex high-order relationships among 
brain regions, and this method has a high sensitivity in detecting 
inter-group differences between normal individuals and patients. Yu 
et al. (2014) used Pc to investigate a multilevel high-order FCN based 
on low-order FCN for the diagnosis of ASD. The “correlation of 
correlations” strategy involves performing two consecutive correlation 
calculations on the rs-fMRI time series. Although these traditional 
high-order FCNs are effective in identifying and classifying 
neurological diseases (Jia et al., 2017; Zhao et al., 2018), they consider 
all the connections among brain regions, which is a whole-brain 
connectivity analysis, which may lead to two issues. (1) It may result 
in noise from unimportant brain regions, affecting the accuracy and 
reliability of the analysis results. (2) Since a large number of 
connections among brain regions need to be computed, there may 
be  information redundancy, long computation time, and high 
computational complexity. Therefore, it is worth exploring how to 
efficiently, quickly, and accurately identify brain regions closely related 
to the recognition of brain diseases.

Hypergraph is a tool that can well describe the association 
relationships in complex systems, and it is widely used in brain 
network analysis in neuroscience (Yu et al., 2014). Compared with 
other methods, hypergraphs can not only represent high-order 
relationships among multiple vertices, but also better distinguish the 
importance of different vertices and edges, leading to a more accurate 
functional analysis of brain networks. With these advantages of 
hypergraphs, a novel method of constructing high-order FCNs based 
on hypergraph is proposed to achieve a more realistic and accurate 
capture of the connection relationships among brain regions in this 
paper. We illustrate the construction process of the proposed method 
using seven brain regions as an example in Figure 1. First, a low-order 
FCN that reflects the connectivity between pairs of brain regions is 
constructed based on the rs-fMRI time series, as shown step (A) in 
Figure 1, where vi represents the rs-fMRI time series that reflects the 
changes in the blood oxygen signal of the i-th brain region over a 
period of time. Next, as shown step (B) in Figure 1, from a hypergraph 
perspective, the “good friends” of each brain region are selected based 
on low-order FCN, which are the local communities of brain regions 
that have closer connectivity relationships, where ei  represents the 
hyperedge in the hypergraph, reflecting the connections between 

closely related brain regions. Then, the rs-fMRI time series 
corresponding to each brain region and its “good friends” are 
normalized to obtain a sequence reflecting the intimacy level of the 
community, as shown step (C) in Figure 1. Finally, hypergraphs of 
high-order brain networks reflecting the interaction relationships 
between multiple brain regions are obtained by computing correlations 
based on sequences of community, as shown step (D) in Figure 1. The 
hypergraph-based high-order FCN construction method can 
overcome the noise problems caused by high computational 
complexity, information redundancy, and insufficiently tight 
connectivity relationships of brain regions in whole-brain 
connectivity analysis.

Overall, as shown in Figure  2, the pipeline of the proposed 
classification framework in this paper mainly includes the following 
four steps: (1) Construction of low-order FCNs. We first construct 
low-order FCNs reflecting the connectivity between pairs of brain 
regions based on the original rs-fMRI time series. Each low-order FCN 
is represented as a correlation matrix. (2) Construction of hypergraph-
based high-order FCNs. Traditional high-order FCNs are constructed 
from a global perspective based on the “correlation of correlations” 
strategy, while hypergraph-based high-order FCNs are constructed 
from a hypergraph perspective. (3) Feature selection based on 
two-sample t-test and least absolute shrinkage and selection operator 
(LASSO). We use the elements in the high-order FCNs obtained in step 
(2) and the elements in the low-order FCNs obtained in step (1) as 
features for each individual, and then perform feature selection to 
select the most relevant features for the classification task. (4) 
Classification fusion. We first use two linear support vector machines 
(SVMs) to construct an ensemble classifier, then train the classifier 
with the features obtained in step (3), and finally produce the final 
classification result by weighted averaging the SVM classification scores.

The main contributions of our method are as follows: (1) 
Compared with traditional high-order FCNs, using hypergraph theory 
to construct high-order FCNs can not only reduce computational 
complexity but also reduce information redundancy and noise, which 
is conducive to improving the accuracy of brain region analysis. (2) 
The fusion of traditional low-order FCNs and hypergraph-based high-
order FCNs can achieve complementary feature advantages, resulting 
in improved diagnostic performance for brain diseases.

The organization of this paper is as follows. In Section 2, 
we describe the preparation of the data, the methods related to the 
conventional high-order FCN construction, and our proposed high-
order FCN construction. In Section 3, we report the experimental 
setup and evaluate the effectiveness of our proposed method through 
its application to identification tasks. Furthermore, we investigate the 
effect of different thresholds on the proposed high-order FCN 
constructions, and the most discriminative super-edge connections. 
Finally, the full paper is concluded in Section 4.

2. Materials and methods

2.1. Data acquisitions and processing

This study utilized resting-state functional magnetic resonance 
imaging (rs-fMRI) data from the Autism Brain Imaging Data Exchange 
(ABIDE) database, which includes 539 individuals with ASD and 573 
normal control (NC) subjects from 17 international imaging centers 
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(Di Martino et al., 2014). The detailed scan procedures and protocols 
are described on the ABIDE website1. Considering that several sites 
contain only a limited number of participants, we use data from 5 
different sites, including NYU, Leuven, UCLA, UM and 
USM. Specifically, rs-fMRI scan data from 45 individuals with ASD 
and 47 typically developing controls were selected from the NUY site. 
Detailed demographic information is summarized in Table 1.

1 http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html

The data acquisition and preprocessing in this study follow a 
standard pipeline that include head movement correction, 
normalization, denoising, and other related processes and 
parameters, similar to previous literature (Satterthwaite et al., 2013; 
Yan et al., 2013; Washington et al., 2014; Lin et al., 2015; Ray et al., 
2015; Urbain et  al., 2016; Reinhart and Nguyen, 2019). 
Subsequently, the brain was segmented into 116 ROIs using the 
automatic anatomical labeling (AAL) map, and the mean value of 
the rs-fMRI time series for each ROI was calculated, generating the 
data matrix X ∈ ×R170 116  for further analysis. It is important to 
note that the data matrix consists of 170 time points and 116 
brain ROIs.

2.2. Functional connectivity network 
estimation

2.2.1. Baseline method
In this study, we define xi ∈RM  as the mean rs-fMRI time series 

computed from all blood-oxygen-level dependent (BOLD) time-series 
signals corresponding to the voxels within the i-th ROI. Here, M 
denotes the total number of temporal image volumes. For convenience, 
we will abbreviate the calculation of Pc-based functional connectivity 
between the i-th and j-th ROIs as:

FIGURE 1

Construction of hypergraph-based high-order FCN. vi: the rs-fMRI time series that reflects the changes in the blood oxygen signal of the i-th brain 
region over a period of time, ei: the hyperedge in the hypergraph 1 7≤ ≤( )i . (A) Constructing an FCN based on rs-fMRI time series; (B) Constructing 
hyperedges based on the concept of hypergraphs; (C) Averageing the rs-fMRI series of ROIs with hyperedges; (D) Hypergraph-based high-order FCN.

FIGURE 2

Overview of the proposed fusion framework for ASD diagnosis. vi: the rs-fMRI time series that reflects the changes in the blood oxygen signal of the  
i-th brain region over a period of time 1 7≤ ≤( )i .

TABLE 1 Demographic information of the studied subjects from five 
imaging sites in the ABIDE database.

Site
ASD NC

Age M/F Age M/F

NYU 11.1±2.3 36/9 11.0±2.3 36/11

Leuven 13 10 4 79. .± 21/4 18 80 9 00. .± 24/8

UCLA 16 27 6 48. .± 28/8 14 65 4 79. .± 31/7

UM 17 05 8 36. .± 43/5 17 35 7 12. .± 56/9

USM 15 77 7 21. .± 30/8 17 34 9 53. .± 21/1

The values are denoted as mean ± standard deviation. M, male; F, female.
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 cij = ( )corr ,x xi j  (1)

Subsequently, a low-order FCN is generated using conventional 
Pc-based methods, represented by a symmetric matrix CLON , which 
is defined as follows:

 
CLON = ( ) ≤ ≤

cij i j M1 ,  
(2)

In the matrix CLON , each row or column represents the Pearson 
correlation series between a particular ROI and all other ROIs. Every 
element of CLON  is derived from the Pc between the mean time-series 
of two ROIs, i and j . It is important to note that CLON  captures 
low-order interactions between any pair of ROIs.

In order to capture high-order functional interactions among 
brain regions, we employ a method proposed in the study (Zhang 
et  al., 2017) to generate high-order FCN based on “correlation’s 
correlation,” as shown in Figure  3. Specifically, we  use a vector 
ci = ( )c c ci i iM1 2, , ,  to denote the correlations between the i-th ROI 
and all other ROIs. Mathematically, ci represents the i-th row or 
column of the symmetric matrix CLON  in Equation (2). The 
“correlation’s correlation” between the i-th and j-th ROIs is computed 
as follows:

 cij2 = ( )corr ,c ci j  (3)

whereci = ( )−( ) +( ) −( ) +( )c c c c c ci i i i i i j i j iM1 1 1 1 1, , , , , , , ,    and 
c j = ( )−( ) +( ) −( ) +( )c c c c c cj j i j i j j j j iM1 1 1 1 1, , , , , , , ,   .  The 
“correlation’s correlation” coefficient, denoted as cij

2, provides insight 
into how the FCN profiles between the i-th ROI and all other ROIs 
resemble those between the j-th ROI and all other ROIs. This 
measure reveals more complex relationships among the FCN 
profiles (or the vectors ci{ }), extending beyond the information 
captured by the original rs-fMRI time series xi . Consequently, the 
high-order correlation coefficient cij2 in Equation (3) is capable of 
extracting interaction information from all ROIs, in contrast to the 
correlation coefficient cij  in Equation (1), which only involves the 

two specific ROIs. In other words, cij2 characterizes more complex 
and abstract interactions among multiple brain regions. Thus, the 
corresponding high-order matrix can be defined as follows:

 
CHON = ( )

≤ ≤
cij

i j M
2

1 ,  
(4)

Although CHON  is widely used as an important high-order FCN, 
the high-order correlation coefficient cij2 contains the interaction 
among all ROIs. In fact, the interaction between some ROIs is weak or 
even no relationship, using all ROIs information to construct the high-
order FCN leads to the redundancy of the matrix and the introduction 
of noise, which further affects the identification performance.

2.2.2. The proposed method
Simple graphs have been widely used to model relations between 

two vertices, where each edge connects two vertices and the weight of 
each edge denoting a specific type of relation between them. However, 
in many applications, the relationships among the data may be more 
complex than pairwise connections or second-order relations. In order 
to effectively capture high-order relationships among multiple vertices 
and avoid the loss of valuable information that cannot be represented 
by simple graphs, hypergraphs (Corsini and Leoreanu, 2003) have 
been developed as a generalization of simple graphs. In hypergraphs, 
hyperedges can connect any number of vertices, forming non-empty 
subsets of vertices. To further elaborate, we provide a brief introduction 
to the basic notations of hypergraphs (Zhou et al., 2006) below.

A hypergraph G w= ( , ,V E ) is defined by a vertex set 
 = { }v v vN1 2, , , , a hyperedge set  = { }e e eM1 2, , ,  with 

1
M

ii e= =  , 

and a hyperedge weight vector w = w e w e w e RM
T M

1 2( ) ( ) ( )( ) ∈, , , , 

where each hyperedge ei  is assigned a weight w ei( ) for 1 .i M≤ ≤  The 
CHON  contains redundant connections in unrelated brain regions. 
Based on hypergraph theory, a threshold is set for the low-order FCN, 
denoted by t . The ROI connection pairs above the threshold are 
retained, and hyperedges are constructed to connect all the retained 
connection pairs. Thus, the structure of the hypergraph G  based on 
threshold selection can be represented by a matrix H =  ∈

×H Rij
M M 

with entries defined as follows:

FIGURE 3

Construction of high-order FCN based on “correlation’s correlation.” xi : the mean rs-fMRI time series computed from all BOLD time-series signals 
corresponding to the voxels within the i-th ROI. ci : denote the correlations between the i-th ROI and all other ROIs. cij

2: The Pc between ci and c j .
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H

v e
ij

i j=
∈




1

0

,

, .

if

otherwise  
(5)

Where e j is defined as the hyperedge that j-th ROIs is connected 
to other ROIs. vi represents the i-th ROIs that are strongly correlated 
with j -th ROIs based on threshold t . When v ei j∈ , i.e., Hij =1, a 
hyperedge e j is said to be incident with a vertex vi.Further, averaging 
the rs-fMRI time series of the ROIs connected by the hyperedges, the 
averaged rs-fMRI time series obtained for each hyperedge is defined 
as x Ri

M′ ∈ , i.e., hyperedge series. The Pearson correlation coefficient 
between the i-th and j -th hyperedges series is calculated using the 
following Equation (6). Subsequently, hypergraph-based high-order 
FCN is generated, represented by the symmetric matrix H-CHON, 
which is defined in Equation (7).

 
c x xij i j
′ ′ ′= ( )corr ,

 
(6)

 
H C cHON ij

i j M
− ( )= ′

≤ ≤1 ,  
(7)

In the matrix H-CHON, each row or column represents the Pearson 
correlation series between a particular hyperedge and all other 
hyperedges. Each element of H-CHON is derived from the Pc between 
the average time series for ROIs of two hyperedges (ei and e j). Notably, 
CHON elaborates the complexity and abstract interaction information 
of multiple brain regions but contains a large number of redundant 
connections and noise between brain regions. In contrast to CHON, 
H-CHON focuses only on the relationships among some highly 
connected brain regions, reducing the large number of redundant 
relationships between brain regions.

2.3. FCN feature extraction, selection and 
classification

For the l-th subject, we use its corresponding low-order FCN 
matrices CLON and H-CHON as raw features. Since the CLON and H-CHON 
matrices are symmetric, including duplicate features would result in 
redundancy. Therefore, we  only vectorize their lower off-diagonal 
triangular part to define the feature vectors, i.e.,y yl l

0 1

( ) ( )
, , for 

representing the l-th subject’s CLON and H-CHON, respectively. The 

dimensionality of yi
l( ) is 

M M −( )1
2

, where M  denotes the number of
 

ROIs for y l0
( ), and the number of hyperedges for y l1

( ).
The feature vectors y yl l

0 1

( ) ( )
,  extracted from CLON and H-CHON 

might include redundant or irrelevant features for ASD diagnosis. 
Thus, feature selection is necessary. For selecting a small subset of 
features most relevant to the pathology of ASD, we use the two-stage 
feature selection strategy. Step  1: Performing a two-sample t-test 
between normal controls (NCs) and ASD subjects for each feature in 
y yl l
0 1

( ) ( )
, . Those features whose p-values are smaller than a certain 

threshold are retained. At this point, we label the newly obtained 
feature set y yl l′ ′( ) ( )

0 1
, . Step  2: Adopting L1-norm regularized least 

squares regression, known as LASSO (Tibshirani, 1996), due to its 
efficiency and simplicity (Jin et al., 2015; Jie et al., 2016; Wee et al., 
2016). Specifically, let = jθ 1( , , , )i iz d

T
iw w w  represent the weight 

vector for the feature selection task and K k k kN
T= …( )1 2, , ,  are the 

class labels of N  training data (from N  training subjects). Here, d  is 
the number of features. Mathematically, the LASSO model can 
be described as follows:

 

1

2
1 2

2

1

i

N
l i

l T
i ik y

=

( )∑ − ( ) +ω λ ω

 
(8)

where λ is a parameter for controlling the strength of L1 norm 
regularization. The first term in Equation (8) is the empirical loss on the 
training data, and the second term is the L1 norm regularization term 
that is used to enforce some elements of ω1 to be zero (i.e., corresponding 
to non-discriminative features in our classification task). In this way, 
we can jointly achieve classification error minimization and sparse 
feature selection. Let  ( )  ( )0 1,i iy y denote selected features from the 
original feature vectors in the first stage y yl l′ ′( ) ( )

0 1
, .

After selecting the most important features by LASSO, we use 
SVM with a linear kernel for ASD classification (Cortes and Vapnik, 
1995). SVM aims to find a hyperplane with the maximum margin to 
effectively separate the samples of one class from another.

2.4. FCN evaluation

To assess the performance of the H-CHON, we train classifiers for 
ASD diagnosis using the conventional CLON, H-CHON and their fusion 
(FUSION), respectively. It is worth noting that FUSION is fused by a 
linear combination of CLON and H-CHON. Specifically, the two SVMs are 
trained using CLON and H-CHON, and the output of each SVM is used as 
the classification result. And then the final classification results are 
obtained by fusing the decision scores of all SVMs. Since the 
combination coefficients are difficult to determine in practical 
applications, they are simply fused by 0.5 × (CLON + H-CHON) in this paper.

In this experiment, we adopt a nested tenfold cross-validation 
strategy consisting of two nested loops to evaluate the classification 
performance. The outer loop involves dividing the 92 subjects into 10 
subsets of comparable size, where one subset is designated as the test 
set, and the other nine subsets are used as the training set. In the inner 
loop, the train set is combined and redistributed into 10 subsets of 
similar size, with nine subsets used for tuning the hyperparameters 
and one for model evaluation. Our method’s performance is primarily 
affected by three hyperparameters: p and λ in feature selection and γ  
in the SVM model. The optimal hyperparameters are determined 
when the average classification accuracy reaches its maximum. 
We determine the optimal values for the parameters in the following 
ranges: p∈[ ]0 01 0 01 0 1. : . : . , λ ∈[ ]0 1 0 1 0 9. : . : .  and γ ∈ 




−
2 2
4 4
, , .

Once the optimal hyperparameters are selected in the inner loop, they 
are returned to the outer loop where the model is trained on the 
training dataset and evaluated on the test set.

3. Experimental analyses

3.1. Classification performance

In our experiments, we adopt six metrics to evaluate different FC 
construction methods: classification accuracy (ACC), sensitivity or 
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true positive rate (TPR), specificity or true negative rate (TNR), 
positive predictive value (PPV), negative predictive value (NPV), and 
F1 score. Denote TP, TN, FP and FN as True Positive, True Negative, 
False Positive, and False Negative, respectively. Those evaluation 
metrics can be  defined as follows: ACC = (TP + TN)/
(TP + TN + FP + FN), SEN = TP/(TP + FN), SPE = TN/(TN + FP), 
BAC = (SEN + SPE)/2, PPV = TP/(TP + FP), and NPV = TN/(TN + FN). 
For these metrics, higher values indicate better classification 
performance. In addition, we performed the statistical significance test 
(t-test) on the accuracy obtained by three comparison methods and 
FUSION, and the value of ps of the test are also listed in Table 2. When 
the value of p is less than 0.05, it indicates that there is a significant 
difference between the two methods.

To demonstrate the robustness of the test results, we conducted 
experiments on the real multi-site ASD dataset with five imaging sites 
(NYU, Leuven, UCLA, UM, and USM). The experimental results are 
shown in Table 2. The results from each site consistently indicate that 
the proposed high-order FCN (H-CHON) outperforms compared to the 
two baseline methods, CLON and CHON. The best performance is 
highlighted in bold. It is worth noting that for the experiments 
conducted on CLON and CHON, no free parameters were involved. For 
the proposed method, we set the threshold to 0.7, which yielded the 
best performance in ASD identification.

Based on the experimental results shown in Table 2, we can draw 
the following conclusions: (1) The proposed high-order FCN has 
better performance than the conventional high-order FCN, indicating 
that constructing a high-order FCN using the idea of hypergraphs 
likely reduces redundant information and related noise, thereby 
improving the accuracy of brain analysis. Additionally, setting a 

threshold allows for the elimination of weak connections between 
brain regions, which helps improve computational efficiency and 
reduce complexity. (2) The fusion of H-CHON and CLON is better than 
any single FCN, suggesting that different levels of brain networks 
contain distinct features. Feature fusion potentially enables the 
integration of complementary information, enhancing the 
comprehensiveness of discriminative features and facilitating the 
identification of brain disorders such as ASD.

3.2. The influence of parameters on H-CHON

In general, the selection of free parameters in FCN construction 
methods plays a crucial role in determining the final classification 
performance. In the proposed method, we investigate the influence of 
the threshold t  that constitutes the set of vertices of the hyperedges on 
the performance of CHON using data from the NUY site.

To evaluate the sensitivity of our method to t , we  repeat the 
identification experiments based on threshold steps [0.1:0.05:0.95], 
and discuss the effect of different thresholds on the final classification 
performance. Table 3 reports the individual evaluation metrics for 
different thresholds, and the best results are shown in bold. From 
Table  3, we  find that the choice of threshold is crucial to the 
classification performance, and different thresholds determine 
different network topologies, which can provide different useful 
information for ASD identification and obtain different classification 
performance. We  observe that the proposed method exhibits the 
highest performance when the threshold is set to 0.7 across all 
evaluation metrics.

TABLE 2 Demographic information of the subjects.

Target site Method ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) p-Values F1 (%)

CLON 73.81 77.00 71.00 77.25 81.87 0.012 73.24

NUY

CHON 74.06 76.00 72.00 76.05 78.98 0.017 73.66

H-CHON 79.81 80.00 86.50 88.50 82.79 0.021 79.05

Fusion 80.31 83.00 87.12 89.48 86.12 / 80.11

CLON 75.13 79.06 64.05 66.31 65.84 0.023 72.62

Leuven

CHON 76.54 79.67 65.83 68.13 68.91 0.031 75.72

H-CHON 80.27 79.78 73.62 76.25 73.48 0.038 74.95

Fusion 82.94 80.51 78.35 79.42 82.16 / 79.93

CLON 78.64 79.87 77.54 78.27 80.69 0.029 72.43

UCLA

CHON 79.71 80.09 78.67 79.24 79.31 0.021 73.87

H-CHON 83.45 83.11 81.21 81.31 81.61 0.018 76.51

Fusion 85.98 83.86 83.58 84.26 83.53 / 79.25

CLON 70.09 67.05 68.51 70.49 73.41 0.027 74.00

UM

CHON 71.86 71.39 72.67 72.01 75.72 0.015 74.86

H-CHON 75.21 75.26 77.37 75.65 76.64 0.011 78.15

Fusion 78.36 77.43 78.16 79.51 78.88 / 79.96

CLON 77.23 73.41 72.00 74.13 73.54 0.043 71.79

USM

CHON 78.68 74.61 73.27 75.24 74.16 0.035 72.91

H-CHON 82.01 77.84 78.71 76.69 77.92 0.016 77.24

Fusion 85.02 81.96 82.01 80.31 79.36 / 79.69
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From Table 3, we can conclude two conclusions: (1) When the 
threshold is less than the optimal threshold 0.7, the H-CHON lacks 
specific expressiveness and loses much relevant information, which is 
not conducive to the auxiliary diagnosis of ASD and other brain 
disorders. (2) When the threshold is larger than the optimal threshold 
of 0.7, it represents that most of the connections among brain regions 
are preserved. Whereas, the lower diagnostic accuracy of brain 
diseases suggests that the information representation of the H-CHON 
may be redundant and contain a large amount of non-essential noise-
related information. Therefore, choosing an appropriate threshold 
setting is crucial to improve the performance of the proposed higher-
order FCN.

3.3. The most discriminative hyperedge 
connection ASD diagnosis

To identify the most discriminative features in the H-CHON, 
we utilized two-sample t-test and LASSO. In this study, we quantify 
the correlation between features and target classification by using the 
frequency of feature selection across all cross-validation cases.

The H-CHON with the highest frequency in tenfold cross-validation 
was selected as the most discriminative connection. The reported 
results were based on the original Automated Anatomical Labeling 
(AAL) atlas, which comprises 116 brain regions (Tzourio-Mazoyer 
et al., 2002). In this section, we only analyze the H-CHON with the best 
classification accuracy threshold at 0.7. The five most discriminative 
hyperedge connections identified were hyperedge e1 and e18, 
hyperedge e1 and e48, hyperedge e1 and e56 , hyperedge e1 and e94 , 

hyperedge e2 and hyperedge e67. Since one hyperedge represents 
multiple connections for two groups of ROIs, we trace back to the 
connections between the two groups of ROIs based on the 
hyperedge connections.

Figure 4 shows the most discriminative hyperedge connections in 
five sets of hyperedge connections, which were the hyperedges 
connected by hyperedge e1 and hyperedge e94 . Figures  4A,B 
respectively represent the ROIs connected by hyperedge e1 and 
hyperedge e94  in ASD and NC, where the areas surrounded by blue 
dashed lines and purple dashed lines are the ROIs connected by 
hyperedge e1 and hyperedge e94  respectively. As shown in Figure 4, 
there are obvious differences in the ROIs connected by hyperedges in 
the most discriminative hyperedge connections of ASD and NC.

Hyperedge e1 connects several brain regions centered around left 
Precentral gyrus (PreCG.L). In NC, e1 connects to PreCG. L, right 
Precentral gyrus (PreCG.R), left Postcentral gyrus (PoCG.L), and 
left Inferior parietal (IPL.L). In ASD, e1 connects to PreCG. L, 
PreCG.R, PoCG. L, IPL.L, left supplementary motor area (SMA.L), 
left Inferior frontal gyrus (opercular) (IFGoperc.L) and left Inferior 
frontal gyrus (triangular) (IFGtriang.L). By comparing e1 in NC and 
ASD, it is suggested that there may be  abnormal connections 
between PreCG. L and SMA. L, PreCG.L and IFGoperc. L, as well as 
PreCG. L and IFGtriang.L in individuals with ASD. Nebel et  al. 
(2014) found that the strength of connectivity within and between 
distinct functional subregions of the PreCG was related to ASD 
diagnosis and to the severity of ASD traits. Zhang et al. (2020) found 
differences in convergence in the SMA.L when comparing the NC 
sample with the ASD sample. IFGoperc.L and IFGtriang.L belong to 
the Inferior frontal gyrus. Rudie et  al. (2012) indicate that the 
inferior frontal gyrus, especially its posterior portion, has an 
important role in imitation and social reciprocity and in the 
pathophysiology of their disturbance in ASD. Hyperedge e2 connects 
several brain regions centered around right Cerebellar Crus 2 (CRBL 
Crus 2.R). In NC, e2 connects to right CRBL Crus 2, left Cerebellar3 
and right Cerebellar3. In ASD, e2 connects to CRBL Crus 2.R, right 
Cerebellar8 and right Cerebellar7b. It can be observed that there are 
abnormalities in the Cerebellar of between NC and ASD. Kelly et al. 
(2021) that cerebellar dysfunction is increasingly associated 
with ASD.

4. Discussion

There are several limitations in this paper. Firstly, while multi-site 
data increases sample size and statistical power, it introduces site 
heterogeneity. To address this issue, learning shared features across 
multiple sites becomes particularly important to mitigate data 
heterogeneity. Secondly, we  ignored the spatiotemporal dynamic 
interactions between brain regions at different time points. In fact, the 
spatial interactions between brain regions at the previous time point 
can affect the spatial interactions between brain regions at the next 
time point. To address this issue, we  plan to incorporate the 
hypergraph concept and attention mechanism to capture the 
spatiotemporal dynamic features of the brain graph network. Finally, 
the effectiveness of our method has only been validated in the 
diagnosis of ASD. For future work, we plan to extend this method to 
other brain connectivity patterns.

TABLE 3 Classification performance corresponding to different threshold 
parameters.

Regularization 
parameter

ACC 
(%)

SEN 
(%)

SPE 
(%)

PPV 
(%)

NPV 
(%)

F1 
(%)

0.1 66.22 60.50 71.50 70.17 68.56 61.50

0.15 65.69 62.50 68.50 67.33 66.14 63.44

0.2 68.81 59.00 78.00 72.17 69.10 63.38

0.25 71.31 65.50 77.00 79.50 70.14 68.83

0.3 73.56 69.50 77.50 79.50 74.87 71.54

0.35 73.19 71.50 75.00 76.71 75.14 72.55

0.4 70.31 68.00 73.00 67.17 73.75 66.28

0.45 71.44 71.50 72.00 72.67 72.83 71.13

0.5 74.56 69.50 80.00 78.83 74.00 72.33

0.55 78.42 80.00 77.50 80.50 80.58 77.98

0.6 75.56 78.00 73.50 74.33 79.50 75.27

0.65 79.06 80.00 78.50 80.00 82.67 78.37

0.7 79.81 80.00 86.50 88.50 82.79 79.05

0.75 79.17 72.00 80.00 81.81 79.35 76.14

0.8 78.06 74.00 82.50 83.67 78.95 76.28

0.85 78.81 78.00 80.00 80.67 81.48 77.81

0.9 74.56 74.00 75.50 76.67 77.79 73.36

0.95 74.81 72.00 78.00 78.64 78.14 72.60

https://doi.org/10.3389/fnins.2023.1257982
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnins.2023.1257982

Frontiers in Neuroscience 08 frontiersin.org

In addition, to further advance the field, future research can focus 
on the following aspects: Firstly, exploring advanced feature 
extraction and selection techniques to enhance the discriminative 
power of high-order FCNs. Secondly, conducting comparative studies 
with other state-of-the-art methods on multiple datasets to gain a 
more comprehensive understanding of the strengths and weaknesses 
of different approaches. Finally, investigating the interpretability of 
the models and providing insights into underlying brain mechanisms 
can greatly facilitate the applicability of the proposed method in 
clinical settings.

5. Conclusion

In this paper, we  propose a novel hypergraph-based high-
order FCN, which constructs high-order FCN by averaging 
multiple related ROI connected by hyperedges, and the integration 
of conventional low-order FCN (CLON) and hypergraph-based 
high-order FCN (H-CHON) to improve classification performance. 
The method is characterized by its simplicity and effectiveness, as 
it can capture high-order connectivity patterns between brain 
regions and reduce redundancy in high-order FCN. Experimental 
results showed that CLON and H-CHON have certain complementarity 
and combining them effectively can improve classification 
accuracy. And the proposed H-CHON achieves a classification 
accuracy of 80.31% by combining with CLON through SVM fusion. 
At present, this study only explores the construction of static 
high-order FCN, and in the future, we  plan to extend the 
hypergraph-based method to the construction of dynamic high-
order networks.
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FIGURE 4

ROIs differences in the most discriminative hyperedge connection. (A) The ROIs connected by hyperedge e1 and hyperedge e94 in ASD; (B) The ROIs 
connected by hyperedge e1 and hyperedge e94 in NC.
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