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Ambient Assisted Living is a concept that focuses on using technology to support 
and enhance the quality of life and well-being of frail or elderly individuals in both 
indoor and outdoor environments. It aims at empowering individuals to maintain 
their independence and autonomy while ensuring their safety and providing 
assistance when needed. Human Activity Recognition is widely regarded as the 
most popular methodology within the field of Ambient Assisted Living. Human 
Activity Recognition involves automatically detecting and classifying the activities 
performed by individuals using sensor-based systems. Researchers have employed 
various methodologies, utilizing wearable and/or non-wearable sensors, and 
employing algorithms ranging from simple threshold-based techniques to more 
advanced deep learning approaches. In this review, literature from the past decade 
is critically examined, specifically exploring the technological aspects of Human 
Activity Recognition in Ambient Assisted Living. An exhaustive analysis of the 
methodologies adopted, highlighting their strengths and weaknesses is provided. 
Finally, challenges encountered in the field of Human Activity Recognition for 
Ambient Assisted Living are thoroughly discussed. These challenges encompass 
issues related to data collection, model training, real-time performance, 
generalizability, and user acceptance. Miniaturization, unobtrusiveness, energy 
harvesting and communication efficiency will be  the crucial factors for new 
wearable solutions.
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1. Introduction

Ambient Assisted Living (AAL) refers to the use of Information and Communication 
Technologies (ICT), assistive devices, and sensor network technologies to support, monitor 
and enhance the quality of life for individuals, particularly older adults, or people with 
disabilities, within their daily living and working environment. The primary goal of AAL 
is to provide individuals with increased independence, autonomy, and safety by 
incorporating technological solutions into their surroundings. These solutions can assist 
individuals in various activities of daily living, such as managing their health, monitoring 
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their safety, and improving their social interactions (Blackman 
et  al., 2016; Stodczyk, 2020). One significant aspect of AAL is 
subject monitoring, which involves the continuous and 
unobtrusive tracking of an individual’s activities, health 
parameters, and environment to ensure their safety and provide 
timely assistance when needed. Subject monitoring utilizes 
various sensors to collect data and analyze patterns, enabling 
caregivers and healthcare professionals to gain valuable insights 
into an individual’s daily routines, health conditions, and potential 
risks. The choice of sensors can be made among two main groups: 
wearable and non-wearable sensors. The first one could 
be incorporated on clothing or worn by the user like accessories. 
Non-wearable sensors, on the other hand, are strategically placed 
on furniture, appliances, walls, doors, and other objects 
throughout the home. By integrating both types of sensors, 
through a so-called hybrid approach, a comprehensive monitoring 
solution can be created to effectively and efficiently monitor the 
subject (Calvaresi et al., 2017; Clapés et al., 2018).

The work of Aleksic et  al. proposed a subdivision of AAL 
systems for subject monitoring into four distinct generations (see 
Figure  1) based on technological variations, highlighting the 
application of ICT, stand-alone assistive devices, and technologies 
for indoor environments within individuals’ daily living and 
working environments (Al-Shaqi et al., 2016). These AAL systems 
actively encourage healthy lifestyles, contribute to disease 
prevention through personalized risk assessment and continuous 
monitoring, and primarily cater to frail individuals, by offering 
continuous support and actively promoting their independent and 
healthy living (Blackman et  al., 2016; Calvaresi et  al., 2017; 
Stodczyk, 2020; Cicirelli et al., 2021):

 • First Generation of AAL Systems: the first generation of AAL 
systems primarily consists of alert and alarm systems using 
pendant or button devices worn by the monitored individuals. 
In the event of a dangerous situation, the individual would 
activate the button or pendant to send an alarm signal to a 
call center or caregiver. Examples of such solutions include 

the Salvalavita Beghelli1 and LifeAlert.2 While these devices 
offer several benefits, they also have specific limitations. For 
instance, individuals may be  physically or mentally 
incapacitated, making them unable to trigger the alarm. 
Additionally, there are issues with individuals forgetting to 
wear or recharge the device.

 • Second Generation of AAL Systems: the second generation of AAL 
systems involves more technologically advanced devices, installed 
in indoor spaces, incorporating sensors capable of automatically 
detecting dangerous conditions and triggering appropriate 
responses without relying on user activation. However, a 
weakness associated with this generation is that some users may 
perceive it as intrusive.

 • Third Generation of AAL Systems: the third generation of AAL 
systems expands through advancements in ICT, introducing a 
more comprehensive concept of AAL. These systems encompass 
sensors designed to detect potentially dangerous situations and 
proactively prevent adverse scenarios, actuators providing 
support to the assisted individuals, and smart interfaces 
delivering information, assistance, and encouragement. The aim 
is to create minimally intrusive home setups comprising multiple 
sensors, actuators, and computing systems. These systems not 
only monitor the home environment but also track vital signs, 
changes in habits and activity patterns of frail individuals, and 
facilitate the execution of daily living activities (Mainetti 
et al., 2016).

 • Fourth Generation of AAL Systems: the fourth generation of AAL 
systems incorporates Artificial Intelligence (AI) algorithms for 
data analysis within AAL solutions. These intelligent systems 
have the ability to learn from data and evolve over time, offering 
personalized assistance and support. The co-design approach is 
embraced, involving end-users, caregivers and stakeholders to 

1 https://www.beghelli.it/salvalavita

2 http://www.lifealert.com

FIGURE 1

Evolution of AAL systems: four generations from the 1990s to the present day.
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create users-centered and inclusive solutions (Siriwardhana et al., 
2019; Bansal et al., 2021; Sophia et al., 2021; Gulati and Kaur, 
2022; Rupasinghe and Maduranga, 2022; Warunsin and 
Phairoh, 2022).

1.1. Related works

By combining AAL with subject monitoring, it becomes possible 
to create personalized and proactive care solutions, promoting 
independent living while offering a safety net for vulnerable 
individuals. Subject monitoring can be conducted in both outdoor 
and indoor environments. Outdoor environments expose frail people 
to various risks, such as falls, extreme temperatures, and potential 
wandering or confusion in individuals with early symptoms of 
dementia. In this context, AAL systems aim to provide support to frail 
individuals by facilitating route checking, anomalous behavior 
recognition, motion activity evaluation, and other relevant 
functionalities (Fernandes et al., 2020; Lee, 2021). Since wearables are 
the only devices that can be  employed outdoors, they acquire a 
fundamental importance. Smartwatches and smart wristbands are the 
most commonly used devices, while Inertial Measurement Units 
(IMUs) are typically the sensors chosen (the same used in indoor 
scenarios) (Bhargava et al., 2017; Iadarola et al., 2022). In literature, 
other solutions have been proposed that address alternative or 
complementary approaches (Sokullu et al., 2019; Kenfack Ngankam 
et al., 2020; Rupasinghe and Maduranga, 2022): for example, Global 
Navigation Satellite System (GNSS) sensors for outdoor localization 
(Junior et al., 2023); instrumented insoles (commercial or customized) 
as an aid for gait detection and consequently for pointing out unsteady 
walking or falls (Cristiani et al., 2014; Sivakumar et al., 2018) and 
sensors mounted on the body of a walker as a low-cost solution for 
people with limited mobility (Ding et al., 2022). Conversely, indoor 
scenarios present frail individuals with risks closely associated with 
their living spaces.

Notably, the indoor environment has been identified as a 
significant contributing element to falls (Lee, 2021), which are 
attributed to factors such as uneven or slippery floor surfaces 
(including carpets and mats), tripping obstacles, inadequate lighting, 
poorly designed or maintained stairs without handrails and unsuitable 
furniture. These criticalities increase the likelihood of tripping, falling, 
or slipping for frail individuals. Additional hazards arise from the 
absence of safety or preventive devices, such as night lights and grab 
rails (Carter et  al., 1997; Lee, 2021). Indeed, the requirements of 
monitored subjects can vary significantly across different indoor 
scenarios. In private homes, where individuals live alone or with a 
caregiver, the primary focus of monitoring is on preventing domestic 
accidents and delivering essential healthcare services. On the other 
hand, in retirement residences where multiple individuals share 
common spaces, subject monitoring systems are primarily designed 
to facilitate group activities and controlled physical exercises (Nastac 
et al., 2019; Cicirelli et al., 2021).

Adapting the monitoring approach to suit the specific needs and 
dynamics of each indoor setting is crucial. This ensures that monitored 
subjects receive personalized support and care tailored to their 
circumstances. Additionally, it is important to recognize that AAL 
systems cannot remain static, as people’s needs and habits evolve over 

time, along with the parameters that need to be  observed. 
Consequently, data analysis methodologies must account for the 
evolving nature of these systems, allowing for the possibility of 
dynamically weighting or customizing certain parameters over others 
(Cicirelli et al., 2021). By embracing flexibility and adaptability, AAL 
systems can continue to provide effective and relevant support to 
individuals in various indoor environments.

The selection of appropriate sensors considers multiple factors, 
including the specific objectives of the AAL system, sensor cost, 
intrusiveness, user acceptability, and privacy concerns. However, more 
complex sensor networks, comprising environmental sensors, object 
sensors, cameras, and wearable sensors constitute the foundation of 
indoor AAL. The living facilities may be equipped with an array of 
interconnected sensors and actuators, enabling remote control and 
capable of detecting various environmental parameters such as door 
openings and room brightness. These sensors are strategically 
deployed to monitor the daily activities of individuals, ensuring 
security and safety. The selection of appropriate sensors considers 
multiple factors, including the specific objectives of the AAL system, 
sensor cost, intrusiveness, user acceptability, and privacy concerns. 
Communication protocols, such as ZigBee, Bluetooth, ZWave, USB, 
Ethernet, among others, are utilized to interconnect sensors, actuators, 
and smart devices throughout the environment (Tazari et al., 2011; 
Lloret et  al., 2015; Babangida et  al., 2022). Typically, raw or 
pre-processed data from sensors are transmitted to a collection center, 
either local or remote, where they undergo integration and analysis 
using robust algorithms (Plentz and De Pieri, 2018). A thorough and 
reliable data analysis becomes crucial in indoor scenarios equipped 
with automatic dangerous situation detection or capable of requesting 
help triggering alarms to third parties.

In the field of AAL, Human Activity Recognition (HAR) has 
emerged as a valuable tool with multifaceted utility. Within the AAL 
domain, HAR presents a range of solutions aimed at enhancing the 
quality of life of frail individuals (elderly and/or disabled people) and 
maintaining improved health and independence. Additionally, it 
provides also support to caregivers and medical professionals. HAR 
has garnered substantial interest as a prominent field of study in recent 
times. HAR methodologies are devised with the objective of 
autonomously detecting and classifying individuals’ routine activities 
within defined contexts. Depending on the task and the employed 
technologies, two main methodologies are commonly adopted. The 
first approach relies on a threshold analysis method, which can suffice 
for triggering alerts when detecting dangerous events (Zdravevski 
et al., 2017; Al Machot et al., 2018a,b; Cicirelli et al., 2021). The second 
and more recent approach (see Figure 1, fourth generation), employs 
Artificial Intelligence (AI) solutions such as Machine Learning (ML) 
and Deep Learning (DL) algorithms for HAR (Aggarwal and Ryoo, 
2011; Wang J. et al., 2019).

Among the various possible applications, human activities can 
be classified into four distinct groups based on the involvement of 
various body parts (Jegham et al., 2020; Minh Dang et al., 2020):

 • gestures involve basic actions carried out by different parts of the 
human body, including hand gestures like the “okay” gesture or 
“thumbs up” gesture;

 • actions refer to a collection of fundamental movements executed 
by an individual, such as walking, standing, sitting, running, and 
other similar activities;

https://doi.org/10.3389/fnins.2023.1256682
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 • interactions encompass not only activities involving interactions 
between two individuals, but they can also involve the 
relationship between a person and an object. Examples of 
interactions include playing a guitar or hugging another person;

 • group of activities are the most intricate category as they primarily 
involve a combination of gestures, actions, and interactions. 
Examples of group activities include group meetings or group 
walking, where multiple individuals engage in coordinated 
actions and interactions.

Detailed framework of the HAR process will be discussed in the 
upcoming section. Finally, the aim of this work is to provide an 
overview of recent literature of AAL systems focusing on HAR from 
a technological perspective, tackling emerging evidences, challenges 
and future directions (Stavropoulos et al., 2020).

Papers have been revised by searching published works in the last 
10 years in the following databases: IEEE Xplore, PubMed, Scopus. A 
series of keywords have been used, alone or in combination: ambient 
assisted living, ambient assisted living technology, healthy ageing, 
human activity recognition, ambient sensors, wearable sensors, 
wearable technology, activity monitoring, machine learning, deep 
learning, frail person.

The rest of the paper is organized as follows: Section 2 describes 
the Monitoring Solutions, focusing on the main components of an 
AAL system and detailing wearable and non-wearable sensors. Section 
3 presents the processing chain, outlining the most relevant 
methodologies for data acquisition, processing and analysis. Section 
4 proposes a critical discussion that also addresses future directions of 
this research field.

2. Monitoring solutions

Monitoring solutions in AAL systems can be developed using a 
variety of technologies, depending on the specific application domains 
and requirements. Specifically, in the field of HAR different solutions 
can be  employed (Cicirelli et  al., 2021; Ranieri et  al., 2021). The 
upcoming session will provide a detailed description of wearable and 
non-wearable sensor solutions for HAR within the context of AAL in 
indoor environments.

2.1. Wearable sensors

Wearable devices typically consist of small sensors that can 
be integrated into cloths, rings, shirts, watches or other garments and 
devices. Such sensors gather body and context information to 
be locally processed or directly transmitted, mainly wirelessly through 
appropriate communication protocols, to a central processing unit of 
an AAL system (Kumari et al., 2017).

In the last few years, most wearable devices have been 
miniaturized and have optimized their power consumption 
(Cicirelli et al., 2021). Wearable devices, especially fitness trackers, 
wristbands and smartwatches (Andò et al., 2016; Lutze, 2018; Xie 
et  al., 2020), have various built-in/integrated sensors such as 
accelerometers, gyroscopes and orientation sensors. Smartphones 
represent an additional solution for their characteristics of cost 
effectiveness and high number of embedded sensors (Ramanujam 

et  al., 2021). Moreover, smartphones’ embedded sensors can 
be used alone or in combination with other wearable technology to 
evaluate posture and activities and to prevent falls, together with 
biological and behavioral monitoring (Haghi et al., 2019; Badgujar 
and Pillai, 2020; Nouredanesh et al., 2020). In this review, since 
users take their smartphone with them almost everywhere, even 
though they are not always in direct contact with the body, they are 
considered wearable devices at the same level as wristwatches, 
rings, glasses and necklaces, as opposed to environmental sensors 
and cameras. Apps for recording the device’s sensors data can 
be run on all commercial operating systems (Android or iOS) and 
they can be  combined with commercial smartwatches, self-
developed smart bands or devices like Shimmer nodes (Sanchez-
Comas et  al., 2020). However, not all applications provide an 
integration with smartphones; instead, many studies considered 
custom-developed solutions of electronic components. A 
significant number of works developed technologies in the 
laboratory, whereas fewer studies used commercial devices. Inertial 
sensors are the most common wearable elements used for HAR in 
AAL; in some cases, accelerometers (Tay et al., 2023), gyroscopes, 
magnetometers, temperature and object sensors may be applied, 
mainly worn on the waist or the hip (Pierleoni et al., 2019; Sarabia-
Jácome et al., 2020).

Identification of the user’s position can be obtained even with 
passive RFID sensors or Bluetooth Low Energy (BLE) technology, that 
paved the way to the Bluetooth Smart for wearable devices (Ciabattoni 
et  al., 2019; Paolini et  al., 2019; Bilbao-Jayo et  al., 2021). Also, 
wearables usually commercialized for fitness purposes have been 
evaluated for elderly wellbeing in the AAL domain (Piwek et al., 2016; 
Seneviratne et al., 2017; Cedillo et al., 2018; Surendran et al., 2018; 
Stavropoulos et al., 2020).

The majority of HAR systems in AAL are dedicated to the 
identification and management of falls, as confirmed by literature 
(Dhiman and Vishwakarma, 2019). In such systems, wearables are one 
of the key elements due to their mobility, portability, cost and 
availability and several studies have been conducted, mostly using a 
single wearable device (Wang X. et al., 2020). Even in this context, 
inertial sensors represent a large percentage of the research, whereas 
only a minority deployed other solutions (Bourke et  al., 2007). 
Although Shimmer nodes, smartphones and smart watches often 
contain sensors like magnetometers, such elements were not normally 
used to detect falls; indeed, the only sensors embedded in smartphones 
used for this purpose are accelerometers and gyroscopes (Shi et al., 
2016; Islam et al., 2017; Medrano et al., 2017; Chen et al., 2018).

Even combining multiple sensors into a single framework can 
provide valuable data for meaningful and complex predictions, thus 
achieving a more versatile, robust and trustworthy wearable system 
for HAR purposes. Moreover, commercial tools are widely used, such 
as Samsung Galaxy Gear Live (Faye et al., 2017), Microsoft Band 2 
(Garcia-Ceja et  al., 2018) and Intel Basis Peak (Kang and Larkin, 
2017), as well as other alternatives like Empatica E3 (Clapés et al., 
2018), Fitbit (Kang and Larkin, 2017), and Google Glass (Shewell 
et al., 2017; Clapés et al., 2018).

It is worth noticing that most of the time, wearable technology 
alone would be  sufficient to assess activity recognition in indoor 
environments and AAL systems. This is an important advantage, 
combined with their low cost, portability and unobtrusiveness. 
However, a hybrid approach combining wearable and non-wearable 
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sensors often overcomes possible drawbacks due to users not wearing 
the device correctly, thus leading to low quality signals, not being 
comfortable in putting on a wearable that could excessively stand out, 
forgetting to charge it or even to wear it continuously.

2.2. Non-wearable sensors

Non-wearable sensor solutions for HAR encompass devices or 
systems that can detect and analyze human activities without needing 
to be directly attached to the body. These solutions play a crucial role 
in the functionality and effectiveness of AAL systems. Operating in a 
passive manner, these sensors autonomously monitor room occupants 
without the need for manual intervention. This eliminates the need for 
users to carry additional devices during their daily activities.

One example of a non-wearable sensor solution is radio-
frequency-based systems, as demonstrated by (Fan et al., 2020). These 
systems utilize the analysis of radiofrequency (RF) signal reflections 
to monitor various activities performed by individuals. In this study, 
Radio Frequency sensors were embedded directly in the floor to 
capture the everyday activities of residents (Fan et al., 2020). As part 
of radiofrequency-based systems, radar and ultra-broadband 
technologies, as well as automotive-derived solutions, also emerged as 
interesting approaches for human activity recognition (Guendel et al., 
2021; Senigagliesi et al., 2022).

Furthermore, contemporary monitoring and behavior analysis 
tasks can be facilitated by diverse image-based technologies.

Nowadays, low-cost cameras have emerged as viable options for 
monitoring individuals’ daily activities, ensuring their well-being 
(Geman and Costin, 2014; Cebanov et al., 2019; Minh Dang et al., 
2020; Ryselis et al., 2020; Bouchabou et al., 2021; Chen et al., 2021; 
Raeis et al., 2021). These devices enable continuous monitoring of 
individuals without requiring their active involvement. These include 
RGB, Depth, and RGB-D cameras, as well as IR (infrared) array 
sensors, known as thermal cameras.

RGB cameras, being widely available and affordable, provide 
information about the shape, color, and texture of the scene (Zerrouki 
et al., 2018). However, they have some drawbacks such as a limited field 
of view, complex calibration procedures, sensitivity to environmental 
variations (e.g., lighting conditions, type of illumination and cluttered 
background) and privacy concerns. To address this latter issue, depth 
cameras offer distance information from the sensor to elements in the 
scene, capturing detailed spatial information while maintaining 
heightened privacy protection (Jayaraj et al., 2019; Beddiar et al., 2020). 
Depth sensors also exhibit superior resilience to variations in 
illumination, color, and texture compared to RGB devices. However, 
noisy measurements can occasionally affect accurate object or subject 
identification, necessitating data processing and refinement. In recent 
years, low-cost devices integrating RGB and depth sensors, such as 
Kinect and Intel RealSense systems, have been employed as 
environmental sensors in AAL systems. Another alternative, IR array 
cameras, measure thermal energy emitted by the human body or other 
objects (Mashiyama et al., 2015; Spasova et al., 2016; Karayaneva et al., 
2023). These low-resolution IR arrays offer advantages such as privacy 
preservation, low power consumption, insensitivity to ambient lighting 
variations, operation in complete darkness, fast response time, easy 
deployment, and straightforward image processing.

All these devices suffer from subject occlusion, which occurs 
when certain body parts of the subject are hidden or obscured by 
other objects or body parts within the room, leading to incomplete 
or inaccurate tracking of the subject’s movements. To overcome 
the occlusion limitation, a practical solution is to employ a 
multiple camera setup that covers various areas of the room from 
different viewpoints. By using multiple cameras, the chances of 
occlusion can be reduced, as different cameras capture different 
perspectives of the scene. This approach allows for a more 
comprehensive view of the subject’s activities and improves the 
accuracy of tracking. However, it is important to note that using 
multiple cameras increases HAR systems’ costs and requires 
synchronization among them to ensure proper coordination and 
alignment of the captured data. Synchronizing the cameras 
enables the seamless integration of the captured images or depth 
data, allowing for a more complete understanding of the subject’s 
movements and activities.

In the context of monitoring human activities, sensors can 
be also embedded in everyday objects within the environment. 
Contrary to wearable sensors, which directly measure human 
activities, these sensors enable the detection of movements and 
activities through the usage of specific objects, providing valuable 
insights into the daily lives of individuals (Bassoli et al., 2017; 
Rafferty et al., 2017). For instance, sensors can be integrated into 
furniture items such as carpets, beds, fridges, and more, allowing 
for unobtrusive monitoring of daily living activities. Presence 
statistics of users in different spaces can be gathered by monitoring 
the sensors embedded in furniture. Power meters can be employed 
to track appliance usage (Bianchi et al., 2019), such as monitoring 
TV sets, while smart pill box devices assist in checking medication 
intake (Keum et al., 2019). Roland et al. proposed the installation 
of an accelerometer attached to a smart drinking cup to efficiently 
identify the user’s drinking movement (Roland et  al., 2018). 
Bassoli et  al. installed sensors directly on the furniture of the 
subject’s house for HAR. Pressure pads are used to monitor bed or 
chair occupancy, while sensors inside the fridge provide indirect 
information about feeding habits (Marenzi et al., 2012, 2013a,b; 
Bassoli et al., 2017). Chaccour et al. developed a smart carpet with 
piezoresistive pressure sensors to detect falls of the inhabitant 
(Chaccour et al., 2015; Singh et al., 2020).

Everyday object sensors offer a less invasive and privacy-
friendly alternative to cameras, as they are designed to specifically 
recognize human activities related to the intended use of the 
object. By focusing on that, these sensors can provide valuable 
insights and functionality while minimizing potential privacy 
concerns. Everyday object sensors can detect interactions with 
household appliances or devices, such as opening a refrigerator, 
without capturing or storing detailed visual information of 
individuals. Yue et  al. proposed an RF-based system that 
accurately monitors sleep postures overnight in the user’s own 
house. By analyzing RF reflections and distinguishing them from 
other signals, the system can identify different sleeping postures 
such as supine, left side, right side, and prone (Yue et al., 2020). 
This approach can help alleviate privacy concerns while still 
enabling the development of innovative and convenient 
technologies that enhance user experiences in a responsible and 
respectful manner.
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3. HAR processing chain

Irrespective of the specific type of human activity being classified, 
the process of HAR typically adheres to a standard framework 
comprising several distinct phases. These phases are summarized in 
each block of Figure  2 and detailed in the following paragraphs, 
keeping the same names and order as in the Figure 2.

3.1. Data acquisition and pre-processing

Sensors and devices are characterized by outputs that are either 
punctual values (i.e., pixels in an image) or temporal series (i.e., 
position, acceleration). HAR applications could rely on raw data or 
need further pre-processing steps to enhance the signal quality (i.e., 
noise reduction, data normalization, segmentation) and/or to obtain 
derived data. For instance, from data captured by RGB-D cameras it 
is possible to estimate the position over time of specific points on the 
human body, often corresponding to anatomical points of repère or 
joints with respect to a specific coordinate system typically intrinsic to 
the device. This data processing stage is called skeleton tracking. 
Moreover, joint angles can be  obtained starting from body joint 
positions (Jegham et al., 2020). Notably, in the context of AAL, it is 
common practice to store and analyze the skeleton tracking data 
instead of RGB or depth data to prioritize privacy preservation 
(Gasparrini et al., 2014; Tu et al., 2018; Li and Sun, 2021; Srimath et al., 
2021). The pre-processing stage aims at noise reduction, data 
normalization and segmentation.

3.1.1. Noise reduction
Raw, noisy signals adversely affect signal segmentation and 

possible further computing steps (Deep et  al., 2020). Noise can 
be removed in several ways: linear, averaging low-pass and high-pass 
filters (Amin et al., 2016). In some specific situations (e.g., inertial data 
and skeletal data), Kalman filters, moving average or adaptive filters 
are useful to correct distorted signals (Jeong et al., 2017; Beddiar et al., 
2020; Ahad, 2021). The choice of an appropriate filter is critical, since 
it affects the quality of the filtered signals and of the successive steps 
of the processing chain. The Signal-to-Noise Ratio (SNR) is a crucial 
parameter in the identification of the most appropriate filter, together 
with the correlation coefficient (R) between the filtered and the 
reference signals, the cut-off frequency, the waveform delay, the filter 
size and the window length. The choice of the most suitable filter has 
to be a compromise among all these parameters. The components of 
the target signal that fall within the stop band of the filter are lost. At 
the same time filtering a signal introduces a delay (waveform delay), 
i.e., the output signal is shifted in time with respect to the input. This 
factor plays a critical role, especially when the responsiveness of the 

application is mandatory. The filtering of the signal at the same time 
as its acquisition is important in order not to accumulate delay 
between the filtered and raw signal. In other words, if the complete 
processing chain is designed to identify a potentially dangerous 
situation, the time shift should be compatible with this task, to ensure 
a prompt detection. Finally, a filter operates by allowing a specific 
range of frequencies to pass through. For instance, since frequency 
range of human activity is usually about 0–20 Hz (Antonsson and 
Mann, 1985; Grossman et al., 1988), the cut-off frequency is usually 
equal to at least twice such value (Castro et al., 2016; Wang et al., 2017; 
Ma et al., 2018; Minh Dang et al., 2020).

3.1.2. Data normalization
Data normalization is characterized by scaling or transforming 

the acquired data. This step is often necessary in HAR scenarios where 
data originated from different types of sensors and/or from people 
with various anthropometric characteristics. According to the type of 
data (e.g., RGB or depth, temporal or skeleton data) several 
normalization methods can be implemented (Pires et al., 2020; Ahad, 
2021). Common normalization methods are min-max, mean, 
standardization and scaling to unit length. The first method scales the 
data in their maximum and minimum range: the minimum value is 
subtracted from each data point and the result is divided by the data 
range. In the second one the mean of all data samples is subtracted 
from the data vector, and the result is divided by the difference 
between the maximum and minimum samples. In the standardization 
method, the mean value of all data samples is subtracted from the data 
vector, and the result is divided by the standard deviation value. 
Finally, the last normalization technique scales all the data with 
respect to the sum of all elements of the data vector (Patro and Sahu, 
2015; Mistry and Inden, 2018; Narkhede, 2019; Ahad, 2021).

When considering skeletal tracking data instead, there are also 
two other types of normalization methods. The first one is the 
Bounding-box normalization (referring to the border’s coordinates 
that enclose the subject), in which all skeleton 3D joints coordinates 
are normalized using the maximum side-length of the bounding box 
of the skeleton (Cippitelli et al., 2016; Liu et al., 2020). In the second 
method data are normalized by dividing the 3D coordinates of the 
skeleton with respect to the length of a specific body segment (i.e., 
head, neck, torso and so on) or by the subject height. For example 
(Cippitelli et al., 2016), scaled joint position dividing each value by the 
Euclidean distance between the neck and torso joints.

3.1.3. Data segmentation
Data segmentation is strongly related to the type of data. When 

dealing with temporal sequences, it consists of partitioning the data 
into time windows. Otherwise, when RGB or depth images are 
analyzed, the segmentation involves the separation of the selected 

FIGURE 2

Processing chain illustrating the general steps of HAR.
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target subject in the scene from the background. The data subdivision 
in time windows is principally done to overcome the limitations due 
to the difference between the duration of the action and the sampling 
rate imposed by the data acquisition device (Minh Dang et al., 2020; 
Ahad, 2021). The data segmentation can be categorized into Fixed 
size Non-overlapping Sliding Window (FNSW), Fixed-size 
Overlapping Sliding Window (FOSW) or Event-Driven Sliding 
Window (EDSW) (Bulling et al., 2014; Ahad, 2021). In FNSW and 
FOSW segmentations, the number of samples included in each 
window is fixed. The difference is that in FOSW consecutive analysis 
blocks of the time data are overlapped by the designated percentage 
of the time record, while in FNSW there is no overlapping. 
Concerning EDSW, it differs from the others since the number of 
samples included in the time window is not fixed (i.e., it features a 
variable window size) (Devanne et al., 2019). Generally, the window 
size has to always be carefully established to comprehend an adequate 
number of samples, at the same time avoiding prolonged execution 
times. When the HAR process is part of a system aiming at 
monitoring a person in the AAL environment, in which the 
promptness of the recognition is mandatory, smaller window 
segmentation is suitable (Buzzelli et al., 2020). It also reduces the 
complexity and the computational time of the HAR process. The 
overlapping technique can handle the transition between human 
activities more accurately, i.e., the transitions between sitting and 
standing postures, or between walking and running (Torti et al., 2019; 
Buzzelli et al., 2020; Khan and Ghani, 2021; Guerra et al., 2022, 2023). 
In case of RGB image, or depth image, the segmentation process is 
implemented using two different approaches: namely, the background 
subtraction and the foreground extraction. The first one consists in 
the extraction of the body silhouette in an image sequence captured 
from a static camera by comparing each incoming frame with a 
background model. A crucial step of this technique is to obtain a 
stable and accurate background model. The second one is 
recommended when the images are acquired by a moving camera, 
and it consists in the computation of the difference between 
consecutive image frames. The foreground extraction is more 
challenging than the background subtraction because, in addition to 
the motion of the target object, it also needs to consider the motion 
of the camera and the change of background (Ke et al., 2013; Babaee 
et al., 2018; Minh Dang et al., 2020; Mliki et al., 2020).

3.2. Feature extraction and selection

The feature extraction procedure consists in the definition of a set 
of parameters able to discriminate the activities to be classified. Based 
on the given data nature and characteristics, the features can 
be divided into several categories: time-domain, frequency-domain 
and kinematic features (Dhiman and Vishwakarma, 2019; Sousa Lima 
et al., 2019; Ahad, 2020, 2021). The time-domain features are usually 
defined to describe the data amplitude variation and distribution over 
time (for instance mean, variance and kurtosis). On the other hand, 
the frequency-domain features show the distribution of signal energy 
(i.e., Fast Fourier Transform, entropy and power spectral density). 
Kinematic features include all the characteristics of the subject’s 
movements, acceleration and posture (joints positions and angles). 
The kinematic features describe geometric relations between body 
joints (Müller et al., 2005; Guerra et al., 2020).

In the case of images, usually global and local features are 
computed. The first ones describe the image frames as a whole, 
providing different types of information (spatial, temporal, frequency) 
(Ke et al., 2013). Local features extract information around a set of 
interest points or describe a selected image region, through techniques 
like histograms of oriented gradients (Aly and Sayed, 2019).

After feature extraction, the relevant ones are selected to achieve 
dimensionality reduction by finding the smallest subset of features 
which efficiently defines the data for the given problem (Blum and 
Langley, 1997; Chandrashekar and Sahin, 2014; Jindal and Kumar, 
2017; Ayesha et  al., 2020). It can be  accomplished using different 
methods, such as filter, wrapper, embedded, and the more recent 
hybrid approach (Blum and Langley, 1997; Minh Dang et al., 2020; 
Zebari et al., 2020). Filter methods measure the relevance of features 
using statistical standards for evaluating a subset, they process data 
before the classification occurs and are independent from the latter. 
The features are ordered according to the ranking of importance 
(computed with suitable score metrics) and those below a certain 
threshold are removed. Among the different algorithms, the most used 
are: ReliefF, statistical techniques such as Principal Component 
Analysis, Independent Component Analysis, Neighborhood 
Component Analysis and Correlation Based filter (Suto et al., 2016; 
Alzahrani et al., 2019; Siddiqi and Alsirhani, 2022). Wrapper method 
selects the optimal features subset evaluating alternative sets by 
running the classification algorithm on the training data. It employs 
the classifier estimated accuracy as its metric (Bhavan and Aggarwal, 
2018; Zebari et al., 2020). The most used iterative algorithms are the 
Recursive Feature Elimination with Support Vector Machine, the 
Sequential Feature Selection algorithm and the Genetic Algorithm 
(Liu and Shao, 2013; Guerra et  al., 2022). Compared to the filter 
method, the wrapper method achieves better performance and higher 
accuracy, nevertheless it increases computing complexity due to the 
need to recall the learning process for each feature set considered 
(Jindal and Kumar, 2017; Zebari et  al., 2020). In the embedded 
method, as the name suggests, the selection occurs within the learning 
algorithm. The most common are the tree-based algorithms like, for 
example, the Random Forest and the Decision Tree. Embedded 
methods can be  used in multiclass and regression problems and 
compared to a wrapper method, it is computationally more effective 
while retaining similar performance (Negin et al., 2013). Finally, the 
hybrid approach combines filter and wrapper methods to achieve the 
benefits of both. Usually, the filter technique is first applied to reduce 
the search space and then, a wrapper model is used to acquire the best 
subset (Peng et al., 2010).

3.3. Dataset construction

Dataset construction concerns the process that divides the 
acquired data into training, validation and test sets. Generally, a set of 
data is required to train the classification model and a set of validation 
data is used to evaluate the performance of the model during training 
epochs for fine tuning the hyperparameters and to estimate if the 
model does not overfit, i.e., when a statistical model fits exactly against 
its training data at the expenses of its generalization abilities. Finally, 
test data, different from those involved in the training set, are used to 
evaluate the performance of the model (Bouchabou et al., 2021). The 
data contained in the training, validation and test could be described 
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by labels also called classes. As will be stressed in the next Section, this 
operation is of crucial importance for the classification algorithms. In 
HAR tasks, the classes represent the type of activity to be recognized 
(i.e., walking, sitting, lying down, and so on) (Sathya and Abraham, 
2013; Sindhu Meena and Suriya, 2020).

In HAR, three methods have been used to divide the data into 
training, validation and test set. In the first one, called cross-subject, 
the subjects are divided into two groups. The data of the first group are 
used for the training phase, whereas those of the second one are 
involved in the validation and test phase (Khan and Ghani, 2021). The 
cross-subject method aims at guiding the learning process of the AI 
model so that it becomes as robust as possible, in order to adapt it to 
the heterogeneity of the subjects. The second splitting method is 
characterized by randomly dividing the whole dataset based on a 
percentage such as 70-30%, 80-20%, and so on. The larger portion is 
fed for training the model where the other portion is kept for 
validation and test (Ahad, 2021). This is the most used splitting 
criteria in the general problems of classification algorithms and have 
been reported in HAR with success. Alternatively, when data are 
acquired by multiple cameras with different points of view, a cross-
view method can be used. In this case the data coming from one or 
more cameras are used for the training phase and those of the 
remaining ones for the validation and test phase (Wang L. et al., 2020).

3.4. Classification

The most critical step of HAR systems relies on classification 
algorithms. In the literature, two main categories can be identified, 
namely threshold-based and AI methods. Furthermore, AI algorithms 
can be divided into ML and DL techniques. In the following, these 
methods are analyzed, highlighting the main advantages and issues in 
their application for HAR data analysis.

3.4.1. Threshold-based methods
Threshold-based methods are the first introduced in the literature 

and they typically do not need feature extraction and selection. They 
are based on comparing the acquired values with a pre-defined 
threshold (Fetzer et al., 2018). If a signal value exceeds the threshold, 
then the algorithm identifies the targeted situation. More advanced 
threshold-based algorithms adopt adaptive thresholds (Madhu et al., 
2021) or apply it on statistical indicators extracted from the original 
signals (Cola et al., 2017). Moreover, data fusion is employed when 
considering multiple sensors. A particular strategy uses only one of 
them to make a final decision: this is called partial fusion. An example 
is a fall detection system that employs a tri-axial accelerometer and an 
RGB-D camera: only when the measured signal exceeds a threshold, 
the camera is activated to capture the ongoing event (Kwolek and 
Kepski, 2014). One of the most important advantages of threshold-
based algorithms is the low computational complexity. This allows the 
deployment of these algorithms directly on a small computation unit 
which typically also manages the data acquisition and pre-processing. 
Indeed, this solution is widely adopted for wearable devices which do 
not rely on external centralized processing (Jung et al., 2015; Cola 
et al., 2017). Concerning non-wearables, the preferred strategy is to 
send all the acquired data to a central host, which applies the 
threshold-based algorithm (Andò et al., 2016). The major drawback 
of these methods is the threshold selection since it depends on the 

monitored subject. Indeed, inter-subject movements show high 
variability and even the same person can perform a certain movement 
in different ways (intra-subject variability) depending on a multitude 
of factors, such as injuries or illness (Jegham et al., 2020). This affects 
the classification performance.

3.4.2. Machine learning methods
In the last decade, ML methods have been widely explored for 

HAR since they can automatically extract high level features and 
produce more affordable results than threshold-based approaches. 
In particular, the best results have been achieved by Support 
Vector Machines (SVMs), Artificial Neural Networks (ANNs), 
K-Nearest-Neighbours (KNN) and Complex Trees (Oniga and 
Suto, 2014; Hemmatpour et al., 2017; Su et al., 2017). SVMs and 
KNN rely on the concept of instances. First, they create sets of 
example data, in which each set is related to a specific class. Then 
the distances between the new data and the example data sets are 
computed. The aim is to find the example set with the minimum 
distance from the new data. Finally, the class of the minimum 
distance set is given to the new data. ANNs are based on the 
structure of biological neural networks. They are composed of 
elementary computational units, which perform a weighted sum 
of the inputs and apply a nonlinear function. These are organized 
into layers as Multi-Layer Perceptrons (MLP) and are used to map 
input data into output classes. Finally, Complex Trees build a 
decision-making diagram with a tree structure. The tree structure 
is based on the attribute values of the input data. The classification 
is obtained following the tree structure until a leaf is reached. 
Later, single algorithms have been combined in the so-called 
ensemble learning with different strategies such as boosting, 
stacking, bagging and majority voting to enhance the classification 
quality (Hasan et al., 2022).

These algorithms have been used both for data acquired by 
wearable and non-wearables devices. In both cases, the data are 
acquired and sent to a central unit for the classification step (Sheikh 
and Jilani, 2023). Therefore, the main drawback is related to data 
transmission since the communication rate should be high enough to 
guarantee continuous monitoring. Moreover, this represents a critical 
issue for wearable devices since wireless communication is the main 
power consuming process.

Concerning classification performance, it is affected by the quality 
of the dataset. AI methods need to be trained on significant examples, 
which should be balanced among the different classes conceived in the 
target application. It is worth noticing that an unbalanced training set 
negatively affects the model performance. A recent trend is to exploit 
data augmentation strategies to create synthetic data both to increase 
the training set size and to balance it (Um et al., 2017; Mathur et al., 
2018; Steven Eyobu and Han, 2018). The main drawback is related to 
the choice of the augmentation techniques, since synthetic data can 
differ too much from the real ones.

3.4.3. Deep learning methods
DL emerged in recent years as the most powerful AI tool to 

automatically extract high level features and perform affordable 
classifications. The development of DL models has been enabled by 
the computing power offered by the technological evolution of 
devices such as multi-core processors and graphic processing units. 
Among the different DL methods used in HAR Convolutional 
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Neural Networks (CNNs), Long Short-Term Memory (LSTM) cells 
and Gated Recurrent Units (GRUs) (Torti et al., 2019; Ronald et al., 
2021; Poulose et al., 2022; Guerra et al., 2023; Sonawani and Patil, 
2023) emerged as suitable solutions. CNNs are mostly used to deal 
with visual data, since they roughly imitate human vision. The data 
is processed as a grid-like topology through the convolutional 
operator. They can be used both for images and for time series. On 
the other hand, LSTM and GRUs are mainly used for time series 
analysis. In fact, their main feature is to learn time dependencies.

These methods have been initially used for data coming from 
non-wearable devices, especially when vision-based sensors were 
employed. However, they are gaining popularity also for wearable 
devices (Torti et al., 2019; Goh et al., 2021; Luwe et al., 2022).

3.5. Computing power constraints

An important aspect related to HAR for frail people is the time 
needed by the AAL system to detect possible dangerous situations. 
This time is strictly related to the computational complexity of the 
adopted algorithms and to the computing power of the devices which 
perform the processing chain.

Threshold-based methods are the lowest computing power 
demanding techniques, since they are based on simple comparisons 
with a fixed value. Even in the case of threshold computed at runtime 
and/or applied to statistical indicators, the computational complexity 
can be easily managed by standard microcontrollers and does not have 
a critical impact on processing times.

AI methods are characterized by a higher computational 
complexity than threshold-based techniques. In particular, DL 
methods feature the highest computational complexity, not only for 
their training, which is run off-line and may require multiple CPU 
and/or GPU, but also for their implementation as a classifier once all 
the weights are determined. Therefore, their processing is typically 
performed by a centralized unit for both wearable and non-wearable 
devices. However, recently some researchers have designed DL 
algorithms on low power devices suitable for wearable applications.

Recent and very complex solutions exploited ensemble learning 
also with DL algorithms (Kumar and Suresh, 2023) enhancing the 
classification performance of single techniques.

The increasing popularity of AI solutions has led to the 
development of various software tools, libraries, and frameworks that 
facilitate the implementation of these algorithms on devices with 
limited resources. An example of such a tool is TensorFlow Lite for 
microcontroller3 (TFLM), an open-source library designed to enable 
the implementation of AI methods (i.e., ANNs, LSTM, CNN and so 
on) on a wide variety of MCUs and Digital Signal Processors (DSPs). 
TFLM allows the execution of pre-trained algorithms developed using 
TensorFlow for on-device inference. Another prominent solution is 
X-Cube-AI, a software tool developed by STMicroelectronics.4 It 
offers a comprehensive environment for generating and optimizing AI 
algorithms developed using popular ML and AI frameworks such as 

3 https://www.tensorflow.org/lite/microcontrollers

4 https://www.st.com/content/st_com/en.html

TensorFlow,5 Keras,6 or PyTorch.7 X-Cube-AI is tailored for 
deployment on the STM32 family of MCUs, empowering developers 
to leverage familiar frameworks and simplify the integration of AI 
capabilities into their applications. In addition to these tools, there are 
cloud-based platforms like Edge Impulse, which provides a flexible 
environment for the development of AI models. Edge Impulse8 
supports various embedded platforms, including MCUs and 
smartphones, enabling developers to create AI models that cater to 
diverse hardware constraints. NanoEdge AI Studio9 is another valuable 
tool that supports both learning and inference directly inside the 
MCUs. Notably, it offers the advantage of automatically selecting the 
most suitable machine learning libraries based on the provided data 
(Shumba et al., 2022).

Inference needs to be  performed under real-time constraint, 
especially when a potentially dangerous condition needs to 
be  identified. This means that the classification should be  strictly 
performed prior to a fixed temporal deadline, which is defined by the 
acquisition time window. In other words, the system acquires a 
window of data and its pre-processing and classification should 
be  performed before the end of acquisition of the following time 
window. The computational complexity of the algorithms and the 
computing units included in the system play a critical role in the real-
time compliance (Avram and Pop, 2023; de la Cal et  al., 2023; 
Gonçalves et al., 2023; Saliba et al., 2023; Zeng et al., 2023). Delayed 
or sluggish processing can hinder the effectiveness of AAL systems in 
providing timely assistance, which is crucial for ensuring the safety 
and well-being of individuals. Efficient algorithms and optimized 
implementations are necessary to overcome these constraints and 
enable real-time processing on resource-limited platforms. The 
computational unit controls the sampling and acquisition of data: 
usually this is performed by Commercial-Off-The-Shelf (COTS) low 
power and low cost microcontrollers, supporting interfaces and data 
transfer protocols (SPI, I2C…). When high speed, flexibility and 
control over the elements of the architecture are required, Field 
Programmable Gate Arrays (FPGAs) and Application-Specific 
Integrated Circuits (ASICs) can be used, with increased costs and 
higher time for development and/or production. The computational 
unit is equipped with initial signal conditioning and processing 
algorithms together with specific classification methods that perform 
data analysis for local decision making, real-time response and 
forwarding processed data to successive layers. Characteristics that 
can influence all these choices include power consumption, 
computational and storage capacity, complexity and results accuracy 
of the algorithms, privacy concerns and latency requirements. 
Pre-trained models using computationally efficient algorithms may 
be used for anomaly detection and the results can produce warnings 
or propose a course of action. Alternatively, a fraction of an ANN can 
perform partial on-device data processing, to forward only 
intermediate data, thus ensuring also the privacy of the user (Zhang 
et al., 2023). Lastly, after the elaboration and analysis of data, results, 

5 https://www.tensorflow.org

6 https://keras.io

7 https://pytorch.org

8 https://www.edgeimpulse.com

9 https://www.st.com/en/development-tools/nanoedgeaistudio.html
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inferences, or alarms are packaged and forwarded to the upper layers 
for further processing or management (Shumba et al., 2022).

4. Discussion

This review aims at providing an overview on the application of 
HAR process in the context of AAL systems, underlining their 
potential to support independent living for frail individuals.

Recent advances in AAL technologies and the reduced cost of 
sensors have encouraged the development of technological 
environments to enable frail people to live healthier and more 
independent lives and to support caregivers, medical personnel, 
thus limiting hospitalization, promoting personalized therapy and 
enhancing wellbeing. To provide such services, an AAL system has 
to be  able to understand the daily activities of its residents. In 
general, the choice of technologies used for HAR purposes can 
include wearable sensors (IMUs, smartwatches, smartphones…), 
non-wearable sensors (environmental devices, objects, and 
cameras), or a combination of the two (hybrid approach). The 
sensor selection can be  made especially depending on the 
individual’s needs. Wearable sensors have numerous advantages, 
including their small size, low power consumption, direct 
acquisition of information on the subject’s activity and full respect 
of the subject’s privacy. At the same time, they also have some 
drawbacks. For example, they need to be worn by the subjects and 
to operate for long time periods. The latter could represent a 
significant problem for the monitored subject and for the battery 
life of the devices. Also, to fully capture the 3D motion associated 
with a human action, a single sensor may not be adequate. It may 
be necessary to utilize multiple configurations, thus increasing the 
intrusiveness of the devices worn by the subject (Wang Y. et al., 
2019; Beddiar et al., 2020; Qiu et al., 2022). On the other hand, 
environmental and camera sensors offer the key advantage of being 
unobtrusive, as they do not require the individual to wear them. 
However, they also face certain challenges. One major issue is their 
reliance on infrastructure, which can limit their effectiveness in 
identifying specific movements or activities. Additionally, the 
utilization of environmental sensors is less frequent compared to 
wearable sensors due to higher costs and setup difficulties. 
Furthermore, similar to the wearable approach, this solution may 
not always be feasible as it requires users to interact with tagged 
objects or to remain within the environment where the sensors are 
installed. In particular, cameras suffer from drawbacks like 
occlusion, multiple-view variations and privacy issues (Minh Dang 
et al., 2020). A possible solution to handle occlusion relies on a 
multiple camera setup, even though these devices need to 
be synchronized among each other. Cameras are often perceived as 
the most intrusive technologies in terms of the privacy of the 
monitored individuals. The solution to this drawback may 
be  RGB-D cameras, like the Kinect V2, which, through a data 
elaboration, are able to extract the “skeleton” of the subject from the 
depth image, i.e., the subject is represented as a set of body segments 
and joints, bypassing the need for using the RGB image for HAR 
purposes. These tools increase the person’s acceptance towards the 
assistive technology, since they ensure privacy preservation 
(Gasparrini et  al., 2014). Among non-wearable devices, object 
sensors are the least invasive and the most respectful of users’ 

privacy, as they focus on recognizing human activities related only 
to the intended use of the object. For example, a smart cup 
recognizes drinking actions, and sensors embedded in cushions or 
beds identify specific sleeping postures.

To overcome the wearable and non-wearable limits a possible 
solution could be represented by a hybrid approach. Sensor fusion 
provides a more robust approach since multiple sensors may 
complement each other with their specific signals, producing a 
reliable system (Wang X. et al., 2020). Moreover, the likelihood of 
having missing data is progressively balanced out by increasing the 
number of sensors in the system. However, critical issues in AAL 
services stem from the integration of multiple technological types, 
mainly environmental and wearable sensors (Calvaresi et al., 2017). 
For instance, hybrid systems are characterized by sensors with 
different sampling frequencies. Thus, synchronization and 
interpolation of acquired data is mandatory for better correlation 
of output devices. Furthermore, some challenges can still be present; 
for example, security and privacy requirements need to be taken 
into consideration.

Independently from the adopted monitored system, HAR 
requires affordable processing chains to classify the target human 
activities. Typically, HAR should be performed meeting the real-
time constraint, especially when frail people are monitored. While 
threshold algorithms are efficient for real-time processing, they may 
struggle with handling complex activities or adapting to dynamic 
contexts. These limits are overcome by AI methods, at the price of 
an increased computational complexity, which negatively impacts 
on classification time. For this reason, the optimal solution requires 
a suitable trade-off between classification quality and processing 
time to ensure real-time compliance. Common factors that 
determine real-time compliancy of a method are the computational 
complexity and the processing power of the system. It must 
be stressed that the computational complexity alone is not sufficient 
to determine if a method is real-time compliant. Indeed, the 
response time strictly depends on the processing power of the 
device. It is not trivial that very different processing units perform 
the same computation with significantly different times. Therefore, 
the choice of a suitable processing element covers a critical role in 
the real-time compliancy of a system. Moreover, datasets derived 
from real situations are not always available or sufficiently precise; 
in some cases, only simulated conditions are present, but this 
greatly compromises the results (Casilari and Silva, 2022). At the 
same time, prompt detection of dangerous conditions cannot 
be provided in some contexts.

Table 1 summarizes the type of activity, sensors, input data, 
datasets, main approaches and potential applicability in a real-life 
scenario, considered in the most relevant works in the field of 
Human Activity Recognition, already cited in the previous sections. 
It categorizes the papers into three main classes on the basis of their 
adopted technologies: wearable, hybrid and non-wearable solutions. 
In each row, among the labelled information previously reported, 
the type of activity is related to the target application of each 
proposed HAR system. Indeed, most of the works aim at recognizing 
falls and/or Activities of Daily Living (ADL), i.e., lying down, 
walking, sitting and so on. The input data type is labelled “Dynamic” 
in case of time series or “Static” otherwise. Concerning the datasets, 
publicly available ones present the corresponding reference paper, 
whereas custom Datasets report the number of involved subjects 
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TABLE 1 Summary of the analyzed literature.

Authors and 
year

Activity Type of sensor Input 
data type

Dataset Approach Real life 
scenario

Wearable solutions

Andò et al. (2016) ADL and Fall 

Detection

Tri-axial nano-

accelerometer and 

gyroscope embedded in a 

smartphone

Static Custom (10 healthy subjects; 6 

activities)

Threshold-based 

Data Fusion

NO

Xie et al. (2020) ADL and Fall 

Detection

Smart watch Static Custom (5 subjects; 9 activities) Threshold-based 

SVM

NO

Badgujar and Pillai 

(2020)

Fall Detection Tri-axial accelerometer Static SisFall (Sucerquia et al., 2017) SVM and Decision 

Tree

NO

Nouredanesh et al. 

(2020)

Compensatory 

Balance Reactions 

(CBRs) for Fall 

Detection

IMU Static IMUFD (Aziz et al., 2017) and 

Custom (9 healthy subjects; 9 

activities)

Random Forest NO

Pierleoni et al. 

(2019)

Postural stability IMU: tri-axial 

accelerometer, tri-axial 

gyroscope and tri-axial 

magnetometer

Static Custom (6 healthy subjects; 3 

activities)

Filter-based Data 

Fusion

NO

Sarabia-Jácome 

et al. (2020)

Fall Detection Tri-axial accelerometer Dynamic SisFall (Sucerquia et al., 2017) LSTM and GRU NO

Bourke et al. (2007) ADL and Fall 

Detection

Tri-axial accelerometer Dynamic Custom

(a.10 healthy subjects; 8 activities

b.10 elderly subjects; 8 activities)

Threshold YES

Chen et al. (2018) Fall Detection Tri-axial accelerometer 

embedded in a 

smartphone

Static Custom (10 healthy subjects; 13 

activities)

SVM NO

Islam et al. (2017) Fall Detection Tri-axial accelerometer 

embedded in a 

smartphone

Dynamic Custom (7 healthy subjects; 4 

activities)

Threshold NO

Medrano et al. 

(2017)

ADL and Fall 

Detection

Tri-axial accelerometer 

embedded in a 

smartphone

Static tFall (Medrano et al., 2014) Threshold NO

Garcia-Ceja et al. 

(2018)

ADL and Fall 

Detection

Sound and accelerometer 

data embedded in a 

smartphone and a wrist-

band

Static Custom (3 healthy subjects; 7 

activities)

Berkeley MHAD (Ofli et al., 2013), 

UTD-MHAD (Chen et al., 2015) and 

Opportunity (Roggen et al., 2010)

Random Forest YES

Torti et al. (2019) Fall Detection Tri-axial accelerometer Dynamic SisFall (Sucerquia et al., 2017) LSTM NO

Cola et al. (2017) Fall Detection Barometer Dynamic Custom (6 subjects; 9 activities) Threshold NO

Jung et al. (2015) ADL and Fall 

Detection

Tri-axial accelerometer Dynamic Custom (N. A. subjects; 5 activities) Threshold NO

Hemmatpour et al. 

(2017)

ADL Tri-axial accelerometer 

embedded in a smart-

watch

Static Custom (22 subjects; 2 activities) Multilayer 

Perceptron

NO

Sheikh and Jilani 

(2023)

Fall Detection Tri-axial accelerometer 

and gyroscope

Static SisFall (Sucerquia et al., 2017) SVM NO

Goh et al. (2021) ADL Tri-axial accelerometer 

and gyroscope

Dynamic MotionSense (Malekzadeh et al., 

2018), UCI-HAR (Garcia-Gonzalez 

et al., 2020) and USC-HAD (Zhang 

and Sawchuk, 2012)

1D-CNN and LSTM YES

(Continued)
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TABLE 1 (Continued)

Authors and 
year

Activity Type of sensor Input 
data type

Dataset Approach Real life 
scenario

Luwe et al. (2022) ADL Tri-axial accelerometer 

and gyroscope

Dynamic MotionSense (Malekzadeh et al., 

2018), UCI-HAR (Garcia-Gonzalez 

et al., 2020) and custom

1D-CNN and LSTM YES

Kumar and Suresh 

(2023)

ADL IMU: tri-axial 

accelerometer, tri-axial 

gyroscope and tri-axial 

magnetometer

Dynamic WISDM (Kwapisz et al., 2011), 

PAMAP2 (Reiss and Stricker, 2012) 

and KU-HAR (Sikder and Nahid, 

2021)

CNN and RNN YES

de la Cal et al. 

(2023)

ADL and Fall 

Detection

Tri-axial accelerometer 

embedded in a wrist-band

Static UMAFall (Casilari et al., 2017), 

UCIFall (Özdemir and Barshan, 

2014) and FallAllD (Saleh et al., 

2021)

KNN and K-Means NO

Warunsin and 

Phairoh (2022)

ADL and Fall 

Detection

Tri-axial accelerometer Static MobiAct (Vavoulas et al., 2016) Multilayer 

Perceptron

NO

Hybrid solutions

Clapés et al. (2018) ADL Two RGB-depth cameras, 

accelerometer, gyroscope, 

and magnetometer

Static Custom (14 elderly subjects; 6 

activities)

SVM YES

Geman and Costin 

(2014)

ADL RGB-depth camera and 

tri-axial accelerometer

Static Custom (88 subjects; 3 activities) Multilayer 

Perceptron

YES

Kwolek and Kepski 

(2014)

Fall Detection RGB-depth camera and 

tri-axial accelerometer

Dynamic URFD (Kwolek and Kepski, 2014) Threshold YES

Non-wearable Solutions

Fan et al. (2020) ADL Radio-frequency sensors 

embedded in the floor 

and RGB camera

Dynamic Custom (N. A. subjects; 157 

activities)

Attention- based 

LSTM

YES

Chen et al. (2021) ADL WiFi sensor network Dynamic Custom (1 subject; 7 activities) SVM and GRU YES

Zerrouki et al. 

(2018)

ADL RGB cameras Dynamic URFD (Kwolek and Kepski, 2014) 

and UMAFall (Casilari et al., 2017)

AdaBoost YES

Karayaneva et al. 

(2023)

ADL Low-resolution infrared 

camera

Static and 

Dynamic

Custom (6 subjects; 15 activities) SVM, random forest, 

k-NN, logistic 

regression, and 

convolutional LSTM

YES

Mashiyama et al. 

(2015)

ADL and Fall 

Detection

Low resolution infrared 

array sensor

Static Custom (N. A. subjects; 5 activities) Threshold-based 

SVM

NO

Spasova et al. 

(2016)

Fall Detection Low resolution infrared 

array sensor

Static Custom (5 subjects; 2 activities) SVM NO

Roland et al. (2018) Drinking Tri-axial accelerometer 

embedded in a cup

Static Custom (N. A. subjects; 1 activities) Multilayer 

Perceptron

YES

Chaccour et al. 

(2015)

ADL and Fall 

Detection

Piezoresistive pressure 

sensors

Static Custom (3 subjects; 6 activities) Threshold NO

Yue et al. (2020) Sleeping postures FMCW radio equipped 

with an antenna array

Static Custom (26 subjects; 4 activities) Multilayer 

Perceptron

YES

Li and Sun (2021) ADL RGB-depth cameras Dynamic Florence3D-Action (Seidenari et al., 

2013), Toyota Smarthome (Das et al., 

2019) and NTU RGB + D (Shahroudy 

et al., 2016)

CNN YES

Srimath et al. 

(2021)

ADL RGB-depth cameras Dynamic UTD-MHAD (Chen et al., 2015), 

KTH (Schuldt et al., 2004) and UCF-

Sports (Rodriguez et al., 2008)

1D-CNN YES

(Continued)
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and the amount of performed activities (if one or more parameters 
are not available, the acronym N.A. is indicated). The “Real life 
scenario” column is related to the system applicability outside the 
laboratory setting. It is labelled with “YES,” in case of data 
acquisitions performed in an environment which considered not 
only ideal conditions (i.e., the subject is always directly in front of 
the camera or the falls are simulated only by young people).

5. Conclusion

In conclusion, it is significant to look toward the future of AAL 
systems, giving importance to HAR indoors and outdoors. The 
outdoor environment offers numerous activities that can contribute 
to preventing functional decline in frail individuals. However, 
monitoring outdoor activities presents different challenges, as 
non-wearable sensors may not be  suitable and safety risks are 
increased. Therefore, wearables become crucial in this context. While 
user acceptance can sometimes be a challenging requirement to meet, 
the ease of use and unobtrusiveness of wearables greatly overcome 
this drawback. Wearable sensors enable continuous monitoring of 
indoor and outdoor activities, allowing for a more comprehensive 
assessment of an individual’s daily life. By incorporating wearable 

technology into AAL systems, it becomes possible to gather valuable 
data and insights to support preventive measures and promote 
healthy lifestyles among frail individuals.

As research and technological advancements continue, it is 
important to explore and optimize the use of wearable sensors in AAL 
systems, considering the specific constraints and requirements posed 
by outdoor monitoring. Future research trends in wearables design 
could be an enhanced miniaturization of the sensors used nowadays 
leading to better unobtrusiveness and the possibility of integrating 
these sensors inside even smaller devices or directly into clothes. An 
example is the fast development of Micro Electro-Mechanical Systems 
(MEMS) which enabled the optimization of several sensors-based 
applications. Moreover, power efficiency will represent a crucial issue, 
since it impacts both on communication and battery life. 
Improvements on battery technology should also be coupled with 
energy harvesting methods to partially recharge the device. On the 
other hand, the technological evolution of processors and 
microcontrollers could enable the adoption of state of the art 
classification methods, overcoming the actual limitations on the 
models size related to the available amount of memory and of 
computational power. Finally, communication technologies such as 6G 
could represent the ideal technology to transmit data between 
acquisition points and data collection centers. By doing so, the 

TABLE 1 (Continued)

Authors and 
year

Activity Type of sensor Input 
data type

Dataset Approach Real life 
scenario

Tu et al. (2018) ADL RGB-depth cameras Dynamic SmartHome (Liu et al., 2017) and 

NTU RGB + D (Shahroudy et al., 

2016)

3D-CNN YES

Ma et al. (2018) Hand gestures RGB-depth camera Dynamic Custom (14 subjects; 28 activities) LSTM YES

Cippitelli et al. 

(2016)

ADL RGB-depth camera Static KARD (Gaglio et al., 2015), CAD-60 

(Sung et al., 2012), UTKinect (Xia 

et al., 2012), Florence3D-Action 

(Seidenari et al., 2013) and MSR 

Action3D (Li et al., 2010)

SVM YES

Liu et al. (2020) Hand gestures RGB-depth camera Static Custom (30 subjects; 15 activities) 

and MSRA hand gesture (Sun et al., 

2015)

3D-CNN YES

Devanne et al. 

(2019)

ADL RGB-depth camera Dynamic Watch-n-Patch (Wu et al., 2015) LSTM YES

Guerra et al. (2023) ADL RGB-depth camera Dynamic Custom (12 subjects; 4 activities) GRU YES

Guerra et al. (2022) ADL RGB-depth camera Dynamic Custom (12 subjects; 5 activities) LSTM YES

Guerra et al. (2020) ADL RGB-depth camera Static Custom (12 subjects; 3 activities) Multilayer 

Perceptron

YES

Madhu et al. (2021) ADL RGB-depth camera Static MSR Action3D (Li et al., 2010) Threshold-based 

SVM

YES

Su et al. (2017) ADL RGB-depth camera Static MSR Action3D (Li et al., 2010) SVM YES

Gonçalves et al. 

(2023)

ADL RGB-depth camera Static Custom (15 subjects; 3 activities) CNN NO

Siriwardhana et al. 

(2019)

ADL RGB-depth camera Dynamic Custom (17 subjects; 24 activities) CNN-LSTM YES

Poulose et al. 

(2022)

ADL RGB camera Static Custom (10 subjects; 9 activities) CNN NO
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effectiveness of these systems can be  enhanced in supporting 
independent living, improving safety, and preventing functional 
decline in the target population.
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