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Background: Prior research suggests that cardiovascular autonomic dysfunction 
might be an early marker of cardiotoxicity induced by antitumor treatment and act 
as an early predictor of cardiovascular disease-related morbidity and mortality. The 
impact of thoracic radiotherapy on the parasympathetic and sympathetic nervous 
systems, however, remains unclear. Therefore, this study aimed to evaluate the 
short-term effects of thoracic radiotherapy on the autonomic nervous system, 
using deceleration capacity (DC), acceleration capacity (AC) of heart rate, and 
heart rate variability (HRV) as assessment tools.

Methods: A 5  min electrocardiogram was collected from 58 thoracic cancer 
patients before and after thoracic radiotherapy for DC, AC, and HRV analysis. HRV 
parameters employed included the standard deviation of the normal-normal 
interval (SDNN), root mean square of successive interval differences (RMSSD), low 
frequency power (LF), high frequency power (HF), total power (TP), and the LF to 
HF ratio. Some patients also received systemic therapies alongside radiotherapy; 
thus, patients were subdivided into a radiotherapy-only group (28 cases) and a 
combined radiotherapy and systemic therapies group (30 cases) for additional 
subgroup analysis.

Results: Thoracic radiotherapy resulted in a significant reduction in DC (8.5 [5.0, 
14.2] vs. 5.3 [3.5, 9.4], p  =  0.002) and HRV parameters SDNN (9.9 [7.03, 16.0] vs. 8.2 
[6.0, 12.4], p  =  0.003), RMSSD (9.9 [6.9, 17.5] vs. 7.7 [4.8, 14.3], p  =  0.009), LF (29 [10, 
135] vs. 24 [15, 50], p  =  0.005), HF (35 [12, 101] vs. 16 [9, 46], p  =  0.002), TP (74 [41, 
273] vs. 50 [33, 118], p  <  0.001), and a significant increase in AC (−8.2 [−14.8, −4.9] 
vs. -5.8 [−10.1, −3.3], p  =  0.003) and mean heart rate (79.8  ±  12.6 vs. 83.9  ±  13.6, 
p  =  0.010). Subgroup analysis indicated similar trends in mean heart rate, DC, AC, 
and HRV parameters (SDNN, RMSSD, LF, HF, TP) in both the radiotherapy group 
and the combined treatment group post-radiotherapy. No statistically significant 
difference was noted in the changes observed in DC, AC, and HRV between the 
two groups pre- and post-radiotherapy.

Conclusion: Thoracic radiotherapy may induce cardiovascular autonomic 
dysfunction by reducing parasympathetic activity and enhancing sympathetic 
activity. Importantly, the study found that the concurrent use of systemic therapies 
did not significantly amplify or contribute to the alterations in autonomic function 
in the short-term following thoracic radiotherapy. DC, AC and HRV are promising 
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and feasible biomarkers for evaluating autonomic dysfunction caused by thoracic 
radiotherapy.
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autonomic modulation, cardiovascular toxicity, deceleration/acceleration capacities of 
heart rate, heart rate variability, thoracic radiotherapy

Introduction

Thoracic radiotherapy serves as a pivotal element in the treatment 
of thoracic cancer (TC), including breast cancer, esophageal cancer, 
lung cancer, and other thoracic malignancies (Raghunathan et al., 
2017). Existing research has indicated that thoracic radiotherapy can 
precipitate vascular endothelial dysfunction, leading to accelerated 
atherosclerosis and inflammatory activation (Sylvester et al., 2018; 
Venkatesulu et al., 2018; Baselet et al., 2019). Numerous studies have 
investigated the amplified risk resulting from thoracic radiotherapy, 
implicating myocardial, coronary, valvular, and pericardial diseases, 
along with arrhythmias, as factors contributing to increased mortality 
(Jacob et  al., 2016; Armanious et  al., 2018). In this context, the 
cardiovascular autonomic nervous system (ANS)—a key regulator of 
heart rate, myocardial function, and myocardial blood flow—assumes 
significant importance. The initiation of cardiovascular toxicity, as well 
as early indications of diastolic/systolic dysfunction and disease 
severity, may stem from cardiovascular autonomic dysfunction (AD) 
caused by radiation and chemotherapy (Tjeerdsma et  al., 1999; 
Guimarães et al., 2015; Teng et al., 2021). Therefore, examining the 
impact of thoracic radiotherapy on ANS could provide substantial 
insights into both short and long-term cardiovascular adversities 
associated with radiotherapy.

The cardiovascular ANS is constituted by the sympathetic nervous 
system (SNS) and the parasympathetic nervous system (PNS) 
(Schwartz and De Ferrari, 2011). ANS functionality can be assessed 
through several clinically viable measures, such as deceleration 
capacity (DC), acceleration capacity (AC) of heart rate, and heart rate 
variability (HRV) (Bauer et al., 2006a; Lombardi and Stein, 2011; Zou 
et al., 2016). Previous research has underscored the prognostic value 
of DC, AC, and HRV in the early detection of cardiovascular disease 
onset and sudden cardiac death rates in patients with conditions like 
myocardial infarction, heart failure, dilated cardiomyopathy, or 
coronary artery disease (Arsenos et al., 2016; Zou et al., 2016; Wang 
et  al., 2017; Rizas et  al., 2018; Fang et  al., 2020). More recent 
observational studies have established that DC is a potent predictor of 
cardiovascular toxicity stemming from treatments like epirubicin or 
trastuzumab in breast cancer patients (Feng and Yang, 2015; Feng 
et al., 2021). Hence, the incorporation of DC, AC, and HRV in clinical 
studies investigating potential cardiovascular toxicity resulting from 
antitumor therapy could prove beneficial.

Earlier studies have provided preliminary insights into the effects 
of antitumor treatment on cardiovascular ANS in patients with 
malignant tumors (Ekholm et  al., 2000; Groarke et  al., 2015; 
Stachowiak et  al., 2018; Caru et  al., 2019). Early identification of 
cardiovascular AD has the potential to enhance preventative strategies 
to mitigate clinically significant cardiac toxicity subsequent to thoracic 
radiotherapy. It may be necessary to identify novel biomarkers in 

order to facilitate the early detection of heart damage resulting from 
radiation exposure. Therefore, the objective of this study is to elucidate 
the alterations in DC, AC, and HRV before and after thoracic 
radiotherapy in TC patients, contributing novel insights into the 
short-term radiotherapy effects on cardiovascular ANS.

Materials and methods

Participants

This study included TC patients who underwent thoracic 
radiotherapy at the Department of Tumor Radiotherapy, the First 
Affiliated Hospital of Bengbu Medical College. Exclusion criteria were 
as follows: (1) presence of a pacemaker, (2) prior receipt of thoracic 
radiotherapy, (3) incomplete thoracic radiotherapy, and (4) poor 
electrocardiogram (ECG) quality. The study was approved by the local 
hospital’s Clinical Medical Research Ethics Board (registration 
number: 2019KY031). All participants were voluntary contributors 
who provided informed consent.

Patients were administered thoracic radiotherapy via a linear 
accelerator (Siemens or Elekta Synergy Platform) using 6-MV photon 
beams. The median cumulative radiation dose was 50 Gray, while the 
median individual radiation dose was 2 Gray. Certain patients also 
received potentially cardiotoxic systemic therapies, such as taxanes, 
platinum compounds, or trastuzumab, which may instigate variations 
in the cardiovascular ANS (Coumbe and Groarke, 2018; Teng et al., 
2021). Consequently, we partitioned TC patients into two groups: the 
radiotherapy-only group, and the combined radiotherapy and 
systemic therapies group.

Data collection

An ECG was captured before and after radiotherapy using an ECG 
recorder (HeaLink-R211B; HeaLink Ltd., Bengbu, China). A V6-lead 
was employed, and ECGs were collected at a sampling rate of 400 Hz. 
Participants remained in a supine position, motionless for 5 min 
during ECG collection. The same operator conducted measurements 
both pre- and post-radiotherapy.

Deceleration/acceleration capacities of 
heart rate and heart rate variability analysis

The Pan-Tompkins algorithm was employed in this study to 
extract the R-peaks from the ECG readings (Pan and Tompkins, 
1985). The Kubios software’s threshold-based automatic artifact 
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correction algorithm was used to rectify both technical and 
physiological artifacts (Niskanen et al., 2004). The mean heart rate 
(HR) was defined as the average resting heart rate over a period of 
5 min. The phase-rectified signal averaging technique was utilized for 
the computation of the DC and AC. Initially, the R-R intervals time 
series were examined to detect the decelerating and accelerating 
anchors that were characterized by a longer or shorter value than the 
preceding value, respectively. Subsequently, R-R intervals segments 
surrounding the decelerating and accelerating anchors were evaluated. 
Lastly, the aforementioned segments were aligned at the decelerating 
and accelerating anchors, and the signals of segments were averaged 
to derive the phase-rectified signal averaging signals (Bauer et al., 
2006a,b; Nasario-Junior et al., 2014). Several commonly used HRV 
parameters were engaged in this study: the standard deviation of the 
normal-normal intervals (SDNN), root mean square of successive 
interval differences (RMSSD), low frequency power (LF, 0.04–
0.15 Hz), high frequency power (HF, 0.15–0.4 Hz), total power (TP, 
0–0.4 Hz), and the ratio of LF to HF (LF/HF). For the frequency 
domain HRV analysis, R-R interval sequences were transformed into 
evenly sampled time series using a 4 Hz resampling rate, with the aid 
of a cubic spline interpolation method. The fast Fourier transform 
algorithm was applied in tandem with Welch’s periodogram method 
(150 s window width and 50% overlap window) to calculate 
HRV spectra.

DC is a quantitative metric of the PNS regulatory ability, while AC 
symbolizes the SNS tone. SDNN represents the overall variability of 
HRV, reflecting the combined activity of the PNS and SNS. RMSSD is 
indicative of vagus nerve activity, LF is influenced by both PNS and 
SNS, and HF corresponds to the PNS tone. TP is representative of the 
activities of the PNS and SNS, while the LF/HF ratio indicates the 
interplay between the SNS and PNS (Bauer et al., 2006a; Vanderlei 
et  al., 2009; Lombardi and Stein, 2011; Zou et  al., 2016; Thomas 
et al., 2019).

All DC, AC, and HRV indicators were analyzed using Kubios 
HRV Premium software (version 3.5, Magi Kubios Oy, Kuopio, 
Finland1) (Niskanen et al., 2004).

Statistical analysis

The Shapiro–Wilk test was applied to verify the normality of 
the data. The independent sample t-test or Mann–Whitney U test 
was utilized to compare the differences in each continuous variable, 
and the Chi-square test was employed to compare the differences 
in each counting variable among the subgroups before thoracic 
radiotherapy. The differences in DC, AC, and HRV before and after 
radiotherapy were analyzed by the Paired Sample t-test or 
Wilcoxon sign-rank test. Cohen’s d value characterized the effect 
sizes of the differences in DC, AC, and HRV before and after 
radiotherapy in the subgroups. The independent sample t-test or 
Mann–Whitney U test was used to compare the differences in DC, 
AC, and HRV before and after radiotherapy among the subgroups. 
All of these statistical analyses were conducted using SPSS Statistics 
25.0 (IBM Corp., Chicago, Illinois, United States of America). All 

1 https://www.kubios.com

tests were two-tailed, with p values of <0.05 considered 
statistically significant.

Results

A total of 58 patients diagnosed with TC were considered, 
consisting of 25 males and 33 females, with an average age of 
58.6 ± 12.1 years. The prevalence of specific cancer types varied among 
the participants, with esophageal cancer being the most common 
(20/58), followed by breast (19/58), lung (16/58), Hodgkin’s lymphoma 
(1/58), thymic cancer (1/58), and lung metastasis (1/58). The patients 
were categorized into two cohorts based on their treatment regimen 
during thoracic radiotherapy: one received solely radiotherapy (28 
patients) while the other received a combination of radiotherapy and 
systemic therapies (30 patients). The overall patient characteristics and 
a comparison of variables for subgroups pre-radiotherapy are detailed 
in Table 1.

Our statistical analysis revealed significant variations in mean 
HR, DC, AC, SDNN, RMSSD, LF, HF, and TP across all patients 
when data prior to radiotherapy were compared. Specific changes 
included a significant decrease in DC (p = 0.002), SDNN (p = 0.003), 
RMSSD (p = 0.009), LF (p = 0.005), HF (p = 0.002), and TP 
(p < 0.001) when compared with pre-radiotherapy data. 
Contrastingly, AC (p = 0.003) and mean HR (p = 0.010) increased 
post-radiotherapy. A higher LF/HF ratio was observed post-
radiotherapy, although this difference was not statistically 
significant (Table 2).

The subgroup analysis demonstrated that mean HR, DC, AC, as 
well as HRV parameters SDNN, RMSSD, LF, HF, and TP followed a 
consistent trend of increase or decrease post-thoracic radiotherapy in 
both the radiotherapy and combined therapy groups (Figure 1). The 
effect sizes of DC, AC, and HRV within subgroups are illustrated in 
Figure 2.

To examine whether the short-term effects of combined thoracic 
radiotherapy and systemic therapies on the cardiovascular ANS were 
either synergistic or additive, we analyzed the variations in DC, AC, 
and HRV before and after radiotherapy for subgroup patients. 
However, no statistically significant differences were found in the 
changes of DC, AC, and HRV between the two groups pre- and post-
radiotherapy (Figure 3).

Discussion

This study evaluated the immediate effects of thoracic 
radiotherapy on DC, AC, and HRV in TC patients. Our findings 
demonstrated that thoracic radiotherapy could lead to significant 
alterations in mean HR, DC, AC, and HRV parameters including 
SDNN, RMSSD, LF, HF, and TP. Additionally, a subgroup analysis was 
performed, taking into account patients who were also receiving 
systemic therapies concurrently with radiotherapy. The outcomes 
implied that mean HR, DC, AC, SDNN, RMSSD, LF, HF, and TP 
demonstrated identical trends of increase or decrease post-
radiotherapy, in both the radiotherapy-only group and the combined 
radiotherapy and systemic therapies group. Importantly, there was no 
substantial difference observed in the alterations of DC, AC, and HRV 
between the two groups before and after the radiotherapy.
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The pathophysiology of cardiovascular AD induced by thoracic 
radiotherapy and systemic therapies is multifaceted and complex. 
The primary mechanisms underlying thoracic radiotherapy-
associated AD encompass direct neural damage caused by 
radiation and the pro-inflammatory state inherent in malignancies 
(Teng et al., 2021). The direct radiation exposure to the vagal nerve 
and carotid regions may instigate inflammation and subsequent 
fibrosis, leading to potential damage to the vagal nerve and carotid 
sinus baroreflexes (Sharabi et al., 2003; Goodman and Schrader, 
2009; Kong et al., 2011). An alternate explanation for the incidence 
of cardiovascular AD in cancer survivors could be the modification 
of the ANS as a consequence of a pro-inflammatory state, as 

opposed to intrinsic neural damage. This inflammatory state is 
frequently observed in cancer settings, particularly at the initiation 
of radiotherapy, triggering an overproduction of inflammatory 
cytokines such as interleukin-1, interleukin-6, and tumor necrosis 
factor-alpha. These factors may suppress vagal nerve activity, 
which in turn results in an elevation of the resting heart rate and a 
shift in the balance between the PNS and SNS toward SNS 
predominance (Thayer and Lane, 2007). Systemic therapies, such 
as chemotherapy or targeted therapy, may also affect the ANS 
during and after cancer treatment. The etiology of chemotherapy-
induced AD, involving agents like anthracyclines, taxanes, and 
platinum compounds, may involve inflammatory pathways, 

TABLE 1 General characteristics of patients with comparisons of variables for subgroups prior to radiotherapy.

Variables
All

(N  =  58)
Radiotherapy group

(N  =  28)

Radiotherapy with 
systemic therapies group

(N  =  30)
p

Gender (Male/Female) 25/33 10/18 15/15 0.272

Age (years) 58.6 ± 12.1 56.1 ± 11.3 60.9 ± 12.6 0.130

BMI (kg/m2) 23.3 ± 3.6 23.9 ± 3.3 22.7 ± 3.8 0.188

Hypertension (yes/no) 14/44 6/22 8/22 0.641

Diabetes (yes/no) 5/53 2/26 3/27 1.000

Diagnosis (BC/EC/LC/others) 19/20/16/3 13/5/8/2 6/15/8/1 0.049

Mean HR (bpm) 79.8 ± 12.6 82.9 ± 10.6 76.9 ± 13.7 0.070

DC (ms) 8.5 [5.0, 14.2] 7.8 [5.3, 16.8] 9.8 [3.5, 14.2] 0.767

AC (ms) −8.2 [−14.8, −4.9] −7.6 [−17.3, −5.1] −9.0 [−14.8, −4.0] 0.744

SDNN (ms) 9.9 [7.0, 16.0] 9.9 [6.9, 17.7] 9.8 [7.0, 16.0] 0.950

RMSSD (ms) 9.9 [6.9, 17.5] 9.8 [6.6, 15.9] 9.9 [7.2, 18.0] 0.889

LF (ms2) 29 [10, 135] 44 [13, 133] 25 [9, 140] 0.455

HF (ms2) 35 [12, 101] 34 [13, 119] 44 [10, 101] 0.913

TP (ms2) 74 [41, 273] 72 [40, 301] 74 [41, 273] 0.852

LF/HF 0.936 [0.379, 2.618] 0.905 [0.463, 2.506] 1.051 [0.303, 2.948] 0.630

Values are expressed as the number of patients or mean ± standard deviation or median [1st quartile, 3rd quartile]. 
Bold p values indicate statistical significance (p-value < 0.05). 
N, number of individuals; BMI, body mass index; BC, breast cancer; EC, esophageal cancer; LC, lung cancer.

TABLE 2 Comparison of variables for all patients before and after radiotherapy.

Variables Pre-values Post-values p

Mean HR (bpm) 79.8 ± 12.6 83.9 ± 13.6 0.010

DC (ms) 8.5 [5.0, 14.2] 5.3 [3.5, 9.4] 0.002

AC (ms) −8.2 [−14.8, −4.9] −5.8 [−10.1, −3.3] 0.003

Time-domain indices of HRV

SDNN (ms) 9.9 [7.03, 16.0] 8.2 [6.0, 12.4] 0.003

RMSSD (ms) 9.9 [6.9, 17.5] 7.7 [4.8, 14.3] 0.009

Frequency-domain indices of HRV

LF (ms2) 29 [10, 135] 24 [15, 50] 0.005

HF (ms2) 35 [12, 101] 16 [9, 46] 0.002

TP (ms2) 74 [41, 273] 50 [33, 118] < 0.001

LF/HF 0.936 [0.379, 2.618] 1.281 [0.631, 2.395] 0.559

Values are expressed as mean ± standard deviation or median [1st quartile, 3rd quartile]. 
Bold p values indicate statistical significance (p-value < 0.05).
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cellular injury, and oxidative stress (Coumbe and Groarke, 2018; 
Teng et al., 2021).

The stability of heart rhythm is primarily determined by the 
combined effects of the PNS and SNS (Lahiri et al., 2008). Recent 
research demonstrated that patients with Hodgkin’s lymphoma who 
underwent thoracic radiotherapy presented a higher mean HR in 
contrast to those who did not undergo such treatment (Groarke et al., 
2015). Moreover, previous findings strongly correlated an elevated 
mean HR with increased morbidity and mortality rates of 
cardiovascular diseases (Cooney et al., 2010; Anker et al., 2016; Lee 
et al., 2016). In this study, thoracic radiotherapy was found to increase 
the mean HR of all TC patients. A subgroup analysis revealed that 
patients who underwent radiotherapy demonstrated a higher mean 
HR post-treatment, although the difference was not statistically 

significant. This observation suggests that an elevated mean HR could 
be  an efficient, albeit not entirely accurate, indicator for a rapid 
assessment of cardiovascular AD.

Numerous studies have emphasized the close correlation 
between neck or chest irradiation and cardiovascular AD (Hoca 
et al., 2012; Huang et al., 2013; Goyal et al., 2017). For instance, an 
investigation involving 14 TC patients discovered that mediastinal 
radiotherapy resulted in a decrease in HF values and an increase in 
the LF/HF in HRV frequency domain parameters (Hoca et  al., 
2012). Our research corroborated that thoracic radiotherapy 
negatively impacts HRV indicators, including SDNN, RMSSD, LF, 
HF, and TP. These findings suggest that thoracic radiotherapy may 
contribute to AD by diminishing PNS activity. Nevertheless, our 
study found no statistically significant difference in LF/HF values 
pre- and post-radiotherapy, which might be  attributable to the 
complex physiological basis of LF/HF. Pagani et al. (1984) proposed 
the use of LF/HF to measure cardiac sympatho-vagal balance. 
However, several studies have contested this approach, asserting that 
LF/HF fails to accurately quantify the dynamic relationship between 
SNS and PNS activities and cannot confidently depict the 
physiological basis of LF/HF (Billman, 2011; Billman, 2013). DC and 
AC represent emerging noninvasive techniques for evaluating 
autonomic modulation (Bauer et al., 2006a; Zou et al., 2016). Recent 
observational studies have shown that DC was an effective predictor 
of epirubicin-related or trastuzumab-related cardiotoxicity 
development in patients with breast cancer (Feng and Yang, 2015; 
Feng et al., 2021). Our study determined that thoracic radiotherapy 
can significantly decrease DC while simultaneously increasing 
AC. This indicates that thoracic radiotherapy may lead to a reduction 
in PNS tone, as reflected by DC, and an increase in SNS activity, as 
assessed by AC, in TC patients. The changes in DC and AC 
precipitated by thoracic radiotherapy may correlate with the 
incidence of cardiovascular disease and sudden cardiac death rates 

FIGURE 1

Differences in parameters for subgroups of patients pre- and post-radiotherapy.

FIGURE 2

Effect size of variables for subgroups pre- and post-radiotherapy.
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in TC patients post-radiotherapy. However, these potential 
relationships warrant verification through long-term 
follow-up studies.

Prior research has established the potential cardiovascular 
toxicity of taxanes, platinum compounds, anthracyclines, and 
trastuzumab (Jain et al., 2017; Coumbe and Groarke, 2018; Dong 
and Chen, 2018). For instance, Dermitzakis et al. (2016) found 
that concurrent paclitaxel and carboplatin chemotherapy 
significantly influenced the PNS and SNS in ovarian cancer 
patients, predominantly affecting parasympathetic heart 
innervation. Liu et al. (2023) showed that the combination of 
taxane and carboplatin chemotherapy could impact early ANS 
status in patients with cervical cancer. Meinardi et  al. (2001) 
discovered that even moderate doses of epirubicin were not 
associated with persistent alterations in HRV for breast cancer 
patients, suggesting a possible dose–response relationship for 
anthracycline-induced ANS damage. Our findings revealed no 
statistically significant difference in the alterations of DC, AC, 

and HRV pre- and post-radiotherapy between the radiotherapy-
only group and the combined radiotherapy and systemic 
therapies group. This implies that, in the short term, thoracic 
radiotherapy coupled with systemic therapies does not 
significantly exacerbate or add to ANS changes. Currently, while 
radiotherapy and systemic therapies may exert cardiac toxic 
effects, the precise mechanism of their interaction remains elusive.

Emerging evidence has shown that patients receiving thoracic 
radiotherapy have an increased risk for developing cardiovascular 
disease (Groarke et al., 2015; Jacob et al., 2016; Armanious et al., 
2018). According to the American Society of Clinical Oncology’s 
clinical practice guideline, baseline assessment of the left 
ventricular ejection fraction could feasibly stratify risk in patients 
potentially susceptible to cardiovascular toxicity (Armenian 
et al., 2017). However, relying solely on left ventricular ejection 
fraction as an indicator of cardiac performance has faced 
substantial criticism (Konstam and Abboud, 2017; Marwick, 
2018). Prior research has demonstrated that cardiovascular ANS 

FIGURE 3

Change in DC, AC, and HRV, calculated as post-radiotherapy value minus pre-radiotherapy value for subgroups of patients.
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function may be a more accurate mortality predictor following 
myocardial infarction than left ventricular ejection fraction 
(Bauer et  al., 2006a). Additional studies have emphasized the 
significance of alterations in serum biomarkers, notably cardiac 
troponin, for forecasting cardiovascular toxicity (Cardinale et al., 
2010; Pavo et  al., 2015). Therefore, we  propose a baseline 
assessment encompassing ANS function, left ventricular ejection 
fraction, and troponin measurement for cardiovascular toxicity 
risk stratification, with subsequent combined measurements for 
longitudinal cardiac monitoring.

Limitations

Our study’s primary limitation is the heterogeneity of the 
study population. Given our limited sample size, it was 
unattainable to discern the distinct performance of DC, AC, and 
HRV in patients with varying types of TC. We strongly advocate 
for future studies to augment the sample size and prioritize these 
differences (e.g., tumor type, chemotherapy drugs and doses). 
Furthermore, due to limited statistical power, some background 
variables potentially influencing cardiovascular ANS, such as 
physical activity, were omitted.

Conclusion

Our study elucidates the modifications of DC, AC, and HRV 
pre- and post-thoracic radiotherapy in patients diagnosed with 
TC. These results suggest that thoracic radiotherapy prompts 
cardiovascular AD by diminishing PNS activity and augmenting 
SNS tone. Additionally, the data implies that combining 
radiotherapy with systemic therapies may not yield a substantial 
synergetic or additive impact on the ANS in the short term. 
We hypothesize that the simultaneous measurement of DC, AC, 
and HRV could be helpful in developing an integrated biomarker 
for identifying both short- and long-term radiotherapy-induced 
cardiac autonomic modulation impairments.
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