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Introduction: Research interest in exoskeleton assistance strategies that

incorporate the user’s torque capacity is growing rapidly. However, the predicted

torque capacity from users often includes uncertainty from various sources, which

can have a significant impact on the safety of the exoskeleton-user interface.

Methods: To address this challenge, this paper proposes an adaptive

control framework for a knee exoskeleton that uses muscle electromyography

(EMG) signals and joint kinematics. The framework predicted the user’s knee

flexion/extension torque with confidence bounds to quantify the uncertainty

based on a neuromusculoskeletal (NMS) solver-informed Bayesian Neural

Network (NMS-BNN). The predicted torque, with a specified confidence level,

controlled the assistive torque provided by the exoskeleton through a TCP/IP

stream. The performance of the NMS-BNN model was also compared to that of

the Gaussian process (NMS-GP) model.

Results: Our findings showed that both the NMS-BNN and NMS-GP models

accurately predicted knee joint torque with low error, surpassing traditional NMS

models. High uncertainties were observed at the beginning of each movement,

and at terminal stance and terminal swing in self-selected speed walking in both

NMS-BNN and NMS-GP models. The knee exoskeleton provided the desired

assistive torque with a low error, although lower torque was observed during

terminal stance of fast walking compared to self-selected walking speed.

Discussion: The framework developed in this study was able to predict knee

flexion/extension torque with quantifiable uncertainty and to provide adaptive

assistive torque to the user. This holds significant potential for the development

of exoskeletons that provide assistance as needed, with a focus on the safety of

the exoskeleton-user interface.

KEYWORDS

machine learning, data-driven biomechanical models, inverse dynamics,

neuromusculoskeletal modeling, uncertainty quantification

1. Introduction

Exoskeletons have enormous potential to enhance movement and to contribute to

neuromuscular rehabilitation in persons with motor disorders such as stroke, cerebral palsy,

and spinal cord injury (Sartori et al., 2016; Li et al., 2019, 2021; Liu et al., 2019; Zhang et al.,

2019). Exoskeleton-assisted rehabilitation training involves the use of control algorithms

aimed at improving muscle strength, neuroplasticity, and movement enhancement in
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users (Fujii et al., 2017). These control strategies can be classified

into three types: passive control, triggered passive control, and

assist-as-needed control (Marchal-Crespo and Reinkensmeyer,

2009; Meng et al., 2015; Proietti et al., 2016). Passive control refers

to a technique in which the exoskeleton is in charge and guides

the user to follow predefined trajectories or assistive forces/torques

that have been extracted from healthy populations. The user

is passive in the movement and does not actively control the

exoskeleton. This type of control is often used in the initial stages

of therapy to re-acquaint a limb to movement. Triggered passive

control is a variant of passive control, where the user initiates

the exoskeleton’s assistance. Once activated, the user is again

passive in the movement as the exoskeleton moves along pre-

determined trajectories. This technique is often used to incorporate

the brain-machine interface into the control process, providing

assistance to individuals with irreversible impairments, such as

tetraplegia (Proietti et al., 2016). Assist-as-needed control, also

known as “user-in-charge” or “active control,” empowers the user to

perform daily tasks with the aid of an exoskeleton. The exoskeleton

provides assistance based on the user’s ability and intention to

generate torque, with the aim of promoting neuroplasticity and

user autonomy. This active control technique is typically applied in

persons with residual motor function (Chen et al., 2016; Durandau

et al., 2017; Li et al., 2018; Yao et al., 2018). The primary focus of

this paper is on active control techniques that seek to supplement

the user’s insufficient muscle contributions with assistance from

an exoskeleton. Providing torque assistance based on the user’s

movement intention requires precise and robust decoding of motor

function, which can be achieved through recording of underlying

neuromuscular activities, such as brain and nerve signals and

muscle electromyography (EMG) signals. EMG signals, which

capture the electrical excitation of muscles, are a commonly used

method for predicting joint torques, as they are easy to obtain and

offer crucial insights into humanmotion (Sartori et al., 2018; Huang

et al., 2019; Mounis et al., 2019).

Joint torque prediction is crucial in the control of exoskeleton-

assisted rehabilitation and has frequently been achieved through

two methods: physics-based neuromusculoskeletal (NMS)

modeling and artificial neural networks (ANNs) (Pizzolato et al.,

2015, 2019; Zhang et al., 2020, 2021). To improve prediction

accuracy, ANNs have been integrated into NMS models in recent

research. In our recent study (Zhang et al., 2022), an NMS

solver-informed ANNmodel was developed to estimate ankle joint

torque by combining features from an NMS model with a standard

ANN, based on measured joint angles and muscle EMG signals

during gait and isokinetic motions. This hybrid model was overall

more accurate than the NMS or standard ANN models alone, but

still showed poor prediction performance in one subject during

gait, possibly due to incorporating less informative or misleading

input features from the NMS model. This highlights the necessity

of quantifying the uncertainty of joint torque predictions for safe

and efficient human-exoskeleton interaction; accurate estimation

of joint torque is crucial for determining the appropriate level of

assistance from an exoskeleton.

A Bayesian Neural Network (BNN) is a well-established

type of ANN for making predictions with uncertainties and

has great potential in safe and efficient exoskeleton control

(Cursi et al., 2021; Wei et al., 2021; Zhong et al., 2021).

Unlike conventional ANNs (Cao et al., 2022b; Hu et al.,

2022), BNNs incorporate probability distributions to represent

prediction uncertainty and provide a probability distribution

indicating the likelihood of different outcomes (Cursi et al., 2021).

This characteristic makes BNNs useful for decision-making in

various fields, including biomechanics, meteorology, and robotics.

For instance, Zhong et al. (2021) developed a BNN-based

framework for predicting the environmental context of lower

limb prostheses. The quantified prediction uncertainty could lead

to context recognition strategies that enhance reliable decision-

making, efficient sensor fusion, and improved design of intelligent

systems for various applications. Another popular technique for

making predictions with uncertainties is the Gaussian Process

(GP) (Chen et al., 2013; Yun et al., 2014; Maritz et al., 2018;

Guo et al., 2019; Cao et al., 2022a). GP models the output as

a Gaussian distribution with mean and covariance parameters,

wherein the uncertainty is expressed by the covariance. Liang

et al. (2021), for example, developed a GP model to estimate

knee joint angles and uncertainties from EMG signals during

walking and running movements. As both BNNs and GPs can

estimate prediction uncertainty, it is of interest to compare the two

methods in the context of safe and efficient human-exoskeleton

interaction.

The objective of this study was thus to develop an

NMS uncertainty-informed adaptive control framework

for a knee exoskeleton. The framework aimed to provide

accurate predictions of the user’s knee flexion/extension

(F/E) physiological torque, while also quantifying the level of

estimation uncertainty. To achieve this, an NMS solver was

employed to inform the machine learning models, which would

subsequently adjust the assistance level based on the level of

uncertainty. Another aim was to compare the predictions with

uncertainties from the NMS solver-informed BNN (NMS-

BNN) model with those from the NMS solver-informed GP

(NMS-GP) model.

2. Methods

We developed an adaptive control framework for a knee

exoskeleton based on an NMS-BNN model (Figure 1). The NMS-

BNN takes two types of inputs: (1) experimental measurements—

muscle signals and joint angles, and (2) informative physical

features extracted from the underlying NMS solver, such as

individual muscle force and joint torque. The NMS-BNN outputs

knee joint torque with uncertainty quantification in the form

of confidence bounds. The predicted torque with a specified

confidence level is then used to control the assistive torque provided

by the knee exoskeleton through a TCP/IP data stream. The study

results consist of two key components: (1) an analysis of the NMS-

BNN model’s prediction accuracy and uncertainty, compared to

the traditional NMS model and to the NMS-GP model; (2) an

evaluation of the tracking performance of the assistive torque

provided by the knee exoskeleton.
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FIGURE 1

Schematic of the adaptive control framework for a knee exoskeleton based on an NMS solver-informed BNN (NMS-BNN) model. The inputs to the

NMS-BNN include observed muscle signals and joint angles, as well as physical features derived from the NMS solver such as individual muscle force

and joint torque. The NMS-BNN outputs knee joint torque with uncertainty quantification in the form of confidence bounds. The predicted torque

with a specified confidence level is then used to control the assistive torque provided by the knee exoskeleton through a TCP/IP data stream.

FIGURE 2

Experimental setup: subjects equipped with EMG sensors and markers, performed movements in an instrumented motion lab.

2.1. Data collection and processing

Eight able-bodied subjects (sex: 4F/4M; height: 168.1

± 9.4 cm; weight: 65.2 ± 17.8 kg; age: 29 ± 4 years) were

recruited. The Swedish Ethical Review Authority (Dnr.

2020-02311) approved this study, and all subjects provided

informed written consent documents. All participants were

asked to do five movement types (Figure 2), specifically slow

walking, normal walking, fast walking, sit-to-stand, and

stand-to-sit. During the experiments, each movement was

repeated at least ten times. The sequence of movements was

randomized.
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Surface EMG signals (aktos nano, myon, Schwarzenberg,

Switzerland) from vastus medialis (VM), vastus lateralis (VL),

rectus femoris (RF), semitendinosus (ST), biceps femoris (BF),

gastrocnemius medialis (GM), and gastrocnemius lateralis (GL)

of each participant’s one randomly-selected leg were measured at

1,000 Hz. EMGs were post-processed by bandpass filtering (30–300

Hz), rectifying, low pass filtering (6 Hz), and normalizing to the

maximum EMG value among all movement trials (Sartori et al.,

2016; Pizzolato et al., 2017; Hoang et al., 2018).

Marker trajectories were recorded at 100 Hz using a 3D motion

capture system (V16, Vicon, Oxford, UK), with marker placement

based on the CGM2.3 model (Leboeuf et al., 2019). Ground

reaction forces (GRFs) were measured at 100 Hz with three force

plates (AMTI, MA, USA). Kinematics were calculated via inverse

kinematics by solving a weighted least square optimization problem

to minimize the discrepancy between virtual xi and measured x
exp
i

marker trajectories (Lu and O’connor, 1999), Equation (1).

min
q

(

N
∑

i

θi‖x
exp
i − xi‖2), (1)

where q represents the generalized coordinates of the model and

θi is the weight of ith marker. Kinetics were computed via inverse

dynamics by solving for joint torques in the dynamic equations of

motion (Pandy, 2001) (Equation 2),

M(q)q̈+ C(q, q̇)+ G(q)+ R(q)Fmt + Fe = 0 (2)

where q, q̇, q̈ are the vector of generalized position, velocity and

acceleration, respectively; M(q) is mass matrix and M(q)q̈ is a

vector of inertial forces and torques; C(q, q̇) is the vector of

centripetal and Coriolis forces and torques; G(q) is the vector

of gravitational forces and torques; R(q) is the matrix of muscle

moment arms; Fmt is a vector of musculotendon forces and

R(q)Fmt is the vector of musculotendon torques; Fe is the vector

of external force and torques (i.e., GRFs in this paper). A low-pass

fourth-order zero-lag Butterworth filter (6 Hz) was used to filter

joint kinematics and kinetics (Winter et al., 1974; Mantoan et al.,

2015; Derrick et al., 2020).

2.2. EMG-driven neuromusculoskeletal
model

The EMG-driven NMS model used in this study was the

open-source CEINMS model (Pizzolato et al., 2015) (Figure 3).

This model includes four components: musculotendon kinematics,

muscle activation dynamics, muscle contraction dynamics,

and joint dynamics relationships (Sartori et al., 2011). The

musculotendon kinematics component calculates moment arms

and musculotendon lengths, while the muscle activation dynamics

component computes muscle activation based on the available

EMG information. The relationship between EMG excitation, e(t),

and neural activation, u(t), is expressed in Equation (3) (Lloyd and

Besier, 2003):

u(t) = α · e(t − τ )− β1 · u(t − 1)− β2 · u(t − 2) (3)

where α is the muscle gain parameter, β1 and β2 are the recursive

parameters [β1 = C1 + C2, β2 = C1 · C2, with |C1| < 1, |C2| < 1,

and α − β1 − β2 = 1 for a stable solution (Lloyd and Besier,

2003; Buchanan et al., 2004; Pizzolato et al., 2015)], and τ is the

electromechanical delay. Muscle activation, a(t), is described by

Equation (4):

a(t) =
eAu(t) − 1

eA − 1
(4)

where A is the shape factor (Buchanan et al., 2004; Hoang et al.,

2018).

The muscle contraction dynamics component calculates the

muscle force with a Hill-type muscle model, represented by

Equation (5):

F = Fm0 [Fal(l) · Fv(v) · a+ Fpl(l)+ dp · v]cos(θ) (5)

where Fm0 is the muscle’s maximum isometric force, Fal(l) describes

the relationship between activemuscle force and fiber length l, Fpl(l)

describes the relationship between passive muscle force and fiber

length, Fv(v) describes the relationship between muscle force and

fiber contraction velocity v, θ is the fiber pennation angle, and dp is

the muscle damping parameter.

Finally, the joint dynamics component computes joint torque

by multiplying muscle forces and moment arms.

The parameters were calibrated as outlined by Pizzolato et al.

(2015), with optimal fiber length and tendon slack length adjusted

within ±15% of initial values, coefficients C1 and C2 limited to

values between −1 and 1, and parameter A bounded between

(−3, 0). The maximum isometric force was determined using a

strength coefficient with a range of 0.5 to 2.5. The optimization

process focused on minimizing the error between predicted and

actual joint torques (computed via inverse dynamics) during the

calibration procedure. This optimization task was achieved by

employing a simulated annealing algorithm, which iteratives to

refine the parameter values. The algorithm was executed until the

average change in the objective function’s value reached a tolerance

level of 10−5.

2.3. NMS-BNN model

The NMS-BNN models consist of an input neural layer, 3

hidden layers, and an output neural layer. The inputs, x =
[x1, x2, . . . , xm]

T where m = 21, were augmented with two types

of features (Figure 4): (1) Muscle EMG signals and joint kinematics

(knee F/E angle) from a 3Dmotion capture system, and (2) physical

features such as muscle forces and NMS torque from an underlying

NMS solver, to increase the model’s accuracy by providing more

information about the system beingmodeled. Each hidden layer has

40 neurons. The estimated knee torque with uncertainties bound

was determined in the output layer.

In BNNs, weights are treated as probability distributions rather

than as single point estimates, as in standard neural networks

(Figure 4). These distributions are used to reflect the uncertainty
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FIGURE 3

Schematic structure of an EMG-driven neuromusculoskeletal model with four components: the musculotendon kinematics component calculates

musculotendon lengths and moment arms; the muscle activation dynamics component uses the EMG information to compute muscle activation;

the muscle contraction dynamics component, predicts musculotendon force using musculotendon length and muscle activation based on a

Hill-type muscle model; and finally, the joint dynamics component computes joint torques with musculotendon forces and moment arms as inputs.

FIGURE 4

Architecture for the NMS-BNN model. The NMS-BNN models consist of an input neural layer, 3 hidden layers, and an output neural layer. The inputs,

x = [x1, x2, . . . , xm]
T where m = 21, were augmented with two types of features: (1) Muscle EMG signals and joint kinematics from a 3D motion

capture system, and (2) Physical features such as muscle forces and NMS torque from an underlying NMS solver, to increase the model’s accuracy by

providing more information about the system being modeled. Each hidden layer has 40 neurons. The estimated knee torque with uncertainties

bound was determined in the output layer. Weights are treated as probability distributions rather than as single-point estimates as in standard neural

networks. These distributions are used to reflect the uncertainty in weights and predictions.

in weights and predictions. The posterior probability of weights,

P(W|X), is computed using Bayes theorem as follows (Equation 6):

P(W|X) =
P(X|W)P(W)

P(X)
(6)

where X is the data, P(X|W) represents the likelihood of the data

given weights W, and P(W) is the prior probability of the weights.

The denominator, P(X), represents the probability of the data,

which is obtained by integrating the likelihood of the data given

weights and the prior probability of weights over all possible values

of weights, represented by Equation (7):

P(X) =
∫

P(X|W)P(W)dW (7)
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The BNN package TensorBNN, developed by Kronheim et al.

(2022), was used in this study. The hyper-parameters of the BNN

models were determined using a “coarse-to-fine” random search

method (Bergstra and Bengio, 2012). During training, the mean

square error was used as the loss function and a batch size of

32 was applied. Three hidden layers were included. Each hidden

layer has 40 neurons with a tanh activation function. A Gaussian

likelihood with a standard deviation of 0.1 was employed. Prior to

sampling, the model was pre-trained using the AMSGrad optimizer

with learning rates of 0.01, 0.001, and 0.0001, with a patience of 10.

To obtain a point cloud of the posterior density of neural network

parameters, Hamiltonian Monte Carlo (HMC) sampling was used

to compute the likelihood function. HMC is a Markov chain

Monte Carlo method that leverages a fictitious potential energy

function derived from the posterior density of the neural network

parameters. Numerical approximation was conducted using the

leapfrog method, with the number of leapfrog steps and step size

determining the distance traveled to the next proposed point. The

number of steps for the HMC hyper-parameter sampler remained

constant, while the step size was adapted using the Dual-Averaging

algorithm based on the acceptance rate of the sample during 80%

of the burn-in period. It is worth noting that selecting suitable

values for the number of steps and step size can be challenging,

and TensorBNN incorporates the parameter adapter algorithm

to automatically optimize these parameters (Wang et al., 2013;

Kronheim et al., 2022).

2.4. NMS-GP model

The NMS-GP model was developed using the same input

data as the NMS-BNN model, which comprised experimentally

obtained muscle signals and joint kinematics, as well as physical

features such as muscle forces and NMS torque extracted from the

underlying NMS solver. TheNMS-GPmodel f (x) was specified by a

mean functionµ(x) and a covariance function k(x, x
′
), as expressed

in equation (8) (Rasmussen, 2004).

f (x) ∼ GP(µ(x), k(x, x
′
)) (8)

where the mean function µ(x) provides an estimate of the expected

value of the model at a given input, while the covariance function,

also referred to as the kernel function, quantifies the similarity

between two inputs. The Gaussian process model offers various

kernel functions to capture the underlying structure of data.

Among them, the radial basis function kernel (RBF) is widely used

due to its smoothness and infinite differentiability, as shown in

Equation (9),

k(x, x′) = exp(−
|x− x′|2

2l2
) (9)

where l controls the length-scale of the kernel, and |x − x′| is the
Euclidean distance between inputs x and x′.

Another popular kernel function is the Matern kernel, which is

a generalization of the RBF kernel and is defined as Equation (10),

k(x, x′) =
21−ν

Ŵ(ν)

(√
2ν

l
|x− x′|

)ν

Kν

(√
2ν

l
|x− x′|

)

(10)

where ν determines the smoothness of the kernel, Kν is the

modified Bessel function, Ŵ(ν) is the Gamma function, and l

controls the scale of the kernel.

For modeling noise in data, the White Noise Kernel, as shown

in Equation (11), is commonly used,

k(x, x′) = σ 2δ(x− x′) (11)

where σ 2 is the noise variance parameter that determines the

amplitude of the noise, and δ(x − x′) is the Dirac delta function.

This function equals one when x = x′ and zero otherwise, ensuring

that the kernel function is non-zero only at the diagonal of the input

space.

The Linear kernel is another widely used kernel that models

a linear relationship between the input and output variables.

Specifically, it can be formulated as depicted in Equation (12):

k(x, x′) = σ 2xTx′ (12)

where σ 2 represents the variance parameter.

In Gaussian process modeling, the combination of different

kernel functions can improve the performance of the model.

In this regard, we selected a combination of Matern, White

Noise, and Linear kernels after conducting extensive testing to

obtain the most accurate predictions. The Matern kernel was

used to capture non-linear patterns, while the White Noise kernel

accounted for measurement errors and uncertainty, and the Linear

kernel modeled linear relationships between the input and output

variables. Hyperparameters such as length scale, signal variance,

noise variance, and others were optimized during the training

process to enhance the model’s performance. In the Matern kernel,

we set ν to 3/2, and the length scale was bounded between the

range of (0.01, 200), with variance confined within the range of

(10−3, 105). Similarly, the White Noise kernel had a noise variance

bounded between (0.03, 100), while the Linear kernel had a variance

range of (10−3, 105).

2.5. Knee exoskeleton

The knee exoskeleton hardware consists of a drive unit (Gen.1,

Maxon, Switzerland), a 3D-printed thigh-shank frame, and thigh

and shank straps (Orliman 94260, Spain). The drive unit features

a brushless DC motor (EC90 flat), a MILE encoder with 4,096

counts per turn, a three-stage planetary gearbox with an 18-bit

SSI absolute encoder, and an EPOS4 position controller. The drive

unit is capable of providing a continuous torque of 54 Nm and a

maximum torque of 120 Nm on a 20% duty cycle. The system can

operate on a DC power supply ranging from 10 to 50vV and its

actuation speed can reach up to 22 rpm.

2.6. Evaluation protocol

2.6.1. Joint torque prediction
The prediction accuracy of the knee joint torque for NMS,

NMS-GP, andNMS-BNNmodels was investigated. The uncertainty

of the predicted torque by NMS-GP and NMS-BNN models

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1254088
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2023.1254088

FIGURE 5

The distributions of NRMSE between estimated and

measured/actual knee joint torques across subjects in NMS,

NMS-GP, and NMS-BNN models during five daily activities. The

violin plots depict the probability distributions of NRMSE using

kernel density plots, and the box plots represent the minimum,

lower quartile, median, upper quartile, and maximum values of

NRMSE. A significant di�erence between any two models is

indicated by an asterisk (∗), based on paired t-test (for normally

distributed data) or Wilcoxon signed-rank test (for non-normally

distributed data) with Bonferroni correction.

was also analyzed. The prediction accuracy and uncertainty

quantification was compared in five cases:Gaitslow,Gaitself ,Gaitfast ,

SitToStand, and StandToSit, which were trained using data from

each movement separately. NMS-GP and NMS-BNN models were

trained using 80% of the data and evaluated on the remaining

data, while NMS models were calibrated using three trials of each

movement and tested on the same data as NMS-GP andNMS-BNN

models. The input data from each trial consisted of approximately

100 time-series data points and 21 dimensions.

Two prediction error metrics were evaluated: the Normalized

Root Mean Square Error (NRMSE, ENRMS) and the Root Mean

Square Error (RMSE, ERMS). A low prediction error indicated a

high prediction accuracy. NRMSE was calculated by dividing the

RMSE (between the predicted and actual torque) by the range of

joint torque observed during the corresponding motion:

ERMS =

√

√

√

√

1

N

N
∑

n=1

(yp,n − yn)2 (13)

ENRMS =
ERMS

(ymax − ymin)
× 100% (14)

where yn and yp,n are the measured/actual and predicted torque

respectively; and ymin and ymax are the minimum and maximum

measured torque in corresponding movements. The RMSE and

NRMSE were calculated for each subject and the average was

obtained across eight subjects. The results section presents the

average values of RMSE and NRMSE.

The normality of the data distribution was evaluated using

Shapiro-Wilk tests (p < 0.05 significance level). To determine the

FIGURE 6

The distributions of RMSE between estimated and measured/actual

knee joint torques across subjects in NMS, NMS-GP, and NMS-BNN

models during five daily activities. The violin plots depict the

probability distributions of NRMSE using kernel density plots, and

the box plots represent the minimum, lower quartile, median, upper

quartile, and maximum values of NRMSE. A significant di�erence

between any two models is indicated by an asterisk (∗), based on

paired t-test (for normally distributed data) or Wilcoxon signed-rank

test (for non-normally distributed data) with Bonferroni correction.

differences among the NRMSEs and RMSEs estimated by the three

approaches, pairwise comparisons were performed using either

paired t-tests for normally distributed data or Wilcoxon signed-

rank tests for non-normally distributed data, both with Bonferroni

correction applied and significance level of p < 0.05.

The uncertainty of the predicted torque by NMS-GP and NMS-

BNN models was quantified by using a 95% confidence level (CL),

which means that there is a 95% probability that the true value of

the function being modeled falls within the predicted interval. A

high uncertainty value indicates low confidence in the predicted

value.

2.6.2. Exoskeleton assistive torque tracking
performance

We also evaluate the tracking performance of the knee

exoskeleton’s assistive torque provided by the adaptive control

framework during five daily activities by using the two metrics:

NRMSE and RMSE (between desired and actual torque provided

by the knee exoskeleton). The assistance level AL of the knee torque

provided by the adaptive control framework is adapted/determined

by the uncertainties U quantified by the NMS-BNN model, as

described by the following equation:

AL =



































0.8 if U < 0.05

0.6 if 0.05 ≤ U < 0.1

0.4 if 0.1 ≤ U < 0.15

0.3 if 0.15 ≤ U < 0.2

0.1 if U ≥ 0.2

(15)
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FIGURE 7

(A) The uncertainty quantification of predicted knee joint torque by the NMS-GP and NMS-BNN models across subjects during five daily activities, as

the mean ± 1 standard deviation of all subjects. The uncertainty was quantified using a 95% confidence level, meaning that there is a 95% probability

that the true value falls within the predicted interval. A high uncertainty value indicates low confidence in the prediction. (B) One example of

measured knee flex/extension torques (Nm/kg) by inverse dynamics (ID) and predicted values by both NMS and NMS-GP models during five daily

activities. The standard deviation in the NMS-GP models highlights the uncertainties from the expected mean value. (C) One example of predicted

knee flex/extension torques by NMS-BNN models was presented and compared with the same example from ID and NMS models in (B). The

standard deviation in the NMS-BNN models also highlights the uncertainties from the expected mean value.

FIGURE 8

The tracking error of the knee exoskeleton’s assistive torque provided by the adaptive control framework during five daily activities, presented as (A)

NRMSE and (B) RMSE. The violin plots illustrate the probability distributions of prediction error through kernel density plots, and the box plots depict

the minimum, first quartile, median, third quartile, and maximum values of the prediction error.
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3. Results

3.1. Joint torque prediction

Overall, both NMS-BNN and NMS-GP models accurately

predicted knee joint torque with relatively low error (RMSE: NMS-

GP≤ 0.05 Nm/kg, NMS-BNN≤ 0.07 Nm/kg; NRMSE: NMS-GP≤
5.9%, NMS-BNN≤ 6.8%). The errors were considerably lower than

those of NMS models (RMSE:≤ 0.14 Nm/kg, NRMSE: ≤ 18.3%,

Figures 5, 6).

The NRMSE prediction error for the NMS-GP and NMS-BNN

models was significantly lower than that of the NMS models in all

cases, except the StandToSit case (Gaitslow: p < 0.01 and p < 0.01;

Gaitself : p < 0.01 and p < 0.01; Gaitfast : p < 0.01 and p < 0.01,

SitToStand: p < 0.01 and p < 0.01, StandToSit: p = 0.08 and

p = 1.45; Figure 5). Similar findings were also observed in the

RMSE.

Among the NRMSE predicted by NMS models in five cases,

the NRMSE in the StandToSit case was the lowest (≤ 7.2%). No

significant differences were observed in the StandToSit case among

NMS, NMS-GP, and NMS-BNN models (NMS:≤ 7.2%, NMS-GP:

≤ 5.5%; NMS-BNN: ≤ 6.8%).

Both the NMS-GP and NMS-BNN models had relatively high

uncertainties in the predicted knee torque at the beginning of

each movement, particularly in the Gaitself case (Figure 7A). In

the NMS-GP model, high uncertainties were observed during

terminal stance and terminal swing in theGaitself case. On the other

hand, the NMS-BNNmodel had high uncertainties during terminal

stance, initial swing, and terminal swing in all gait speeds.

The predicted torque by the NMS models had a poorer

agreement with the measured torque compared to the NMS-GP

and NMS-BNNmodels (Figures 7B, C). Relatively high offsets were

observed at the beginning of each movement in NMS models.

3.2. Exoskeleton assistive torque tracking
performance

Overall, the knee exoskeleton accurately provided the required

assistive torque with relatively low error (RMSE:≤ 0.06 Nm/kg,

NRMSE: ≤ 5.6%, Figure 8). Among the five movements, the

NRMSE was evenly distributed among all subjects for walking

movements, while one outlier was noted in both sit-to-stand

and stand-to-sit movements. The sit-to-stand movement had the

highest tracking error among the five movements.

Generally, the actual assistive torque provided by the knee

exoskeleton matched the desired torque well (Figure 9). However,

it is important to note that limited torque was provided at the start

of the sit-to-stand movement. Additionally, relatively low assistive

torque was observed during the terminal stance of fast walking

compared to self-selected speed walking.

4. Discussion

We developed an NMS-BNN-based adaptive control

framework for a knee exoskeleton using muscle EMG signals

and joint kinematics. We also compared the predictions with

uncertainties from the NMS-BNN model with those from the

NMS-GP model. We observed both NMS-BNN and NMS-GP

models showed accurate predictions of knee joint torque with

low error, outperforming traditional NMS models, indicating the

benefits of incorporating NMS features into machine learning

models. High uncertainties, however, were observed at the

beginning of each movement and at terminal stance and terminal

swing in the self-selected speed walking in both NMS-BNN and

NMS-GP models. The knee exoskeleton provided the desired

assistive torque accurately, with a relatively low error. Lower levels

of torque were observed during terminal stance in fast walking

compared to self-selected walking speed. The level of assistive

torque was determined and adjusted based on the uncertainty

in the NMS-BNN predictions, promoting the safety of the

exoskeleton-user interface.

Incorporating the user’s physiological joint torque into

exoskeleton control strategies has in recent years become

feasible, and has vast potential to improve task performance

and rehabilitation outcomes. Among common techniques for

predicting joint torque, EMG-drivenNMSmodels require expertise

and complex calibration, whereas machine learning models are

more accessible but considered as black boxes (Hoang et al., 2018;

Ezati et al., 2019; Soleimani and Nazerfard, 2021). To improve

prediction accuracy, ANNs have been integrated into NMSmodels,

allowing the advantages of both approaches to be leveraged.

However, ensuring the safety and efficiency of exoskeleton control

is also crucial, particularly when using predicted torque as inputs

for the exoskeleton. To address this, this study integrated NMS

with machine learning models with uncertainty quantification for

joint torque prediction. As mentioned earlier, Both BNNs and

GP models can provide predictions with associated uncertainties.

While BNN models incorporate Bayesian methods to quantify

the uncertainty in predictions, GP models are based on Gaussian

processes and provide a probabilistic model for predictions

with uncertainties. In the current study, we also compared the

predictions with uncertainties between NMS-BNN and NMS-

GP models. We found both NMS-BNN and NMS-GP models

accurately predicted knee joint torque with relatively low error

(RMSE: NMS-GP ≤ 0.05 Nm/kg, NMS-BNN ≤ 0.07 Nm/kg;

NRMSE: NMS-GP ≤ 5.9%, NMS-BNN ≤ 6.8%), and were found

to be superior to traditional NMS models (RMSE ≤ 0.14 Nm/kg,

NRMSE ≤ 18.3%). The results are attributed to the addition

of machine learning layers, which further train the model by

minimizing the error betweenmeasured and predicted joint torque.

The quantification of uncertainty by either the NMS-BNN

or NMS-GP models can supply the exoskeleton controller with

valuable data for decision-making, which could enhance safety in

the exoskeleton-user interaction. For instance, we observed high

uncertainties at the beginning of each movement in both NMS-

BNN and NMS-GP models (Figure 7). This is likely due to the

physical characteristics adopted from NMS models, which show a

noticeable offset at the start of eachmovement. InNMSmodels, two

prior time steps of neural activation from each MTU are required

to calculate muscle neural activation (Zhang et al., 2022). At the

beginning of a cycle, these past two neural activation values are

not yet obtainable and are approximated using EMG signals from
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FIGURE 9

One example of the desired and actual assistive torque provided by the knee exoskeleton during five daily activities.

two previous time steps, potentially leading to initial inaccuracies

in predicted torque. Furthermore, high uncertainties were observed

during the terminal stance and terminal swing in self-selected speed

walking in both NMS-BNN and NMS-GP models. This may be

attributed to the of transitions between the stance and swing phases

of gait.

The knee exoskeleton provided the desired assistive torque

accurately, with a relatively low error (RMSE:≤ 0.06 Nm/kg,

NRMSE: ≤ 5.6%, Figure 8). The assistive torque was achieved

through current control in the motor, a widely used closed-

loop control technique (Zhang et al., 2018; Azocar et al., 2020;

Nuckols et al., 2021). The current control system aims to maintain

a consistent current in the motor, even as its speed and load

conditions vary. Precise control over the motor’s torque production

can be achieved through current control, though accuracy may

be influenced by factors such as the quality of current sensing

and the speed of the control loop’s response. To estimate output

torque, the control system uses the measured current as feedback,

as the current is proportional to the torque produced by the

motor (Azocar et al., 2020). This allows the control system

to determine the amount of torque produced and adjust the

exoskeleton accordingly.We observed lower levels of torque during

the terminal stance of fast walking compared to self-selected

walking speed (Figure 9). This discrepancy may be due to the

increased uncertainties present during fast walking, which in turn

led to a lower level of assistance torque being assigned according

to our control strategy (Equation 15). It is worth noting that an

outlier was observed in the sit-to-stand and stand-to-sit movements

(Figure 8). This deviation may be attributed to the limited torque

capacity of the exoskeleton at the beginning of the sit-to-stand

movement and at the end of the stand-to-sit movement (Figure 9).

This study focused on evaluating the feasibility of the NMS-

BNN framework by implementing a basic current control strategy.

The objective was to assess the overall viability of the framework.

However, future studies are necessary to investigate more advanced

control techniques, such as impedance control. The current control

strategy may result in less smooth assistive torque. Therefore,

in future studies, we recommend incorporating an improved

control strategy that takes into account both uncertainties and

the closest points of predicted torque to enhance the smoothness

and improve the user-exoskeleton interface. Furthermore, while

our current study centers on the knee joint, it is important

to note that the approach can be adapted and extended to

other joints as well. Additionally, it is worth mentioning that

the maximum torque that can be generated by the system is

54 Nm, which may also impact the smoothness of the assistive

torque. Thus, this should be considered in future control strategies.

It should be noted that this study did not involve testing

the performance of the NMS-BNN-based adaptive framework

on real users for practical applications. Further research is

essential to address this issue and ascertain the practicality of the

framework.

5. Conclusion

In this study, we proposed an NMS-BNN-based adaptive

control framework for a knee exoskeleton that uses muscle

EMG signals and joint kinematics. The NMS-BNN model

combines a traditional NMS model with modern machine

learning techniques and includes uncertainty quantification. The

proposed framework also measures uncertainty in predictions and

incorporates it into the control design to ensure safety of the

exoskeleton-user interface. We also compared the performance

of the NMS-BNN model to an NMS-GP model, which also

predicts uncertainties. Detailed information relating to how to

combine traditional models with machine learning models with

uncertainties can provide useful guidance for designing exoskeleton

control strategies.
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