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Introduction: Group information-guided independent component analysis (GIG-
ICA) and independent vector analysis (IVA) are two methods that improve estimation of 
subject-specific independent components in neuroimaging studies. These methods 
have shown better performance than traditional group independent component 
analysis (GICA) with respect to intersubject variability (ISV).

Methods: In this study, we compared the patterns of community structure, spatial 
variance, and prediction performance of GIG-ICA and IVA-GL, respectively. The 
dataset was obtained from the publicly available Autism Brain Imaging Data Exchange 
(ABIDE) database, comprising 75 healthy controls (HC) and 102 Autism Spectrum 
Disorder (ASD) participants. The greedy rule was used to match components from 
IVA-GL and GIG-ICA in order to compare the similarities between the two methods.

Results: Robust correspondence was observed between the two methods the 
following networks: cerebellum network (CRN; |r|  =  0.7813), default mode network 
(DMN; |r|  =  0.7263), self-reference network (SRN; |r|  =  0.7818), ventral attention 
network (VAN; |r|  =  0.7574), and visual network (VSN; |r|  =  0.7503). Additionally, the 
Sensorimotor Network demonstrated the highest similarity between IVA-GL and GIG-
ICA (SOM: |r|  =  0.8125). Our findings revealed a significant difference in the number 
of modules identified by the two methods (HC: p < 0.001; ASD: p < 0.001). GIG-ICA 
identified significant differences in FNC between HC and ASD compared to IVA-GL. 
However, in correlation analysis, IVA-GL identified a statistically negative correlation 
between FNC of ASD and the social total subscore of the classic Autism Diagnostic 
Observation Schedule (ADOS: pi  =  −0.26, p  =  0.0489). Moreover, both methods 
demonstrated similar prediction performances on age within specific networks, 
as indicated by GIG-ICA-CRN (R2  =  0.91, RMSE  =  3.05) and IVA-VAN (R2  =  0.87, 
RMSE  =  3.21).

Conclusion: In summary, IVA-GL demonstrated lower modularity, suggesting 
greater sensitivity in estimating networks with higher intersubject variability. The 
improved age prediction of cerebellar-attention networks underscores their 
importance in the developmental progression of ASD. Overall, IVA-GL may be 
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appropriate for investigating disorders with greater variability, while GIG-ICA 
identifies functional networks with distinct modularity patterns.
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1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental 
disorder that affects social communication and interaction and causes 
restricted, repetitive behaviors and interests. It is characterized by a 
diverse range of symptoms and severity levels, and its underlying 
causes are not yet fully understood. With the advancement of 
neuroimaging techniques, such as Electroencephalogram (EEG) and 
functional magnetic resonance imaging (fMRI), researchers have been 
able to gain new insights into the neural mechanisms of ASD. There are 
several studies that have proved the effectiveness of network 
hierarchical structure in ASD brain function using EEG data (Wadhera 
and Mahmud, 2022; 2023). Studies utilizing fMRI have revealed several 
brain regions and networks that exhibit atypical functioning in 
individuals with ASD, including the social brain network, default mode 
network, and mirror neuron system. Additionally, researchers have 
explored the functional network connectivity between different brain 
regions and how this connectivity may be disrupted in ASD.

Numerous fMRI studies have explored the neural underpinnings 
of ASD and have revealed changes in brain function and connectivity 
in various regions, including the prefrontal cortex, amygdala, and 
cerebellum. For instance (Kleinhans et  al., 2008) found reduced 
prefrontal cortex activity during a social judgment task in children 
with ASD, indicating that this region may be crucial to social cognition 
impairments in ASD. Another study (Shukla et al., 2011) observed 
increased amygdala activity in response to emotional faces in children 
with ASD, indicating altered emotional processing. A recent review 
(Rafiee et  al., 2022) the authors summarized the latest ASD 
developments on tasks and resting states. For instance, Lawrence et al. 
(2020) found more activity in lateral frontal cortex and insula activity 
compared to HC, indicating that these regions may be crucial to social 
reward in ASD. Another study Rausch et  al. (2016) showed 
significantly reduced connectivity in visuospatial and superior parietal 
areas in ASD, supporting underconnectivity theory of autism. 
Although fMRI has yielded valuable insights into the neural basis of 
ASD and may help with its diagnosis and treatment, further research 
is necessary to fully comprehend the underlying neural mechanisms 
of ASD and their role in the disorder’s development and progression.

There are a number of data-driven methods that are widely used 
for analyzing resting-state fMRI. Seed-based analysis is a method in 
which a voxel from a specific region of interest (ROI) is correlated 
with every voxel in the brain. This method has been used to identify 
functional connectivity networks in the brain (Biswal et al., 1995; 
Greicius et al., 2003). Machine learning is a statistical approach that 
can be used to learn from data and make predictions. It has been used 
in a growing number of ASD studies (Liu et al., 2021; Santana et al., 
2022) to classify and predict brain disorders from fMRI data (Zhuang 
et al., 2018; Wang et al., 2022; Kunda et al., 2023).

Independent component analysis (ICA) (Mckeown et al., 1998; 
Damoiseaux et al., 2006) is a data driven method that has been widely 

used to identify and analyze brain networks. This approach of 
decomposing fMRI data into a linear mixture of independent 
components (ICs) allows researchers to identify components that are 
subsequently grouped as brain functional networks. Moreover, spatial 
ICA [sICA (Mckeown et al., 1998; Jafri et al., 2008)] has become a 
popular method (spatial dimension is higher than temporal 
dimension) accounting for spatial coherence to uncover spatially 
distributed data such as fMRI images and useful for identifying brain 
networks involved in resting-state functional connectivity. 
Nonetheless, temporal ICA (tICA) has also performed strongly in 
blind source separation (Biswal and Ulmer, 1999; Calhoun et  al., 
2001a; Smith et al., 2012).

Although ICA is widely used to analyze fMRI data, it has several 
limitations. Among these challenges is the need to modify the 
algorithm to account for the unique properties of fMRI data, such as 
high dimensionality, temporal autocorrelation, and noise properties. 
Model selection is also a critical factor in fMRI data analysis with 
ICA. Unlike other methods, the number of components to be extracted 
from the data is unknown a priori and must be estimated from the 
data. Various techniques can be used to determine the optimal number 
of components, including cross-validation, bootstrap resampling, and 
information criteria. Furthermore, interpretation of the results of ICA 
in fMRI studies requires expertise in neuroanatomy, cognitive 
neuroscience, and statistics. ICA can reveal complex patterns of neural 
activity that may be difficult to interpret without a deep understanding 
of brain function and organization. Finally, because fMRI studies 
typically involve multiple subjects, group-level analysis is required to 
identify common patterns of brain activity across individuals.

Group ICA (GICA) (Calhoun et al., 2001b; Svensén et al., 2002; 
Beckmann et al., 2009) is a variant of ICA specifically designed to 
identify common components in a group of subjects. The GICA is 
accomplished by applying the algorithm to decompose the fMRI data 
into independent components that are consistent across the group. In 
a commonly used implementation, a two-step approach is used in 
which each subject’s data is first decomposed into independent 
components before being combined into a group level. In an 
alternative approach, all subjects’ data is decomposed simultaneously 
using a single step. One of the strengths of GICA is its ability to reveal 
unique group-level functional networks that may not be easily visible 
in individual subjects. In addition, it can increase statistical power by 
pooling data from different subjects and reducing the effects of noise. 
Although GICA allows for the direct correlation of ICs between 
individuals in a group, it fails to capture intersubject variabilities 
(ISV). To address the ISV limitation of GICA, group information-
guided independent component analysis (GIG-ICA) (Du and Fan, 
2013; Du et al., 2016) and independent vector analysis (IVA) (Lee 
et al., 2008) were proposed.

IVA is a technique that maximizes both the independence 
between related components and the dependency between 
components of different subjects (Lee et al., 2008). IVA is achieved 
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without the use of a back reconstruction phase by simultaneously 
calculating and optimizing ICs for each subject. This facilitates the 
computation of ICs at the group level and the interpretation of the 
relationship between ICs at the group and individual levels. 
Furthermore, IVA-GL (Lee et al., 2008; Anderson et al., 2012), an 
advanced version of IVA, can separate time-delayed and convolved 
signals using the Gaussian density model (IVA-G) and the Laplace 
density model (IVA-L) based on higher-order frequency dependencies. 
Previous studies (Dea et al., 2011; Michael et al., 2014) showed that 
IVA-GL outperformed GICA in capturing ISV in simulated fMRI data.

GIG-ICA is another technique that can obtain precise subject-
specific functional networks by optimizing the independence of 
multiple components and improving the correspondence between 
each group-level IC and its associated subject-specific IC. The 
resulting subject-specific networks generated from the identified ICs 
have comparable physiological meanings, allowing for comparisons 
between subjects. Several studies have applied GIG-ICA to investigate 
functional networks in neurological diseases (Du et al., 2014, 2015, 
2017; Zhi et al., 2018; Fattahi et al., 2021). These results imply that 
GIG-ICA can provide accurate subject-specific functional networks 
that are similar across participants and have physiological significance.

The advantages of GIG-ICA and IVA-GL over traditional GICA 
have been demonstrated in several studies (Ma et al., 2013; Michael 
et al., 2014; Du et al., 2016). For a comparative analysis, it was found 
that IVA-GL outperformed GIG-ICA in terms of identifying subject-
specific signal sources as well as higher ISV though GIG-ICA detected 
a more stable modularity structure of FNC in healthy subjects (Du 
et al., 2017). Besides, IVA-GL has also been demonstrated in capturing 
variability, in disease subjects such as schizophrenia (Gopal 
et al., 2016).

In this study, we hypothesized that GIG-ICA and IVA-GL will 
show different brain network properties. To examine this, 
we compared the patterns of community structures of the FNC using 
features obtained from a case-control group comprising of ASD and 
HC. Additionally, we examined the differences in variance between 
the two methods to identify abnormal functional networks derived 
from the two groups. Finally, although network component features 
can be obtained from both GIG-ICA and IVA-GL to the best of our 
knowledge no studies have compared the prediction performance of 
both methods, here we used component features to predict age and 
WASI (three measures of IQ), respectively.

2. Methods and materials

This study obtained fMRI data from a publicly available Autism 
Brain Imaging Data Exchange (ABIDE) database (Di Martino et al., 
2014). For the following analysis and prediction, we used 75 ASD 
patients and 102 healthy controls with ages ranging from 6.5 to 
39.1 years old, scanned at New  York University Langone Medical 
Center. ASD subjects were included based on the autism criteria in 
Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, 
Text Revision (DSM-IV-TR) (American Psychiatric Association, 
2000). Additionally, these subjects were acquired with a 3-T Siemens 
Allegra scanner. The main parameters of functional images for the 
resting-state are as follows: repetition time (TR)/Echo time 
(TE) = 2000/15 ms, flip angle = 90°, number of slices = 33, slice 
thickness = 4 mm, and voxel size = 3.0 × 3.0 × 4.0 mm3. T1-weighted 

images were acquired with the following parameters: TR/
TE = 2530/3.25 ms, flip angle = 7°, slice thickness = 1.33 mm, and voxel 
size = 1.3 × 1.0 × 1.3 mm3. More details on the subject collection, 
exclusion criteria, and data parameters can be  obtained from the 
website.1

2.1. Data preprocessing

We utilized Statistical Parametric Mapping 12 (SPM12) software2 
and Data Processing Assistant for Resting-State fMRI3 to preprocess 
the T1-weighted images and rs-fMRI data, respectively. To preprocess 
the functional imaging, we took the following steps: (1) first ten time 
points were discarded to ensure stable magnetic resonance imaging 
signals at the beginning of the scan; (2) we performed head motion 
correction using rigid-body translation and rotation and then 
excluded subjects with a maximum motion greater than 3 mm or 3°; 
(3) trilinear interpolation with degrees of freedom was used to 
coregister the anatomical images with mean functional image; (4) 
we used the DARTEL algorithm to segment the T1-weighted image of 
each subject and obtained GM, WM, and CSF; (5) to reduce the 
residual effects of motion and other non-neuronal factors, 
we performed regression of the interference signal, including 24 head 
motion parameters, signals of WM and cerebrospinal fluid (CSF); (6) 
the rs-fMRI images were normalized from native space to the 
Montreal Neurological Institute (MNI) space with a voxel size of 
3 × 3 × 3 mm3; (7) all normalized images were smoothed with an 8 mm 
full width at half maximum Gaussian kernel (FWHM).

2.2. Networks component estimation

We used IVA-GL and GIG-ICA to estimate components for 
analysis in this work. They can be available in Group ICA for fMRI 
toolbox (GIFT).4 Specifically, the main procedure steps of IVA-GL 
(Adali et al., 2014; Michael et al., 2014) are as follows: (1) performing 
subject-level PCA to each subject; (2) applying IVA-GL to estimate the 
SMs and TCs on each subject’s data. For GIG-ICA (Du et al., 2017), 
there are mainly five steps: (1) performing subject-level PCA on each 
subject; (2) using group-level PCA on subject-level PCA data of the 
temporal concatenation; (3) applying Infomax algorithm (Bell and 
Sejnowski, 1995) on reduced data to obtain group ICs; (4) identifying 
and removing artifact group components, and then computing 
individual components using remaining non-artifact group ICs (Du 
et al., 2016); (5) estimating individual TCs. The estimated components 
are z-scored on IVA-GL and GIG-ICA after completing all steps.

To obtain the statistical threshold of components of the two 
methods and to reduce the noise of estimation, z-scored t-test 
maps were computed using the MANCOVAN toolbox for ASD 
and HC. Next, the correspondence of components was performed 
using the greedy rule between IVA-GL and GIG-ICA. The paired 
correlation matrix were implemented and then we choose valid 

1 http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html

2 http://www.fil.ion.ucl.ac.uk/spm/software/spm12

3 http://rfmri.org/DPARSF

4 https://trendscenter.org/software/

https://doi.org/10.3389/fnins.2023.1252732
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://rfmri.org/DPARSF
https://trendscenter.org/software/


Jing et al. 10.3389/fnins.2023.1252732

Frontiers in Neuroscience 04 frontiersin.org

ICs from the matrix by checking whether the correlation value is 
greater than the set threshold. Finally, after excluding the 
mismatched networks, we  selected the common resting-state 
networks across both methods and named them based on the 
Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer 
et al., 2002). The higher-order and lower-order networks were 
then organized for subsequent analysis.

2.3. Functional network connectivity and 
its modularity analysis

To explore the potential differences in community structure 
between the two techniques, we employed the Brain Connectivity 
Toolbox (BCT5) to calculate modularity measures of the FNC 
matrix. First, we  generated subject-specific FNC matrices by 
calculating Pearson correlation coefficients between the time 
courses (TCs) of paired networks, followed by computing the 
mean FNC matrix across ASD subjects. To enhance the efficiency 
of our analysis, we applied Fisher’s r-to-z transformation to the 
original functional weight matrix. We  utilized the Louvain 
algorithm, a modular community detection algorithm known for 
its efficiency and effectiveness (Blondel et al., 2008), to identify 
the hierarchical community structure and to determine the 
modularity Q value using the Girvan–Newman model (Girvan 
and Newman, 2002; Newman and Girvan, 2004), which reflects 
the quality of the community structure. A higher Q value 
represents a more stable modular structure. The modular 
segmentation results and corresponding Q value were used to 
analyze the FNC matrix. Finally, we performed a permutation test 
to calculate the group differences in module measures.

We used a two-sample t-test to examine the statistical difference 
of FNC, and the results were FDR corrected. This analysis helped 
determine if the two methods could capture FNC differences between 
ASD and HC. Additionally, we calculated the relationship between 
FNC and clinical measures using paired components of TCs. To 
consider both linear and nonlinear information, we  employed a 
boosted method that leverages nonlinear information to enhance the 
linear effect (Motlaghian et al., 2022). The definition of the boosted 
method is as follows:

 PC PC NMI� � ��sign

Where PC represents Pearson correlation and NMI represents 
normalized mutual information. In this case, the FNC matrix 
regressed the influence of gender, age and handedness scores. We have 
removed subjects that had abnormal or missing clinical measures. The 
Mahalanobis distance from the bivariate mean of the resampled data 
was used to identify and remove outliers from the data set (Samuel 
Schwarzkopf et al., 2012). Then, Shepherd’s pi correlation was applied 
to the data after outlier removal to measure the correlation between 
the two variables (Samuel Schwarzkopf et al., 2012).

5 https://sites.google.com/site/bctnet/

2.4. Estimating spatial differences

Differences in the spatial statistics between ASD and HC based on 
two methods, IVA-GL and GIG-ICA, were assessed using three 
aspects. Initially, a cluster-level two-sample t-test was conducted on 
z-score maps to determine differences in weighted amplitude between 
the two groups. The results were corrected for multiple comparisons 
using FDR correction. Based on the significant spatial differences in 
pairing components between the two methods, we also displayed the 
histogram of amplitude values using the voxel with the most 
remarkable difference for each subject. This allowed us to obtain the 
distribution differences between the two groups. Secondly, 
we calculated voxelwise differences in variance maps by subtracting 
the variance between groups (HCs – ASDs) for each component. 
Finally, since the variance distribution across voxels was non-normal 
between subjects, a nonparametric test was utilized to identify 
differences in variance maps for each component between ASDs and 
HCs. These statistical analyses enable the identification of not only the 
differences in mean and variance between ASD and HC but also the 
IVA-GL and GIG-ICA’s characteristics in capturing variability. We also 
expected to discover significant differences between ASD and HC 
using these two methods. For instance, IVA-GL can reveal the 
variability of some networks, but GIG-ICA cannot, and vice versa.

2.5. Predictive model

Feature selection: to reduce the original spatial feature dimension 
of 54,263, we applied feature selection based on the CPM model (Shen 
et al., 2017), which considers the correlation between the connectivity 
matrix and behavioral measure. However, we used a stricter threshold 
value of p < 0.001 to determine the relationship between the original 
spatial networks and behavioral measures. This process resulted in 
obtaining a different number of voxels for each network associated 
with demographic variables (age and IQ), which were subsequently 
used for prediction.

LASSO model: the LASSO penalty regression is a linear model 
that is commonly used to estimate sparse coefficients (Friedman, 
2010). This regression technique helps to prevent overfitting by 
applying a penalty function to compress the coefficients of variables. 
Mathematically, the minimized objective function of LASSO 
regression is:

 

min

�
� � �

1

2
2

2

1N
X y� �

Where N is the sample size, α  is a constant, and ω is the coefficient 
vector. The whole training and prediction process was completed 
based on LassoCV package of sklearn in Python. Specifically, 
we performed a two-layer loop, with the outer loop using a leave-
one-out cross-validation (LOOCV) and the inner loop using 10-fold 
cross-validations. In each outer loop, the optimal α  value was found 
through the inner loop.

We employed a permutation test to assess the efficacy of our 
model in predicting target values, by generating an empirical null 
distribution to evaluate the correlation between predicted and target 
values. As the two datasets were not normally distributed, we utilized 
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Spearman’s rank correlation for the permutation test, which involved 
rearranging the order of two independent samples 1,000 times. To 
evaluate our results, we also utilized root mean squared error (RMSE), 
a widely used metric for assessing predictions. Notably, RMSE 
provided a more meaningful understanding of the actual deviation, 
while the fixed range of correlation values made it easier to observe. 
Additionally, we employed the determination coefficient R2 to reflect 
the regression fitting effect of the prediction model.

3. Results

Table 1 displays the demographic information of all subjects used 
in this study. There were relatively no significant age differences 
between the two groups (p = 0.311).

3.1. Spatial component selection and 
pairing

The analysis in IVA-GL and GIG-ICA used a relatively high model 
order of IC = 50, which has been previously demonstrated to produce 
reliable intrinsic component networks (ICNs) (Abou-Elseoud et al., 
2010). To identify nonartifactual group components, a sorting 
procedure was combined with visual inspection, and fractional 
amplitude of low-frequency fluctuations (fALFF) and dynamic range 
were examined for all components. In these spectral measurements, 
the greater the value of the independent component representing the 
brain network, the lower the value of the noise component (Allen 
et al., 2012; Gopal et al., 2016). Finally, we only selected components 
with fALFF greater than 0.5 for further analysis.

Two different pairing strategies were used: (1) all components 
with an absolute correlation coefficient (|r|) greater than 0.5 were 
utilized for functional network connectivity (FNC) analysis and 
spatial differences analysis in group mean; (2) for the one-to-many 
case, the spatial components of IVA-GL were paired with those of 
GIG-ICA using high correlation coefficients, and the resulting 
components were used for difference analysis in variance maps of HCs 
and individuals with ASDs. Several networks and their corresponding 
correlation coefficients were obtained, including the Auditory network 
(AUD: |r| = 0.6161), Cerebellum network (CRN: |r| = 0.7813), Dorsal 
attention network (DAN: |r| = 0.6479), Default mode network (DMN: 
|r| = 0.7263), Motor network (MTN: |r| = 0.6887), Salience network 

(SN: |r| = 0.6787), Sensorimotor network (SOM: |r| = 0.8125), Self-
reference network (SRN: |r| = 0.7818), Ventral attention network 
(VAN: |r| = 0.7574), and Visual network (VSN: |r| = 0.7503). The SOM 
network had the highest similarity between IVA-GL and GIG-ICA.

3.2. FNC and modularity analysis

The mean FNC matrix calculation of GIG-ICA and IVA-GL 
involves different numbers of matching components, which are 22 
and 18, respectively. GIG-ICA exhibits stronger connection strength 
within the very crucial VSN network (please refer to meta-analytic 
database previous studies6), as shown in Figures  1A,D, with a 
maximum connection strength of 0.8, while IVA-GL only detects a 
maximum of 0.4. As shown in Figures 1B,E, GIG-ICA detected five 
and four modularities in HC and ASD, respectively. The five 
modules in HC identified by GIG-ICA mainly comprised of the 
basic function network (CRN) in module 1, low-order networks 
(DAN, MTN, SOM) in module 2, high-order networks (DMN) in 
module 3, interconnected networks (AUD, DMN, SN, SRN, VAN) 
in module 4 and VSN in module 5. For ASD, the four modules 
detected by GIG-ICA included CRN in module 1, DAN, DMN, 
MTN, and SOM in module 2, AUD, DMN, SN, SRN, and VAN in 
module 3, and VSN in module 4. On the other hand, IVA-GL 
detected two modularities in HC, including AUD, CRN, DMN, SN, 
and SRN in module 1 and CRN, DAN, DMN, MTN, SOM, VAN, 
and VSN in module 2. In ASD, IVA-GL detected three modularities, 
including AUD, CRN, DMN, SN, and SRN in module 1, DAN, 
DMN, MTN, SOM, and VAN in module 2, and CRN and VSN in 
module 3. Although GIG-ICA had a slightly higher Q value than 
IVA-GL (GIG-ICA: HC = 0.27, ASD = 0.29; IVA-GL: HC = 0.26, 
ASD = 0.25), the differences were small, and only provided 
global results.

To further explore the group differences in modules between 
GIG-ICA and IVA-GL, we  conducted a permutation test (10,000 
iterations, p < 0.05) for within-method and between-method 
comparison, as presented in Table  2. Our analysis revealed no 
significant differences in modularity measures between HC and ASD 
for both GIG-ICA and IVA-GL. Furthermore, the global modularity 

6 https://neuroquery.org/

TABLE 1 Demographics and clinical characteristics of subjects.

HC (N  =  105) ASD (N  =  79) p-value

Gender (M/F) 65/10 76/26 0.047a

Age (mean ± SD) 14.84 ± 7.00 15.86 ± 6.33 0.311b

Handedness scores (mean ± SD) 40.65 ± 51.54 65.26 ± 27.51 0.000**b

FIQ (mean ± SD) 107.49 ± 16.45 113.23 ± 13.09 0.011*b

VIQ (mean ± SD) 105.44 ± 15.91 113.09 ± 12.33 0.001*b

PIQ (mean ± SD) 107.16 ± 20.70 110.25 ± 13.79 0.236b

HC, healthy control; ASD, autism spectrum disorders; M, male; F, female; FIQ, full intelligence quotient; VIQ, verbal intelligence quotient; PIQ, performance intelligence quotient (FIQ, VIQ, 
and PIQ are measured by Wechsler Abbreviated Scales of Intelligence; WASI). * represents the p < 0.05 and ** represents the p < 0.001. 
aChi-square.
bTwo-sample t test.
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TABLE 2 Group differences in modularity measures for GIG-ICA and IVA-GL.

Modularity measures HC mean (±std) ASD mean (±std) p-value

Within-method

GIG-ICA Global modularity Q 0.28 (±0.03) 0.28 (±0.04) 0.74

Number of modules 3.28 (±0.58) 3.30 (±0.63) 0.71

IVA-GL Global modularity Q 0.27 (±0.05) 0.27 (±0.06) 0.82

Number of modules 2.95 (±0.61) 2.84 (±0.52) 0.15

Between-method Group Methods p-value

Global modularity Q HC GIG-ICA (0.28 (±0.03)) IVA-GL (0.27 (±0.05)) 0.07

ASD IVA-GL (0.27 (±0.06)) GIG-ICA (0.28 (±0.04)) 0.18

Number of modules HC GIG-ICA (3.28 (±0.58)) IVA-GL (2.95 (±0.61)) <0.001**

ASD IVA-GL (2.84 (±0.52)) GIG-ICA (3.30 (±0.63)) <0.001**

Q of GIG-ICA was not significantly different from that of IVA-GL in 
HC and ASD. However, we did observe significant differences in the 
number of modules between GIG-ICA and IVA-GL in both 
ASD and HC.

In Figure 2A, it was observed that GIG-ICA successfully detected 
significant FNC effects of HC – ASD with p < 0.05 and FDR correction, 
whereas IVA did not. GIG-ICA was able to identify differences in 
functional connections between VAN, CRN, AUD, SRN, and SN, 

FIGURE 1

The mean FNC matrix of GIG-ICA and IVA-GL and their modularity results. (A) FNC correlation (averaged over ASD subjects). (i) and (ii) Show the functional 
network connectivity of pairing components for HC and ASD, respectively. On the left side of the FNC matrix are networks and their corresponding 
components, and the right side of the FNC matrix is the color bar, which represents the size of the correlation. (B) Modular organization of mean FNC matrix 
from GIG-ICA in HC and ASD. The dotted line in the matrix divides the network connectivity into multiple modules. (C) Modularity of the mean FNC from 
GIG-ICA in HC and ASD. The intrinsic networks of the modules and their functional connections were drawn in different colors, in which the thickness of 
the functional connections represents the connection strength. Similarly, (D–F) were the IVA-GL metrics corresponding to GIG-ICA.
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where SN and CRN, SRN and AUD showed positive intensity 
(HC > ASD). Similarly, SN and VAN, AUD, and CRN showed negative 
intensity (ASD > HC). On the other hand, IVA-GL demonstrated that 
the mean FNC values in the ASD group were negatively correlated 
with the social total subscore of the classic Autism Diagnostic 
Observation Schedule (ADOS, which serves as a standard for 
diagnosing ASD), as presented in Figure 2B, while GIG-ICA did not 
find any significant relationship (pi = 0.18, p = 0.2511). However, our 
findings demonstrated significant FNC differences between HC and 
ASD. The IVA-GL showed a statistically negative correlation between 
the FNC of ASD and the ADOS. To summarize, GIG-ICA and 
IVA-GL had a complementary effect on the results of FNC 
statistical analysis.

3.3. Spatial statistical analysis

We utilized a two-sample t-test (p < 0.05) with FDR correction to 
compute spatial differences of mean, using z-scores t maps of 
nonartifact and paired components (Figure 3A). Results showed that 
GIG-ICA had significantly higher amplitudes and larger cluster size 
than IVA-GL, including CRN, DMN, SN, and VSN, respectively. 
Although GIG-ICA detected more activated areas, IVA-GL was better 
at identifying more important brain regions, such as the cerebellum. 
Significant components were matched between GIG-ICA and 
IVA-GL (DMN: r = 0.6586, SN: r = 0.6787) in Figure  3B. IVA-GL 
revealed both positive and negative DMN regions, while GIG-ICA 
only showed positive regions with a slight fluctuation range. On the 
other hand, GIG-ICA displayed a more prominent activation 
intensity in SN, different from IVA-GL. A histogram in Figure 3C 
showed the differences in weighted amplitudes of four components 
between HC and ASD of GIG-ICA and IVA-GL on the network, 

respectively, which included DMN and SN. Most voxels across 
subjects on SN had amplitude values between 1 and 2, while those of 
DMN was between 0 and 1, indicating that SN had more activities 
than DMN. The difference in DMN in Figure 3C was mainly evident 
in the distribution of ASD, while SN was concentrated in HC. These 
results provide significant insights into the neuroanatomy of autism.

Table 3 revealed that GIG-ICA detected more voxels compared to 
IVA-GL. The two-sample t-test p-values for each component at the 
voxel of maximum difference are as follows: SN of GIG-ICA: t-test 
p-value = 6 79 10

12
. � �  (HC < ASD); SN of IVA-GL: t-test 

p-value =1 65 10
06

. � �  (HC < ASD); DMN of GIG-ICA: t-test 
p-value = 2 36 10

06
. � �  (HC > ASD); DMN of IVA-GL: t-test 

p-value = 2 83 10
06

. � �  (HC > ASD). The number of voxels showed 
significant changes after uncorrected and FDR correction, especially 
in DMN, with at least one cluster surviving correction. Given this 
situation, the uncorrected results were also presented in Table 3.

In addition, using the mean gray matter across subjects (Figure 4), 
a corresponding mask was created to calculate the spatial difference 
of variance maps based on the visual network. As anticipated, IVA-GL 
captured more variability than GIG-ICA, and ASD exhibited higher 
variance than HC, a noteworthy phenomenon. The findings suggest 
that autism is associated with a more intricate brain network activity 
than control.

A nonparametric test for variance differences between 
individuals with ASD and HC was conducted, examining the 
mean variance maps for all pairing components. In Figure  5, 
negative logarithm values of p and significant levels were shown, 
with blue and red dots representing IVA-GL and GIG-ICA, 
respectively. The third (CRN) and fourth (DAN) columns differed 
particularly between the two methods, especially in CRN. The 
majority of networks showed significant differences (ASD > HC), 
except for DMN (GIG-ICA: IC = 34, p-value = 0.000; IVA-GL: 

FIGURE 2

FNC analysis differences between GIG-ICA and IVA-GL. (A) Panel A shows significant FNC differences between HC and ASD (p  <  0.05) using two-
sample t-test in GIG-ICA. The line in the ring represents some significant FNC differences, where positive values indicate that HC is greater than ASD 
and vice versa. (B) Panel B illustrates negative relationship between group FNC across ASD and social total subscore of the classic ADOS in IVA-GL. The 
contour lines in the Shepherd’s pi correlation map indicate the bootstrapped Mahalanobis distance from the bivariate mean of the resampled data. The 
black points represent the data included in the correlation analysis and the white points represent the outliers excluded from Shepherd’s pi correlation 
analysis. The solid line represents the linear regression of the data after outlier removal and pi means Spearman correlation values after outlier removal. 
ADOS, autism diagnostic observation schedule.
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IC = 18, p-value = 0.002) and VSN (GIG-ICA: IC = 22, 
p-value = 0.000; IVA-GL: IC = 12, p-value < 0.001). Overall, these 
results indicate that individuals with autism exhibit significantly 
higher variance than those without in CRN, DMN, VAN, 
and VSN.

3.4. Comparison of prediction for IVA-GL 
and GIG-ICA

The feature selection process was used to determine the number 
of voxels for each spatial network. The feature sizes for both methods’ 

FIGURE 3

Spatial statistical analysis in mean based on GIG-ICA and IVA-GL. (A) Significant spatial effect (p  <  0.05). Two sample t-test and FDR correction were 
performed and multi perspective spatial map was displayed. (B) Significant components of networks in HC vs. ASD (p  <  0.05). Here are some statistically 
significant components, which are paired components in GIG-ICA and IVA-GL. (C) Histograms across subjects at cluster peak with significant 
difference, which come from the components with mean differences.

TABLE 3 Two-sample t-test for voxelwise group differences in the mean, based on matching components between GIG-ICA and IVA-GL.

Method
Matching 
components

Peak Foci/T-
value

p-values 
(Unc)

NOV
p-values 

(Cor.)
NOV

GIG-ICA 44 (SN) (−18, 57, −3)/−7.3418 0.015 872 0.006 592

12 (DMN) (3, −30, 24)/4.8750 0.019 251 0.000 23

IVA-GL 13 (SN) (−18, 57, 3)/−4.9548 0.016 328 0.002 124

8 (DMN) (3, −21, 24)/4.8343 0.017 202 0.000 12

Unc, uncorrected; Cor, FDR-corrected; NOV, number of voxels.
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best-performing networks for predicting age were listed (GIG-ICA: 
CRN = 471; IVA-GL: VAN = 622); additional networks can be found 
in the Supplementary material. In terms of the determination 
coefficient R2 in Table 4, the GIG-ICA method had better model fitting 
performance compared to IVA-GL. Permutation tests were used to 
calculate the correlation coefficient and p-values to evaluate the 
prediction results, and a regression plot between the predicted and 
observed values was shown in Figure 6. The root-mean-square error 
(RMSE) values for IVA-GL and GIG-ICA were also displayed in 
Table 4, with the smallest RMSE for IVA-GL in VAN and GIG-ICA in 

CRN. Notably, our results indicated which network is most suitable 
for predicting age using these two methods. Additionally, a paired 
t-test was conducted to detect any differences in prediction values 

FIGURE 4

Variance maps for controls (A) and patients (B) as well as the difference (C) in the variance maps (HCs – ASDs) for visual network (VSN) for both IVA-GL 
and GIG-ICA.

FIGURE 5

p-values for nonparametric test for difference in variance maps of HCs and ASDs for all matching components between two methods.

TABLE 4 Comparison of GIG-ICA and IVA-GL in prediction performance.

Method Network R2 RMSE

GIG-ICA CRN 0.91 3.05

IVA-GL VAN 0.87 3.21
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FIGURE 7

Feature visualization in GIG-ICA and IVA-GL. (A) CRN in GIG-ICA and its corresponding brain regions. (B) The list of detailed brain regions for GIG-ICA. 
(C) Corresponding brain regions for VAN in IVA-GL. (D) The list of detailed brain regions for IVA-GL. All brain regions are labeled according to the AAL 
atlas with each color in C and D corresponding to correlation values.

between IVA-GL and GIG-ICA, but the results showed no significant 
difference (t = −0.09, p-value = 0.92). The performance of all networks 
can be found in the Supplementary Table S1. To aid visualization, 
we presented brain maps in Figure 7 that displayed regions within the 
CRN and VAN that provided the most effective features for prediction.

However, compared to age, the three IQ measures might not 
be reliable predictors. For FIQ and VIQ, GIG-ICA outperforms IVA-GL 
(FIQ (RMSE: GIG-ICA-DMN = 7.22; IVA-CRN = 8.44); VIQ (RMSE: 
GIG-ICA-DMN = 7.66; IVA-VSN = 7.70)). However, for PIQ, IVA-GL 

surpasses GIG-ICA (RMSE: GIG-ICA-SOM = 8.99; IVA-VSN = 8.71). 
Additional details on these results are provided in Supplementary Table S1.

4. Discussion

This study investigated the potential differences between GIG-ICA 
and IVA-GL using resting-state data in ASD and HC. The study mainly 
focused on FNC measures (i.e., global modularity), spatial network 

FIGURE 6

Regression model for age with 95% confidence interval. (A) Linear scatter plot between predicted value and observed value in VAN of IVA-GL. (B) A 
graph similar to IVA-GL for GIG-ICA’s CRN.
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differences (i.e., variance maps), and prediction performance (i.e., 
RMSE). We found that GIG-ICA and IVA-GL have different strengths 
when analyzing brain networks in HC and ASD. GIG-ICA can detect 
more regions and higher amplitudes, while IVA-GL is better at 
identifying abnormal brain regions in ASD. Both methods are equally 
effective at calculating the difference in variance maps between HC 
and ASD and demonstrated a complementary relationship in FNC 
analysis. Although GIG-ICA has better predictive performance, there 
was no significant statistical difference between the two methods.

4.1. FNC strengths and global modularity Q

The FNC strengths and global modularity Q in GIG-ICA were 
greater than those of IVA-GL. These findings align with a previous 
study (Du et al., 2017) that reported similar metrics in the HC dataset. 
However, we conducted additional statistical analyses to determine 
significant differences in the number of modules and global 
modularity Q within and between the two methods. We found no 
significant difference in the number of modules or global modularity 
Q between HC and ASD for within-method comparison. This 
contrasts with previous study in children (5–10 years) with ASD (Sigar 
et al., 2023), which found a significant difference. Given the wider age 
range (7.1–39.1 years) in our study, we  speculate that there may 
be differences in the number of modules and global modularity Q 
between adult and child groups.

Regarding the between-method, we found significant differences in 
the number of modules between GIG-ICA and IVA-GL, regardless of 
HC or ASD. Given that GIG-ICA identifies more modules than IVA-GL, 
this result suggests that brain functional system obtained by GIG-ICA 
has higher integration and IVA-GL has higher segregation and result 
from that GIG-ICA can obtain more reliable networks compared to 
IVA-GL (Du et al., 2017). Additionally, it may also reflect that GIG-ICA 
has higher randomness of functional brain network (Rudie et al., 2013; 
Keown et al., 2017; Henry et al., 2018; Sigar et al., 2023). Our study 
further indicates no significant difference in global modularity Q 
between GIG-ICA and IVA-GL. Notably, GIG-ICA detected differences 
in FNC between HC and ASD, suggesting that it preserved the group 
relationship and identified potential differences. Similarly, IVA-GL 
identified a statistically negative correlation between the FNC of ASD 
and the ADOS, indicating its capability to extract ASD variability.

4.2. Spatial network differences

To investigate spatial variations in variance and mean, 
we  employed various statistical measures to pair GIG-ICA and 
IVA-GL components. Although IVA-GL was previously used to 
analyze schizophrenia (Gopal et al., 2016), we assessed and compared 
the ability of the two methods to detect spatial network differences in 
ASD. During the pairing between the two methods, SN and DMN 
were found to be prominent, and we observed that GIG-ICA showed 
larger network areas and higher t-value differences, while IVA-GL 
identified cerebellar regions important to ASD. Our finding aligned 
with a prior investigation conducted by Du and colleagues, 
demonstrating that GIG-ICA is useful for evaluating coherent 
networks across subjects, whereas IVA-GL can estimate subject-
specific networks (Du et  al., 2017). Interestingly, both methods 

demonstrated similar amplitudes at the voxels of maximum difference. 
In terms of spatial variance analysis, IVA-GL detected more variability 
than GIG-ICA, consistent with previous studies comparing it with 
other methods (Lee et al., 2008; Michael et al., 2014; Laney et al., 2015). 
Moreover, we  found that the group difference pattern (ASD > HC; 
ASD < HC) obtained from GIG-ICA was almost identical to IVA-GL, 
but there were differences in the statistical discrimination of some 
networks (CRN (GIG-ICA: IC = 49, p-value < 0.001; IVA-GL: IC = 44, 
p-value = 0.838), DAN (GIG-ICA: IC = 40, p-value = 0.074; IVA-GL: 
IC = 36, p-value = 0.001)), indicating that the two methods had 
comparable abilities to detect variance map differences.

4.3. Prediction performance

Using a regression model, GIG-ICA and IVA-GL were compared 
to determine which data-driven method was best for predicting age. 
Unlike typical feature selection methods in machine learning, 
we employed a statistical correlation method to identify the voxels 
most relevant to age and eliminated the effects of gender and 
handedness. To comprehensively evaluate the prediction results, 
we utilized a permutation test and the confidence coefficient R2. The 
findings indicated no significant difference between the two methods 
in predicting age. Nevertheless, we displayed the predictive features of 
two networks in Figure 7. In GIG-ICA’s CRN, the vermis and caudate 
was found to have the strongest negative and positive correlation with 
age, respectively. Similarly, for IVA-GL, the motor area correlated 
negatively with age, while the parietal was positively correlated. 
Additionally, the prediction accuracy for IQ is not as high as that for 
age, possibly because of the greater variance in its data.

4.4. Limitations

Despite the thorough evaluation of GIG-ICA and IVA-GL 
performance using various metrics, our study does have some 
limitations. Firstly, our subjects comprise different age groups, which 
might require an additional analysis to examine their differences. 
Since our study mainly focused on methodological differences, we did 
not investigate this aspect. Therefore, further studies will be required. 
Secondly, although a boosted method was used to calculate the FNC 
matrix, further research is needed to verify the effect of extracting 
network information. Considering that the p-value in Figure 2B is 
close to the statistically significant boundary, more work may 
be required to check its validity. Lastly, full IQ was determined by 
averaging the available performance and verbal IQ scores for each 
diagnostic group. Given the significant differences in FIQ and VIQ 
between the HC and ASD groups, the predictive characteristics might 
vary between them. While our comparison of prediction performance 
primarily focused on both methods of the two groups as a whole, 
further research may be necessary to delve deeper into the predictive 
characteristics of each group individually.

5. Conclusion

In conclusion, this study revealed that GIG-ICA and IVA-GL 
have distinct capabilities in identifying brain network modules 
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in HC and ASD, with a complementary effect on FNC statistical 
analysis. GIG-ICA can detect more regions with higher 
amplitudes in spatial network differences, while IVA-GL can 
identify more networks associated with ASD. In addition, both 
methods can accurately determine the difference in variance 
maps between HC and ASD, with GIG-ICA having a better 
predictive performance (GIG-ICA-CRN (R2 = 0.91, RMSE = 3.05, 
R = 0.795) and IVA-VAN (R2 = 0.87, RMSE = 3.21, R = 0.793)), 
although not significantly different from IVA-GL (t = −0.09, 
p-value = 0.92). Finally, the study offers further insights into 
using different data-driven methods to examine neurological 
disorders of resting-state fMRI.
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