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Introduction: An accurate sense of time is crucial in flexible sensorimotor control 
and other cognitive functions. However, it remains unknown how multiple timing 
computations in different contexts interact to shape our behavior.

Methods: We asked 41 healthy human subjects to perform timing tasks that 
differed in the sensorimotor domain (sensory timing vs. motor timing) and effector 
(hand vs. saccadic eye movement). To understand how these different behavioral 
contexts contribute to timing behavior, we applied a three-stage Bayesian model 
to behavioral data.

Results: Our results demonstrate that the Bayesian model for each effector could 
not describe bias in the other effector. Similarly, in each task the model-predicted 
data could not describe bias in the other task. These findings suggest that the 
measurement stage of interval timing is context-specific in the sensorimotor and 
effector domains. We also showed that temporal precision is context-invariant in 
the effector domain, unlike temporal accuracy.

Discussion: This combination of context-specific and context-invariant computations 
across sensorimotor and effector domains suggests overlapping and distributed 
computations as the underlying mechanism of timing in different contexts.
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1. Introduction

How the brain perceives time has been the focus of many studies over the past decades (Tsao 
et al., 2022). The computational goal for measuring time at the present moment is to accurately 
and precisely track elapsed time within an ongoing interval. This computation is integral to 
sensorimotor control and decision-making, yet our subjective experience of time can be biased 
in different contexts. A classic example of this contextual calibration is Vierordt’s law, also known 
as the central tendency effect (Lejeune and Wearden, 2009; Glasauer and Shi, 2021). Vierordt 
showed that short temporal durations tend to be overestimated in a temporal reproduction task, 
whereas long durations tend to be underestimated (Lejeune and Wearden, 2009). However, the 
underlying mechanism of these observations remains unexplained for more than a century. The 
central tendency effect is related to another feature of interval timing: Weber’s law. According 
to Weber’s law, the variability of temporal performance increases with the mean of the time 
interval, also known as scalar variability (Gibbon et al., 1997; Rakitin et al., 1998; Wearden and 
Bray, 2001; Brannon et al., 2008). Although information processing models based on the internal 
clock, memory-mixing, and internal noise were applied to explain contextual calibration and 
Weber’s law (for review see Gibbon et al., 1997; Allman et al., 2014), these approaches did not 
provide a quantitative prediction of the factors that contribute to contextual calibration. 
Furthermore, how the nervous system uses contextual calibration to improve timing behavior 
remains unknown.
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To address the effects of contextual calibration on interval timing, 
a prior study used a Bayesian framework. Jazayeri and Shadlen (2010) 
developed and compared three probabilistic observer models with 
different strategies (i.e., maximum-likelihood estimation, maximum 
a posteriori, and Bayes least-squares). They showed that observers 
used the Bayes least-squares strategy to reproduce temporal intervals. 
This finding was concluded based on the success of the Bayes least-
squares model which provided an accurate description of behavioral 
data in a temporal reproduction task. The Bayesian framework 
suggests that the observer uses two sources of information to estimate 
a sample interval: sensory measurements (i.e., likelihood function) 
and the prior knowledge of the statistical distribution. Bayesian 
models have made great advances in describing a variety of cognitive 
functions including interval timing (Shi et al., 2013; Sadibolova and 
Terhune, 2022). This approach proposes that an optimal observer 
combines noisy sensory measurements with the prior knowledge of 
the statistical distribution of the stimulus to improve behavior. This 
behavioral computation is interconnected with the trade-off between 
accuracy and precision: the prior-dependent bias increases for less 
reliable measurements. Previous studies used Bayesian models to 
elucidate how prior knowledge is formed in different behavioral 
contexts (Nagai et al., 2012; Petzschner et al., 2012; Gekas et al., 2013; 
Kerrigan and Adams, 2013). They suggested that representation of 
prior knowledge is sensory specific after extended training. Roach 
et al. (2017) extended this approach to interval timing. In a temporal 
reproduction task, they applied a Bayesian model to study how priors 
are learned and how they are generalized to different behavioral 
contexts. They showed that participants formed a single prior by 
generalizing across intervals coupled with different sensory modalities 
in early sessions. However, prior generalization was not occurred and 
participants formed multiple, and separate, priors across duration 
distributions when coupled with different effectors. The authors 
suggested that representation of prior knowledge is effector specific, 
but not sensory specific, in the temporal reproduction task without 
extended training. However, it remained unclear how behavioral 
context contribute to timing computations.

To understand the underlying mechanisms of timing, previous 
studies compared timing behavior in different contexts. Several 
psychophysical studies showed that timing behavior, especially scalar 
variability, is similar for different explicit timing tasks or effectors 
(Treisman, 1963; Keele et al., 1985; Ivry and Hazeltine, 1995; Gibbon 
et al., 1997; Meegan et al., 2000; Bartolo and Merchant, 2009). These 
results may suggest that the brain has a specialized set of circuits for 
measuring time across sensorimotor domains and effectors (Ivry and 
Schlerf, 2008). However, electrophysiological and computational 
studies showed that time can be encoded through changes in neural 
population activity over time, or population state dynamics 
(Buonomano and Mauk, 1994; Gouvêa et al., 2015; Egger et al., 2020; 
Zhou et al., 2022). Although dedicated and intrinsic models of timing, 
are not mutually exclusive (Merchant et al., 2008; Polti et al., 2022), 
converging data from psychophysical, neuroimaging and 
electrophysiological studies supported partially overlapping 
distributed timing mechanisms for interval timing (for a review see 
Coull and Nobre, 2008; Paton and Buonomano, 2018; Tsao et al., 
2022). Indeed, a longstanding question is how these distributed timing 
circuits interact to shape temporal behavior. Also, it remains unknown 
how sensorimotor domain or motor response type affect computations 
about time. To address these questions, we applied and compared 

Bayesian models in different temporal contexts. Interval timing tasks 
in this study differed in either the sensorimotor domain (sensory 
timing vs. motor timing) and effector (hand vs. saccadic eye 
movement). Sensory timing refers to tasks in which decisions are 
based on the temporal structure of events while motor timing refers 
to tasks in which subjects time their own action. We hypothesized that 
temporal accuracy and precision are context-invariant if there are 
similar computations across different contexts, but if the brain uses 
several different temporal computations in different contexts, 
we would expect to observe context-specific results. We also would 
like to investigate how these different behavioral contexts affect each 
stage of computations about measuring time.

2. Materials and methods

2.1. Subjects

We enrolled 41 healthy human subjects, (22 females, 
26.76 ± 4.30 years old, reported as mean ± sd). All participants were 
informed of the general purpose of the study but were naïve about the 
scientific questions and tasks, except for two who were the authors. 
Subjects had normal or corrected-to-normal vision and no history of 
neurological or psychiatric disorders. Written informed consent was 
obtained from all participants before the start of the study. Subjects 
performed three psychophysics tasks, each task with two different 
motor response types in separate sessions. Here we only report results 
from two of those tasks. We enrolled the same subjects in all tasks, and 
the order of tasks was counterbalanced between subjects. The Ethics 
Committee of the Institute for Research in Fundamental Sciences 
(IPM) approved this study.

2.2. Apparatus

The experiments were carried out on a computer running Linux 
operating system, on MATLAB (2016b), with Psychtoolbox 3 
extension (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). Stimuli 
were presented on a monitor (17″) placed ~57 cm from the subject 
with a 60 Hz refresh rate. The subject sat comfortably on a chair in a 
dimly lit room to participate in this study, with the head stabilized by 
a head and chin rest. An EyeLink 1000 infrared eye tracking system 
(SR Research, Mississauga, Ontario) was used to record eye 
movements at 1 kHz.

2.3. Temporal reproduction task

Each trial began with the presentation of a central fixation point 
(diameter: 0.2°) and two peripheral targets (left target: 0.5° diameters, 
right target: 2° diameter, 10° eccentricity). After the subject acquired 
fixation within a ±1° of fixation point, a trial would start. After a 
random delay (500 ms plus a random sample from an exponential 
distribution with a mean of 250 ms), two similar wheel-like stimuli 
(2.5° diameter) were flashed (for 26.6 ms each) sequentially around 
the fixation point. The presented stimuli were a circle consisting of 6 
sectors of equal size. The sectors were colored yellow (150 150 50 in 
RGB space) and purple (150 50 150), three each. The subject measured 
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the time from the beginning of the first flash to the beginning of the 
second flash, sample interval or ts, and produced a matching interval, 
tr, by pressing the right arrow key or making a saccade to the right 
target, depending on the block. Across trials, ts was sampled from one 
of 5 discrete values pseudorandomly (400, 500, 700, 1,100, 1900 ms, 
uniform distributions). At the end of each trial, we  showed the 
response error (tr − ts) as feedback for 0.8 s to the subject. The inter-
trial interval was 1.2 s, and each block contained 40 trials. Each subject 
participated in 6 blocks. In 3 blocks, they responded with their hand, 
and in 3 blocks, they responded with a saccadic eye movement. The 
order of response type was counterbalanced between subjects.

2.4. Temporal discrimination task

Each trial started with the presentation of a fixation point and two 
peripheral targets (the same as the reproduction task). After a random 
delay, the first interval (ts1) started with the presentation of the first 
stimulus and ended with the presentation of the second stimulus 
(Figure 1B). The second interval (ts2) immediately started with the 
second stimulus and ended with the presentation of the third stimulus. 
The subject measured the time between the beginning of successive 
flashes as described in the reproduction task, ts1 and ts2. The stimuli 
were the same as the ones we used in the reproduction task, but the 
order of yellow and purple sectors was different. During the ts1 or ts2 
interval, only the fixation point was shown (i.e., empty interval). The 
subject had to compare ts2 with ts1; If ts2 was longer than ts1, then they 
had to press the right arrow key or make a saccade to the right target, 
if ts2 was shorter than ts1, then they had to press the left arrow key or 
made a saccade to the left target. Across trials, ts1 was sampled from 
the same 5 discrete values as in the reproduction task. Duration of ts2 
was ts1 duration ± [6, 12, 24, 48]% of ts1 duration, selected 
pseudorandomly on each trial. Feedback was shown at the end of each 
trial for 0.8 s (a green circle with a 1.25° diameter for correct trials and 

a red circle of the same size for incorrect trials). The inter-trial interval 
was 1.2 s, and each block contained 40 trials. Each subject participated 
in 12 blocks, half with hand response and the other half with eye 
response. The order of response type was counterbalanced 
between subjects.

2.5. Analysis of behavioral data

In the reproduction task, we excluded outlier tr which identified 
with Interquartile range method (for each subject; 166 from 10,080 
trials in total). The mean, standard deviation and range of tr was 
calculated for hand and eye blocks (Table 1). We plotted mean of 
reproduction time (tr) as a function of interval duration (ts) for each 
subject and fitted a linear regression function to them. The fitted 
regression line yielded the magnitude of the compressive bias [C = 1—
the slope of the regression (Roach et al., 2017)] and the indifference 
point [IP, as the time value at which the fitted regression line intersects 
the diagonal unity line (Roach et al., 2017)]. We also evaluated the 
relationship between the interval duration (ts1

2) and timing variance 
(σ2) by fitting another linear regression, according to Weber’s law. The 
resulting slope and intercept correspond to the time-dependent 
(Weber’s fraction) and time-independent processes, respectively 
(Merchant et al., 2008). These analyses were done separately for blocks 
that subject responded by hand and saccadic eye movement.

In the discrimination task, psychometric curves were generated 
by plotting the proportion of long responses over conditions (ts2) for 
each interval (ts1). These points were then fitted by a Gaussian 
cumulative density function with the non-linear least squares method. 
The mean (μ) of the fitted curve provided the point of subjective 
equality (PSE; the time value at which subjects judged ts2 was equal to 
ts1). In order to evaluate how well the psychometric function fitted 
with data, we measured the goodness-of-fit. We excluded poorly fitted 
conditions (R ≤ 0.50, 57 from 410 conditions in total). Subjects with 

FIGURE 1

The sequence of trial events for the reproduction (A) and discrimination (B) tasks. (A) In the reproduction task, subjects had to measure and reproduce 
sample intervals, ts. After the subject acquired fixation and a random delay, ts was demarcated by two visual flashes (stima and stimb). At the end of each 
trial, we showed the response error (tr  −  ts) as feedback. (B) In the discrimination task, subjects had to measure and to compare two different sample 
intervals, ts1 and ts2, demarcated by three visual flashes (stima, stimb, and stimc). ts1 were selected from a discrete uniform distribution, same as the ts in 
the reproduction task. Subjects compared ts2 with ts1 and chose whether ts2 was longer or shorter than ts1 via a manual key press or saccadic eye 
movement in different blocks. At the end of each trial, visual feedback was presented to the subject.
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more than two excluded conditions were excluded entirely from all 
analyses (4 subjects). We  characterized the relationship between 
interval duration (ts1) and PSE by fitting a linear regression. The results 
of this analysis yielded C and IP, as described before. We also evaluated 
the relationship between the interval duration (ts1

2) and variance (σ2) 
of the fitted Gaussian cumulative density function by fitting another 
linear regression to calculate Weber’s parameters. These analyses were 
performed separately for blocks in which subjects responded by hand 
or saccadic eye movement.

We excluded subjects if the calculated indifference point was 
outside the range of presented intervals (i.e., shorter than 400 and 
longer than 1900 ms) in the reproduction task (4 subjects) or the 
discrimination task (4 subjects, one was shared with exclusion based 
on the goodness-of-fit). Based on these exclusion criteria, 11 subjects 
were excluded from all analyses, and 30 remained.

To examine whether these computed variables were different 
between sensorimotor domains and between effectors, for each variable, 
we  performed a two-way repeated measure ANOVA. Wherever 
we found a significant interaction between sensorimotor domain and 
effector, we  applied HSD Tukey statistical test to control for 
multiple comparisons.

2.6. The Bayesian observer model

We applied a Bayesian model with three stages (Jazayeri and 
Shadlen, 2010): measurement, estimation and motor response 
(Figure 2). In the first stage, an observer takes noisy measurements, 
tm, from sample intervals, ts. Measurement noise was modeled as a 
Gaussian function. We modeled the measurement stage as a Gaussian 
distribution with mean ts and standard deviation wmts, whereby the 
standard deviation grows as a constant fraction (wm) of the mean. This 
stage is also known as the likelihood function, λ:
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In the second stage, the Bayesian model combines the likelihood 
function and prior and use mean of the posterior to map the resulting 

posterior probability distribution onto an estimate, te. Bayes least-
squares (BLS) was used as the mapping rule in our model.
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In the third stage, the ideal observer uses te to respond, tr. The 
relationship between tr and te is characterized by motor noise, which 
was modeled by a Gaussian distribution with mean te and standard 
deviation wrte.
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In the reproduction task, our psychophysical data consisted of 
pairs of sample intervals and reproduction times (ts and tr). We derived 
a direct relationship between reproduction times and sample intervals 
in the Bayesian model (Jazayeri and Shadlen, 2010; Acerbi et al., 2012). 
This formulation was then used to describe subject’s responses in each 
effector, separately (Jazayeri and Shadlen, 2010; Acerbi et al., 2012). In 
the discrimination task, we transformed the psychometric function 
(Gaussian cumulative function) to response distribution (Gaussian 
probability function) with same parameters, as previous studies 
described (Getty, 1975; Keele et  al., 1985; Merchant et  al., 2008). 
Responses were generated from this distribution and we had pairs of 
sample intervals and responses. Then same Bayesian formulation was 
used to describe subjects’ responses for each effector:

 p t t w w p t f t w p t t w tmr s m r r m r m s m| | | d, , , ,( ) = ∫ ( )( ) ( )

We maximized the likelihood of model parameters wm and wr 
across all ts and tr values. Maximum likelihood estimation was 
performed with minimize function in SciPy library, using the Nelder–
Mead downhill simplex optimization method. We  evaluated the 
success of the fitting procedure by repeating the search with several 
different initial values.

We performed Pearson correlation between subjects’ data and 
Bayesian model predicted data. To counteract the multiple comparisons 
problem, we performed Bonferroni correction. We showed the effect 
sizes using partial eta squared (η2) in the ANOVA and Bayes factor (BF) 
in the correlation analyses. Statistical analysis was performed with 
Python 3.8.5. A significant level was defined as p-value less than 0.05.

3. Results

In this study, we  asked how sensorimotor domain or effector 
affects computations about time. To answer this question, first 
we compared behavioral data between different sensorimotor domains 
and different effectors.

Human subjects were asked to perform two different timing tasks 
and report their choices via a button press or eye movement (Figure 1). 
Subjects showed both characteristic features of interval timing: central 

TABLE 1 The mean, standard deviation, and range of tr for each effector 
and interval.

Effector Intervals Mean  ±  std Min–max

Hand

0.4 0.53 ± 0.12 0.23–1.38

0.5 0.59 ± 0.14 0.26–1.57

0.7 0.78 ± 0.17 0.08–1.79

1.1 1.07 ± 0.23 0.24–3.74

1.9 1.56 ± 0.35 0.05–3.58

Eye

0.4 0.49 ± 0.14 0.22–1.22

0.5 0.55 ± 0.18 0.24–2.66

0.7 0.72 ± 0.22 0.24–1.79

1.1 1.02 ± 0.28 0.25–2.12

1.9 1.52 ± 0.4 0.23–3.01

Values are reported as mean ± std.
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tendency bias and scalar variability (Figure 3). First, response intervals 
(tr, mean of reproduction time and point of subjective equality for 
reproduction and discrimination, respectively) were systematically 
biased toward the mean of the presented distribution, a phenomenon 
known as central tendency bias. We quantified this central tendency 
bias with two parameters of a regression analysis (see Methods): the 
magnitude of the compressive bias and the indifference point. Second, 
the measurement of longer sample intervals engenders more 
uncertainty, a phenomenon known as scalar variability, as can be seen 
in increasing the standard deviation (σ) as interval time increased. 
Scalar variability was quantified with two parameters of Weber’s law 
(see Method), the time-dependent (Weber’s fraction) and time-
independent parameters of Weber’s law. We also showed temporal bias 
and standard deviation for each subject in different tasks and effectors 
(Figure 4).

To examine the effects of sensorimotor domain and effector on 
temporal processing, we compared central tendency bias and scalar 
variability between different sensorimotor domains and effectors. 
We  did not find any significant difference between blocks 
employing key presses or saccadic eye movements when 
we  compared compression bias (F  = 2.85, p  = 0.1, η2  = 0.01), 
indifference point (F = 0.55, p = 0.44, η2 < 0.01), Weber’s fraction 
(F  = 0.00, p  = 0.99, η2  < 0.01) and time-independent parameter 
(F  = 3.14, p  = 0.09, η2  = 0.03). Similarly, we  did not find any 
significant difference between reproduction and discrimination 
blocks when we compared compression bias (F = 1.78, p = 0.19, 
η2 = 0.02), indifference point (F = 0.35, p = 0.58, η2 < 0.01), Weber’s 

fraction (F  = 1.66, p  = 0.21, η2  = 0.02) and time-independent 
parameter (F = 2.10, p = 0.16, η2 = 0.02). The interaction of effector 
and task on the indifference point was significant (F  = 12.32, 
p < 0.01, η2 = 0.01) but further analysis using HSD Tukey test did 
not find any significant effect in multiple comparison between 
groups (Table 2).

3.1. The Bayesian observer model

To further evaluate the effects of sensorimotor domain and 
effector on temporal processing and to understand the 
computations from which these effects might arise, we applied a 
Bayesian model with three stages (i.e., measurement, estimation 
and motor response) and two free parameters (i.e., measurement 
noise (wm) and motor noise (wr); Methods, Figure 2). We fitted the 
parameters of the Bayesian model, wm and wr, for each subject on 
the basis of tr. Then we compared wm and wr between different tasks 
and different motor response types. While effector did not have any 
significant effect (F  = 2.93, p  = 0.10, η2  = 0.01), tasks (F  = 5.57, 
p < 0.03, η2 = 0.04) had significant effects on wm, and the interaction 
between effector and task reached significant level (F  = 5.44, 
p < 0.03, η2  = 0.02). Post-hoc analysis showed that wm in the 
discrimination with hand (0.18 ± 0.03) was significantly smaller 
than in the reproduction with hand (0.21 ± 0.05, adjusted p = 0.03). 
Both effector (F = 10.31, p < 0.01, η2 = 0.05) and tasks (F = 6.03, 
p = 0.02, η2 = 0.05) had significant effects on wr. Their interaction 

FIGURE 2

The three-stage architecture of the Bayesian observer model. In the first stage, the observer takes noisy measurements, tm, from sample intervals, ts. 
Measurement noise was modeled as a Gaussian function. The second stage is a Bayes least-squares (BLS) estimator. The estimator is a deterministic 
function, f(tm), that maps tm to te. In the third stage, the observer uses te to respond, tr. The relationship between tr and te is characterized by motor 
noise, which was modeled by a Gaussian distribution. An illustration of how compressive biases arise in the model is depicted at the bottom. According 
to the Bayesian approach, an observer combines noisy sensory measurements (i.e., likelihood) with the prior knowledge of the statistical distribution of 
the stimulus to improve behavior.
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was significant as well (F = 19.66, p < 0.01, η2 = 0.06). Additional 
analysis showed that wr was significantly smaller in the 
reproduction with hand (0.16 ± 0.05) than in the discrimination 
with hand (0.24 ± 0.11, adjusted p < 0.01); than the discrimination 

with eye (0.24 ± 0.10, adjusted p < 0.01); and the reproduction with 
eye (0.24 ± 0.05, adjusted p < 0.01, Table 2).

To compare subjects’ responses to those predicted by the model, 
we simulated each subject’s responses using the fitted Bayesian model 

FIGURE 3

Timing behavior in the reproduction (A and C) and discrimination (B and D) tasks. (A) The distribution of reproduction times. (B) The proportion of long 
responses over conditions (ts2) for each interval (ts1). (C) Mean reproduction time as a function of interval duration in the reproduction task (filled 
symbols). Error bars show standard deviation of reproduction time. Solid lines show best-fitting linear regression function, whereas the dotted diagonal 
lines denote unbiased performance. Open symbol represents the estimated indifference point along with bootstrapped 95% confidence intervals. 
(D) Point of subjective equality (PSE) as a function of interval duration in the discrimination task. Error bars show standard deviation of fitted 
psychometric function.

FIGURE 4

Bias and standard deviation for each subject over different tasks and effectors. Each line represents one subject. Discrimination task (D), reproduction 
task (R), hand (H), eye (E).
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and compared model predictions to the actual responses using the 
bias and variability statistics. The correlations showed that our 
Bayesian model can predict subjects’ responses in each effector and 
each task (Figure 5). The model performed better in the standard 
deviation variable compared with bias (Figure  5A vs. Figure  5B). 
When we performed Bonferroni correction the Bayesian model did 
not describe subjects’ data in the discrimination task with hand 
(r = 0.378, p-unc = 0.039, p-corr = 0.157, BF = 1.7; Table 3).

To evaluate the effect of effector, we compared subjects’ responses 
in blocks using a key press to model predictions in blocks using a 
saccadic eye movement and vice versa in the same tasks. In 
reproduction, bias was significantly correlated between model from 
hand data to the data from the eye = 0.47, p  < 0.01, BF = 6.1. The 
correlation between model from eye and data from hand was not 
significant (r = 0.31, p = 0.09, BF = 1.0). However, in the discrimination 
task, bias was not significantly correlated between subjects’ responses 
and model predictions with different effectors (Figure 5 and Table 3). 
In contrast, variability was significantly correlated between subjects’ 
responses and model predictions with different effectors in both tasks 
(rs > 0.50, ps < 0.01).

To evaluate the effect of tasks, we compared subjects’ responses in 
the reproduction task to model predictions in the discrimination task 
and vice versa with the same effector. Bias was not significantly 
correlated between subjects’ responses in each task and model fitted 
to the other task (Figure 5). Variability was significantly correlated 
between subjects’ responses and model predictions with different task 
in the eye blocks (model reproduction, data discrimination: r = 0.64, 
p < 0.01, BF = 218; model discrimination, data reproduction: r = 0.64, 

p < 0.01, BF = 230) but not in hand blocks (Figure 5 and Table 3). The 
scatter plot for each correlation analysis is shown in Figure 6.

4. Discussion

In this study, we  investigated how behavioral contexts affect 
computations about time. We hypothesized that temporal accuracy 
and precision are context-invariant (between both tasks and effectors) 
if there are similar computations across different contexts, but if the 
brain uses several different temporal computations in different 
contexts, we would observe context-specific results. We found that 
compression bias, indifference point, and Weber’s parameters were not 
different between these behavioral contexts. These results might 
qualitatively suggest that temporal accuracy and precision are context-
invariant, but this approach is not precise enough to address the 
mechanistic insight. We investigated further to address this question 
in a quantitative and predictive way. We also showed the effects of 
behavioral context on different stages of timing (i.e., sensing time and 
temporal motor response). We used the Bayesian model of interval 
timing (Jazayeri and Shadlen, 2010; Acerbi et al., 2012; Roach et al., 
2017), which has three stages and two free parameters (i.e., 
measurement noise (wm) and motor noise (wr); Figure 2). Our results 
suggest that motor noise (wr) is context-specific in both effector and 
sensorimotor domains. However, measurement noise (wm) is context-
specific in the sensorimotor domain, but not between effectors. In a 
predictive analysis, we  evaluated model performance in different 
combination of effector and sensorimotor domains.

TABLE 2 Timing behavior between sensorimotor domains and between effectors.

Reproduction Discrimination ANOVA

Hand Eye Hand Eye

C 0.31 ± 0.13 0.31 ± 0.12 0.30 ± 0.14 0.25 ± 0.10

Effector: F = 2.85, p = 0.10, η2 = 0.01

Task: F = 1.78, p = 0.19, η2 = 0.02

Effector × task: F = 1.59, p = 0.22, η2 = 0.01

IP 0.92 ± 0.24 0.75 ± 0.20 0.82 ± 0.26 0.92 ± 0.38

Effector: F = 0.55, p = 0.44, η2 < 0.01

Task: F = 0.35, p = 0.58, η2 < 0.01

Effector × task: F = 12.32, p < 0.001a, η2 = 0.06

Web_s 0.023 ± 0.023 0.031 ± 0.020 0.047 ± 0.090 0.040 ± 0.067

Effector: F = 0.00, p = 0.99, η2 < 0.01

Task: F = 1.66, p = 0.21, η2 = 0.02

Effector × task: F = 2.31, p = 0.14, η2 < 0.01

Web_i 0.010 ± 0.011 0.021 ± 0.016 0.020 ± 0.033 0.025 ± 0.027

effector: F = 3.14, p = 0.09, η2 = 0.03

Task: F = 2.10, p = 0.16, η2 = 0.02

Effector × task: F = 0.77, p = 0.39, η2 < 0.01

wm 0.21 ± 0.05 0.19 ± 0.03 0.18 ± 0.03 0.19 ± 0.03

Effector: F = 2.93, p = 0.1, η2 = 0.01

Task: F = 5.57, p = 0.03a, η2 = 0.04

Effector × task: F = 5.44, p < 0.03a, η2 = 0.02

wr 0.16 ± 0.05 0.24 ± 0.05 0.24 ± 0.11 0.24 ± 0.10

Effector: F = 10.31, p < 0.01a, η2 = 0.05

Task: F = 6.03, p = 0.02a, η2 = 0.05

Effector × task: F = 19.66, p < 0.01a, η2 = 0.06

The magnitude of the compressive bias (C), indifference point (IP), Weber’s fraction (Web_s), time-independent parameters of Weber’s law (Web_i), measurement constant coefficient of 
variation (wm), response constant coefficient of variation (wr).aDenotes a significant difference in two-way repeated measure ANOVA results.
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4.1. Context-specific versus 
context-invariant timing

Previous studies also reported that temporal precision is correlated 
across different sensorimotor domains (Spencer and Zelaznik, 2003) 
and different effectors (Keele et al., 1985). We also found similar results. 
Compression bias, indifference point, and Weber’s parameters were not 
different between these behavioral contexts. Although these 
observations may qualitatively suggest that subjects who are good 
timers in one behavioral context are also good timers in another one, 
converging data from psychophysical studies remain controversial (for 
review see Merchant et al., 2013). We used a mechanistic model to 
address this controversy. Our results demonstrate that the Bayesian 
model for each effector could not describe bias in other effector in 
either reproduction (Figure 5a1) or discrimination (Figure 5a2) tasks. 
Similarly, in each task the model predicted data could not describe bias 
in other task in either hand (Figure 5a3) or eye (Figure 5a4) blocks. This 
absence of correlation suggests that temporal accuracy is context-
specific in the sensorimotor and effector domains. As we mentioned 
earlier, the first two stages of Bayesian model contribute to response 
bias. These findings and the presence of a significantly different 
measurement noise (wm) between different tasks suggest that timing 
computation in the measurement stage is different between behavioral 
contexts. In other words, the measurement stage is context-specific in 
the sensorimotor and effector domains which suggests that the brain 
might use different mechanisms or computations for timing when it 
knows that it has to engage in sensory vs. motor timing tasks with 
different effectors. We also found that the Bayesian model for each 
effector could describe standard deviation in other effector in either 

reproduction (Figure 5b1) or discrimination (Figure 5b2) tasks, which 
suggest temporal precision is context-invariant in the effector domain, 
unlike temporal accuracy. We found similar results in each task in eye 
blocks (Figure 5b4), but not in hand blocks (Figure 5b3). It seems that 
the temporal precision between reproduction and discrimination tasks 
in hand blocks (Figure 5b3) showed different pattern when compared 
with other behavioral contexts (Figures 5b1,2,4). Different temporal and 
non-temporal mechanisms might contribute to this different pattern 
of temporal precision between the reproduction and the discrimination 
tasks. Sensory and motor timing tasks have different instructions and 
different temporal and non-temporal computations which might 
be  recruited in these tasks, for example in the discrimination task 
subject should memorize and sort two different intervals. Different 
working memory components between sensory and motor timing 
tasks may contribute to these different computations in sensorimotor 
domain. Another contributing factor may be inter-stimulus interval. 
Previous studies showed that different inter-stimulus intervals change 
temporal computations in the sensory timing tasks (Karmarkar and 
Buonomano, 2007; Sadibolova et al., 2021). Both sensory and motor 
timing tasks in this study did not have inter-stimulus interval (between 
intervals), however we cannot rule out that the lack of inter-stimulus 
interval has the same effect on sensory and motor timing tasks.

In sensory and motor timing, the observer’s task can be explained 
as accumulating evidence in the time domain and comparing it to a 
bound, similar to what has been shown in decision making (Simen 
et al., 2011). This evolving decision variable would then lead to a motor 
action when reaches a bound. In our sensory timing task, temporal 
decisions and motor responses are made by choosing between two 
alternatives. However, in the motor timing task, decisions and motor 

FIGURE 5

Comparison of timing behavior in human and model observers. (A) The correlation between subject’s bias and simulated data from best fitting model 
for each subject. (B) The correlation between subject’s variability and simulated data from best fitted model for each subject. Reproduction (R), 
discrimination (D), hand (H), eye (E). *Denotes a significant correlation.
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responses are made by choosing when to act. de Lafuente et al. (2015) 
used a two-alternative forced choice (2-AFC) random dots motion 
discrimination task showed that when decisions are communicated by 
different effectors neurons in the medial intraparietal (MIP) area 
exhibit different firing activity. Instead, decision-related activity was 
observed in the lateral intraparietal (LIP) area in both hand and eye 
blocks. We argue that at the computational level, when a temporal 
decision (or maybe any other decision) has to be made in a 2-AFC task, 
temporal measurement (the first stage in our model) raises from 
different computations in eye vs. hand blocks. But when an observer 
wants to decide when to act, a 1-AFC task, temporal measurement had 
the same computations between different effectors.

4.2. Mechanistic insight into explicit timing

In this section we are going to expand our mechanistic insight into 
explicit timing using the results of our study. As we discussed earlier our 
results showed combination of context-specific and context-invariant 

computations across sensorimotor and effector domains. These 
observations suggest overlapping and distributed computations as the 
underlying mechanism of timing in different contexts. Previous 
neuroimaging and electrophysiological studies also support this idea at 
the implementational level of analysis (for review see Coull and Nobre, 
2008; Paton and Buonomano, 2018; Tsao et al., 2022). Several studies 
showed that depending on the task and timescale, many areas had been 
implicated in different temporal contexts (Coull et al., 2004; Jantzen 
et al., 2004; Bengtsson et al., 2005; Garraux et al., 2005; Jantzen et al., 
2005; Pouthas et al., 2005; Jantzen et al., 2007). The results of these 
previous studies suggest that time is encoded in both context invariant 
and context specific areas. In this framework, context specific time 
representation can be encoded through changes in neural population 
activity over time in distributed neural circuits (Paton and Buonomano, 
2018; Tsao et al., 2022). However, a more detailed understanding of the 
neural substrates of context invariant computations is lacking. These 
computations might be implemented in overlapping neural circuits. The 
effects of neuromodulatory systems on distributed neural circuits can 
also play a critical role in context invariant computations of time. 
Previous studies reported that the basal ganglia are activated in timing 
tasks with different effectors (Bengtsson et al., 2005), sensorimotor 
domains (Schubotz and von Cramon, 2001; Bueti et al., 2008), and 
duration scales (Jahanshahi et al., 2006). These studies suggested that 
context invariant computations might be  implemented in the basal 
ganglia. Another study also reported that optogenetic manipulation of 
substantia nigra pars compacta (SNc) dopamine neurons can modify 
timing behavior (Soares et al., 2016). The results of this study suggested 
that dopaminergic projections from the SNc to the striatum could 
modify striatal population dynamics. Considering that the basal ganglia 
is interconnected with widespread regions of the cerebral cortex and 
subcortical areas, it is possible that basal ganglia can modify distributed 
neural circuits in timing tasks. Future studies are needed to address this 
question and to understand how these different timing computations 
are implemented in the brain.

4.3. Applications and future challenges

In this study we showed different context-specific and context-
invariant temporal computations. Previous studies investigated 
interval timing in neurological and psychiatric disorders (for review 
see Allman and Meck, 2012). Malapani et  al. (1998) studied a 
temporal reproduction task in patients with Parkinson’s disease and 
tested patients while they were ON or OFF their levodopa medication. 
They showed in the OFF state, temporal reproduction was impaired 
in both accuracy (bias) and precision (variance). Singh et al. (2021) 
also showed that impaired cue-evoked midfrontal ~4 Hz activity 
predicts increased timing variability and both timing variability and 
midfrontal ~4 Hz rhythms were correlated with overall cognitive 
impairments in patients with Parkinson’s disease. Timing tasks can 
be used as a proxy to reveal pathophysiological changes in different 
neurological and psychiatric disorders and also these studies can 
reveal mechanistic insights into temporal computations. Future 
studies can investigate different context-specific and context-
invariant temporal computations in different pathophysiological 
conditions and expand the mechanistic understanding of these 
different temporal computations.

This study has some limitations. We studied explicit timing tasks 
and our results cannot be generalized to implicit timing tasks. We also 

TABLE 3 Correlation between the subject’s data and model-predicted 
data in each context.

Subjects Models r p p 
(corr)

BF

Bias

R_H R_H 0.527 0.003a 0.011a 16.2

R_H R_E 0.316 0.089 0.356 0.9

R_E R_H 0.471 0.009a 0.035a 6

R_E R_E 0.471 0.009a 0.034a 6.1

D_H D_H 0.378 0.039a 0.157 1.7

D_H D_E −0.017 0.929 1 0.2

D_E D_H 0.028 0.884 1 0.2

D_E D_E 0.492 0.006a 0.023a 8.6

R_H D_H 0.304 0.102 0.204 0.8

D_H R_H −0.085 0.656 1 0.2

R_E D_E 0.232 0.217 0.434 0.4

D_E R_E −0.045 0.815 1 0.2

Standard deviation

R_H R_H 0.817 <0.001a <0.001a >1,000

R_H R_E 0.560 0.001a 0.005a 31.5

R_E R_H 0.566 0.001a 0.005a 35.6

R_E R_E 0.785 <0.001a <0.001a >1,000

D_H D_H 0.97 <0.001a <0.001a >1,000

D_H D_E 0.701 <0.001a <0.001a >1,000

D_E D_H 0.667 <0.001a <0.001a 517.5

D_E D_E 0.940 <0.001a <0.001a >1,000

R_H D_H 0.249 0.185 0.74 0.5

D_H R_H 0.366 0.047a 0.188 1.4

R_E D_E 0.640 <0.001a <0.001a 230.5

D_E R_E 0.639 <0.001a <0.001a 218.4

p (corr) column represent Bonferroni correction results. Bayes factor (BF), discrimination 
task (D), reproduction task (R), hand (H), eye (E).
aDenotes a significant correlation.
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used sensorimotor and effector (i.e., hand and eye response) domains 
as behavioral contexts however future studies are needed to investigate 
the effects of other behavioral contexts including other factors on 
interval timing. The effects of temporal and spatiotemporal learning 
(Emmons et al., 2020; Gür et al., 2023) on the contextual temporal 
computations are also interesting for future experiments. In this study 
we did not compare different computational models of interval timing. 
We showed that the Bayesian model can accurately describe behavioral 
data in different sensorimotor domains and different effectors. Our 
results also showed that the model capture standard deviation better 
than bias (Figure  5A vs. Figure  5B). We  did not investigate the 
underlying reason of this observation, one reason might be that one 
parameter, wm, is responsible for catching the bias and two parameters, 
both wm and wr, are responsible for standard deviation. Previous 
studies also reported that Bayesian models with the Bayes least-
squares strategy in the estimation stage described behavioral data in 
temporal reproduction task with hand response (Jazayeri and Shadlen, 
2010; Acerbi et al., 2012). Our results supported these studies and 
extended these findings to sensory timing and saccadic eye movement. 
However, as we discussed earlier the Bayesian models are not the only 
way to investigate temporal computations. Future studies can compare 
different computational models of interval timing across different 
behavioral contexts.
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FIGURE 6

Extended comparisons of timing behavior in human and model observers. (A) The correlation between subject’s bias and simulated data from best 
fitted model for each subject. (B) The correlation between subject’s variability and simulated data from best fitted model for each subject. 
Reproduction (R), discrimination (D), hand (H), eye (E).
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