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Amblyopia is a common visual impairment that develops during the early years 
of postnatal life. It emerges as a sequela to eye misalignment, an imbalanced 
refractive state, or obstruction to form vision. All of these conditions prevent 
normal vision and derail the typical development of neural connections within 
the visual system. Among the subtypes of amblyopia, the most debilitating 
and recalcitrant to treatment is deprivation amblyopia. Nevertheless, human 
studies focused on advancing the standard of care for amblyopia have 
largely avoided recruitment of patients with this rare but severe impairment 
subtype. In this review, we delineate characteristics of deprivation amblyopia 
and underscore the critical need for new and more effective therapy. Animal 
models offer a unique opportunity to address this unmet need by enabling 
the development of unconventional and potent amblyopia therapies that 
cannot be pioneered in humans. Insights derived from studies using animal 
models are discussed as potential therapeutic innovations for the remediation 
of deprivation amblyopia. Retinal inactivation is highlighted as an emerging 
therapy that exhibits efficacy against the effects of monocular deprivation at 
ages when conventional therapy is ineffective, and recovery occurs without 
apparent detriment to the treated eye.
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Amblyopia and its subtypes

Normal development of the mammalian visual system begins with a prenatal sequence of 
patterned gene expression that interacts with spontaneous electrical activity to produce rudimentary 
neural circuits (Kuljis and Rakic, 1990). Although the primate visual system exhibits some mature 
physiological and anatomical properties at birth (Wiesel and Hubel, 1974; Horton and Hocking, 
1996), its development at this stage is insufficient to support adult visual perception (Teller and 
Boothe, 1962). Human infants have limited visual acuity (Brown and Yamamoto, 1986) and are 
unable to assemble visual details into a whole percept (Cohen and Younger, 1984). Visual experience 
early in postnatal life directs the maturation of neural circuitry to optimize function of the visual 
system and produce clear binocular vision. The important synergy between visual experience and 
neural development is facilitated by a high capacity for neural plasticity that occurs naturally only 
early in postnatal life, during the so-called critical period (LeVay et al., 1980; Olson and Freeman, 
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1980; Hensch, 2005; Mitchell and Maurer, 2022). Although this is a 
formative stage in normal neural development, it also represents a time 
of vulnerability wherein impressionable neural circuits can be misguided 
by conditions that interfere with the piloting influence of normal 
concordant vision. Amblyopia is a visual impairment caused by aberrant 
neural development in the primary visual pathway resulting from early 
abnormal visual experience.

Amblyopia is the leading cause of monocular vision loss in the 
U.S., affecting approximately 2.2 million children (Friedman et al., 
2009), and is the most common cause of monocular visual impairment 
in adults (Grant and Moseley, 2011). It develops as a sequela to 
misaligned eyes (strabismus), an imbalanced refractive state 
(anisometropia), or an obstruction to form vision (deprivation). Each 
of these conditions blocks binocular concordance and derails the 
typical development of neural connections, seeding persistent 
abnormalities within brain regions that assemble visual perception. 
Dysfunctions that result from this cascade of events are many, but 
foremost among them is a pronounced reduction in spatial acuity in 
the affected eye (Ellemberg et al., 2000), impairments to fine motor 
skill and coordination (Kelly et al., 2019), and a reduced or absent 
capacity for stereoscopic vision (Wallace et al., 2011).

Strabismic and anisometropic amblyopia are the most common 
subtypes of the disorder (Pediatric Eye Disease Investigator Group, 2002), 
with deprivation amblyopia being comparatively rare and representing 
only about 3–4% of amblyopia cases (Flynn and Cassady, 1978; Attebo et 
al., 1998). Although less common, deprivation amblyopia is by far the 
most severe subtype, and is the least responsive to conventional treatment. 
It derives from early onset monocular deprivation (MD) or binocular 
deprivation. While our focus will be  on characteristics of MD, a 
comparison of the effects of monocular and binocular deprivation has 
been reviewed elsewhere (Maurer, 2017). The majority of published cases 
of deprivation amblyopia are due to cataract, which causes the disorder by 
obstructing the focus of images on the retina. Whereas anisometropic 
amblyopia started in infancy can take months to develop (Smith et al., 
1985), 2 weeks of MD imposed at the same age is sufficient to produce a 
near complete loss of spatial vision in monkeys (Harwerth et al., 1981). 
Suppression of the amblyopic eye is stronger in children with deprivation 
amblyopia compared to those with anisometropic or strabismic amblyopia 
(Hamm et al., 2017). Treatment outcomes for amblyopia in infants with 
congenital unilateral cataract before the 1980’s were dismal. Recovery 
attempts were considered pointless (von Noorden and Maumenee, 1967), 
and some early published reports even recommended against therapy 
(Costenbader and Albert, 1957; Ryan and Maumenee, 1977).

Insights that emerged from the discovery of a critical period in animal 
studies measuring the effects of MD (Wiesel and Hubel, 1963a,b; Hubel 
et al., 1970) motivated new attempts to examine recovery potential in 
humans treated for unilateral congenital cataract very early in life. These 
studies revealed that recovery was possible under strict conditions that 
included removal of the cataract shortly after birth, provision of corrective 
contact lenses, and compliance with occlusion therapy (Beller et al., 1981; 
Birch et al., 1986; Birch and Stager, 1988). Under these ideal circumstances, 
treated infants under 4 months of age were able to achieve visual acuity 
that was better than previously thought possible, but was sometimes still 
within the range of low vision and well short of normal acuity (Figure 1). 
Infants treated beyond 4 months of age suffered far worse outcomes that 
range from about 20/160 visual acuity to perception of hand motion (Birch 
et al., 1986; Birch and Stager, 1988). Even after an excellent standard of care 
delivered in the prospective National Eye Institute Infant Aphakia 
Treatment Study (NCT00212134), the average visual acuity achieved in 

children with MD was 20/160. Therefore, the common understanding that 
amblyopia can be successfully treated up to about 7 years of age (Holmes 
et al., 2011; Holmes and Levi, 2018) does not apply to amblyopia caused 
by MD. Instead, the disorder appears to express an early and ephemeral 
response to treatment and can improve only under strict therapeutic 
conditions. For these reasons it has been recommended that surgery, 
optical correction, and occlusion therapy be implemented before 6 weeks 
of age to avoid debilitating impairment (Birch and Stager, 1996). Although 
better outcomes are achieved as the amount of patching increases, good 
outcomes occur only when there has been both early treatment and 
extensive patching (Birch et al., 1993; Lewis et al., 1995; Drews-Botsch 
et al., 2012). These characteristics underscore the severity of MD and 
distinguish it from the other amblyopia subtypes.

Traditional monocular therapies have been employed for centuries 
and remain the gold-standard treatment for all types of amblyopia (Levi, 
2020), but they are plagued by adherence issues (Stewart et al., 2003; 
Holmes and Levi, 2018), recurrence of amblyopia after treatment 
(Levartovsky et al., 1995; Jia et al., 2022), and negligible efficacy at older 
ages (Birch and Stager, 1988; Wallace et  al., 2018). The social stigma 
associated with patching can raise stress and anxiety, and adversely impact 
the child–parent relationship (Awan et al., 2005; Loudon et al., 2009; Birch 
et  al., 2019a). Moreover, monocular approaches like patching do not 
restore the loss of stereoscopic vision (Wallace et al., 2011), which is the 
most common binocular deficit of amblyopia (Webber and Wood, 2005). 
Therefore, in recent years, investigation into more effective treatments for 
human amblyopia has shifted focus away from traditional patching or 
penalizing the dominant eye to stimulate recovery (Koo et al., 2017). 
Emerging therapies investigated in humans aim to overcome the issues 
with monocular therapy through engaging and binocular-based 
approaches (reviewed in Levi, 2020; Bui Quoc et al., 2023). Some of the 
additional motivation to pursue binocular treatments has been recognition 
that the fellow eye is not “normal” and that there are significant binocular 

FIGURE 1

This graph plots the Snellen acuity achieved by the amblyopic eye as 
a function of the age at which a unilateral congenital cataract was 
removed and occlusion treatment began. Data demonstrate that, 
unlike other forms of amblyopia, effective treatment of deprivation 
amblyopia adheres to a short critical period in which, to promote 
optimal recovery from congenital MD, therapy must begin before the 
age of about 4  months (dashed vertical line). Therapy initiated 
beyond 4  months of age is associated with poor recovery outcomes. 
Graph displays results that were compiled by Birch and Stager (1988). 
Data originate from Beller et al., 1981 (triangles); Lewis et al., 1986 
(squares); Pratt-Johnson and Tillson, 1981 (diamonds); Helveston 
et al., 1980 (hexagon); Awaya et al., 1979 (inverted triangles); Birch 
and Stager, 1988 (circles). CF indicates ability to count fingers; HM 
indicates the perception of hand movement.
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deficits that cannot be  explained by monocular loss in acuity alone 
(Murphy et  al., 2015; Meier and Giaschi, 2017; Birch et  al., 2019c). 
Binocular treatments are designed to not only restore spatial acuity for the 
impaired eye but also to promote recovery of binocularity and stereopsis. 
Recovery of stereovision is an achievement that typically eludes traditional 
monocular therapies. Notwithstanding the potential benefits that these 
innovative amblyopia treatments may offer to patients, investigation of 
their efficacy has focused almost entirely on strabismic and anisometropic 
amblyopia (Hamm et al., 2017). The exclusion of patients with MD from 
these studies, as well as from National Eye Institute-sponsored Amblyopia 
Treatment Studies of the Pediatric Eye Disease Investigator Group (Chen 
and Cotter, 2016), derives from the obstinance and poor prognosis for 
recovery associated with this subtype of amblyopia.

Given the severity and intractable characteristics of deprivation 
amblyopia, and the paucity of human studies focused on its 
remediation, development of a novel treatment that provides superior 
recovery, and at older ages, would be  clinically transformative. 
Broadening the age limits of successful treatment would alone 
represent a major discovery (Levi, 2020). A treatment innovation 
capable of promoting recovery from the most recalcitrant form of 
amblyopia may also have superior efficacy for the remediation of the 
less severe amblyopia subtypes: anisometropic and strabismic.

Animal models: strengths and 
limitations

Decades of research into the rootedness of amblyopia using 
animal models has overwhelmingly employed closing the lids of one 
eye to produce form MD. The ease of its production alongside the 
large, rapid, and consistent effects that it yields have made lid closure 
the most prolific method to produce amblyopia in animal models. 
This has occurred despite the fact that MD is the rarest and most 
recalcitrant form of amblyopia in humans (Flynn and Cassady, 1978; 
Attebo et al., 1998). Anisometropic and strabismic amblyopia are both 
effectively modeled in cats and monkeys (Kiorpes et al., 1998), and can 
occur naturally in these species (Berman and Payne, 1983; von 
Grünau and Rauschecker, 1983; Horton et al., 1997; Tychsen et al., 
2004). Nevertheless, there are a dwindling number of animal studies 
that induce these more common forms of amblyopia to investigate 
etiology and recovery. Increasing use of anisometropia and strabismus 
to model amblyopia would enable better correspondence with the 
diversity of amblyopia subtypes in the human population and would 
also produce better alignment between animal work and the majority 
of human studies that examine only these conditions.

Although the preponderance of MD studies in animal models may 
present challenges for expeditious clinical translation across amblyopia 
subtypes, insights gained from studies using MD continue to be at the 
vanguard of our knowledge about the regulators of neural plasticity as 
well as the organization and development of the primary visual pathway. 
The robust effects of MD in animals facilitates exploration of 
unconventional approaches to therapy that cannot be  developed in 
human subjects. Further, effective treatments developed and tested in 
animal models using MD are likely to provide relief from all types of 
amblyopia for at least two reasons. First, strabismic, anisometropic and 
MD amblyopia all respond to the same treatments in the clinic (albeit 
with limitations indicated above). Second, therapy effective against the 
deepest and most obstinate form of amblyopia should also be efficacious 
for the more treatable subtypes. Using MD to model amblyopia sets the 

bar high; indeed, in monkeys the induced impairment can be more 
severe than that observed in humans (Kiorpes, 2019).

In recent years, the prolific use of rodents (particularly mice) in 
visual neuroscience has made them a standard model for investigating 
mechanisms of neural plasticity that underlie the emergence of amblyopia 
and that enable its recovery (Heynen et al., 2003; Morishita et al., 2010; 
Kaneko and Stryker, 2023). The mouse has a poorly differentiated visual 
system. Although the power of mouse genetics is undeniable, the 
primitive organization of the mouse visual system gives rise to limitations 
on what can be deduced in humans. Many characteristics that are the 
exclusive domain of cortex in higher mammals appear to be residual in 
rodents. This may offer interesting insight into the evolution of the visual 
system, but it does complicate direct translation of knowledge gained 
from rodent models to other species with more highly differentiated 
visual systems. The exorbitant expense, long gestational times, protracted 
postnatal development, and small litter sizes make mechanistic studies 
difficult to perform on cats and monkeys. Rodent studies have been 
paramount in delineating important characteristics of visual system 
plasticity including the discovery that the mature mammalian brain 
retains considerable capacity for neural plasticity beyond what was 
previously thought (Pizzorusso et al., 2002; Sawtell et al., 2003; He et al., 
2007; Bavelier et al., 2010; Morishita et al., 2010; Fong et al., 2021). These 
findings have motivated investigation of the limits of plasticity and 
recovery from anisometropic and strabismic amblyopia in humans. 
Although some promising results have been observed (Sharif et al., 2019; 
Wu et al., 2023), translating these treatment innovations has not been 
straightforward (Repka et al., 2015; Sofi et al., 2016; Chung et al., 2017; 
Lagas et al., 2019).

Differences between the visual systems of rodents and humans may 
represent a formidable obstacle to the smooth transition from bench to 
bedside. Among the common animal models for amblyopia, visual spatial 
acuity is highest in monkeys (30 cycles / degree; Kiorpes, 1992), followed 
by cats (8–10 cycles / degree; Giffin and Mitchell, 1978; Murphy et al., 
2015), then rats (1 cycle / degree; Prusky et al., 2000) and finally mice 
(0.5 cycles / degree; Prusky and Douglas, 2003). Monkeys and cats have 
forward-facing eyes and a large binocular zone in visual space. Rats and 
mice have lateral facing eyes and a small binocular zone with poor 
stereopsis (Baroncelli et al., 2013; Boone et al., 2021). The structure and 
function of the primary visual pathway in rats and mice is likewise 
substantially different. These burrowing rodents do not have a laminated 
lateral geniculate nucleus (LGN) with eye-specific layers, and unlike 
primates and carnivores, sensory receptive fields can exhibit both 
orientation selectivity and binocular responses (Suresh et  al., 2016). 
Moreover, the responses of binocular neurons in murine LGN are 
modified by MD. This plasticity is not a passive reflection of feedback from 
V1 and appears to result from changes in the retinogeniculate synapses 
(Jaepel et al., 2017; Sommeijer et al., 2017; Huh et al., 2020). In primary 
visual cortex (V1), rodents do not have a human-like ocular dominance 
organization. Instead of stripes or patches of ocular dominance as is 
observed in human, monkey and cat, eye-specific geniculocortical inputs 
to mouse V1 are mixed within a single binocular zone dominated by input 
from the contralateral eye (Coleman et al., 2009). In rats, inputs to V1 
exhibit regions of aggregated eye-specific input within the binocular zone, 
but these domains appear distinct from those observed in higher species 
(Laing et al., 2015). In comparison to humans, the overall amount of 
cortical territory taken up by V1 is markedly smaller for all commonly 
studied model species, including monkeys (Figure 2). The surface area of 
macaque monkey V1 is about 40% of human V1, and for cats this is even 
smaller at 15%. However, these size differences are dwarfed by those 
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observed for rat and mouse V1, which are about 0.5% the area of human. 
The difference in potential computation capacity of V1, alongside their 
very poor visual ability, has fueled the view that rodents are suboptimal 
models for studies of human vision (Baker, 2013). Regarding studies of 
amblyopia, a notable conspicuous limitation to using rodents is that only 
deprivation amblyopia has been successfully modeled. The apparent 
inability for rodents to express the two most common subtypes of human 
amblyopia, namely anisometropic and strabismic amblyopia, presumably 
derives from their dissimilarities compared to humans, which include 
those already mentioned as well as others reviewed elsewhere (Espinosa 
and Stryker, 2012; Baker, 2013; Seabrook et  al., 2017; Mitchell and 
Sengpiel, 2018).

A suggested approach to mitigate failures in extrapolating from 
animals to humans is a “two-species rule”: a result in one species should 
be confirmed in at least one other, ideally a non-human primate (Mitchell 
and Sengpiel, 2018; Levi, 2020). As a model of human amblyopia, 
non-human primates offer significant advantages. Monkeys are similar 
to humans in possessing a fovea, have excellent spatial vision, stereopsis, 
analogous visual cortical pathways, and a response to amblyogenic 
rearing that closely mimics the human condition (see reviews from 
Kiorpes, 2019; Tychsen, 2020). Parlaying the strengths of rodent and cat 
studies with the translation power offered by non-human primates is a 
potential strategy for advancing knowledge gained from animal models.

Insights on neuropathology

We are more than half a century removed from the seminal 
discoveries of Hubel and Wiesel (Wiesel and Hubel, 1963a,b) and much 
progress has been made. Their work spawned a vast collection of 
studies delineating innumerable effects of early visual deprivation. Yet 
still, the underlying neural pathology that gives rise to the functional 
consequences of MD is not fully understood. In cats, monkeys and 
mice, early MD precipitates a weakening and loss of excitatory synaptic 
connections serving the deprived eye (Thorpe and Blakemore, 1975; 
Hubel et al., 1977; Shatz and Stryker, 1978; Antonini and Stryker, 1993; 
Antonini et  al., 1999; Coleman et  al., 2010). This is a presumed 
consequence of binocular competition, in part because comparable 
changes are not observed in the region of V1 receiving input only from 
the contralateral eye (the monocular segment). The MD-induced 
redistribution of excitatory terminals produces a shift in cortical ocular 
dominance that leaves the deprived eye with fewer and weaker synaptic 
connections (Tieman, 1984). This alteration in connectivity results in 
a loss of cortical responsiveness to stimulation of the deprived eye 
(Wiesel and Hubel, 1963a; LeVay et al., 1980; Frenkel and Bear, 2004; 
Figure 3). Therefore, reduction in the number and strength of excitatory 
connections is considered the basis of MD-induced amblyopia (Dews 
and Wiesel, 1970; Giffin and Mitchell, 1978). A similar but less severe 
shift in cortical ocular dominance is observed in monkeys made 
anisometropic during the critical period (Kozma and Kiorpes, 2003; 
Rittenhouse et al., 2006). That these two types of amblyogenic rearing, 
form deprivation and anisometropia, result in a marked shift in ocular 
dominance away from the affected eye (Figure  3) suggests a 
proportionate loss or weakening of excitatory synapses as the primary 
cause of visual impairment (Khibnik et al., 2010). The loss of input 
decreases neuronal spatial sampling density, the so-called spatial 
undersampling hypothesis (Levi and Klein, 1986; Wang et al., 1998).

In contrast to the effect of MD, strabismic monkeys (esotropic or 
exotropic) do not exhibit a loss of synaptic connections serving the 
affected eye in V1. Both eyes are about equally connected to the visual 
cortex, although there is a precipitous decrease in the percentage of 
neurons receiving input from both eyes (Kiper and Kiorpes, 1994; 
Economides et al., 2021). This loss of binocularity in V1 is a feature 
shared across all amblyopia subtypes (Figure 3) and can be explained by 
a uniform set of assumptions for how excitatory synapses modify after 
MD and strabismus (see, e.g., Clothiaux et  al., 1991). However, 
observations in V1 leave unexplained how strabismus degrades visual 
perception in only one eye to cause unilateral amblyopia. The prevailing 
view is that inputs serving the deviated eye are submerged by intracortical 
inhibition, an adaption to avoid double vision (Sireteanu, 1982; reviewed 
in Sengpiel and Blakemore, 1996). Chronic interocular suppression may 
play an active role in the development and progression of amblyopia in 
all subtypes. Binocular suppression of (and by) the impaired eye is not 
specific to strabismic amblyopia. There is evidence for persistence of 
interocular suppression within the visual cortex of monkeys made 
amblyopic by experimentally induced anisometropia (Hallum et  al., 
2017), as well as in humans with deprivation amblyopia (Hamm et al., 
2017). Although the origin of neural suppression is not currently known, 
evidence from strabismic and anisometropic monkeys indicates that the 
capacity for suppression from both the amblyopic and fellow eyes is intact 
(Hallum et al., 2017; Economides et al., 2021). In other words, while the 
obstruction of normal binocular vision stimulates a redistribution of 
thalamocortical and binocular horizontal excitatory connections 

FIGURE 2

Graphical representation of the surface area and tangential ocular 
dominance organization of V1 for human (A), macaque monkey (B), 
cat (C), rat (D), and mouse (E). Note the progressive decrease in 
overall surface area of V1 moving from human to mouse, and also 
the difference in organization observed across species. Scale bar is 
10  mm. Images and organizational details of V1 originate from Adams 
et al. (2007) (human), Horton and Hocking (1996) (macaque 
monkey), Anderson et al. (1988) (cat), Duffy et al. (1998), Laing et al. 
(2015) (rat), and Airey et al. (2006) (mouse).
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(Antonini and Stryker, 1993; Tychsen and Burkhalter, 1995; Trachtenberg 
and Stryker, 2001), inhibitory connections appear to be preserved and are 
not appreciably different from normal (Smith et al., 1997; Hallum et al., 
2017; Economides et al., 2021). It will be important to determine if this 
result is observed after MD.

Therapeutic innovations

The many factors that frustrate traditional treatments for amblyopia 
underscore the need to advance the standard of care. The emergence of 
binocular experience-based therapies is an attempt to address the 
shortcomings of traditional treatment. Dichoptic display therapy, for 
instance, aims to reduce suppression by the fellow eye and promote 
binocular vision by displaying a stronger stimulus to the weaker eye. 
Movies or video game stimuli have been used to promote patient 
engagement and treatment compliance. These and similar therapies 
have produced a promising degree of visual recovery in children and 
adults with anisometropic and/or strabismic amblyopia (Hess et al., 
2010; Li et al., 2010; Vedamurthy et al., 2015; Holmes et al., 2016; Žiak 
et al., 2017; Birch et al., 2019b; Xiao et al., 2022). However, an efficacy 
review by The American Academy of Ophthalmology concluded that 
there was no evidence to support the use of binocular treatment as a 
substitute for standard patching or penalization for the common forms 
of amblyopia (Pineles et al., 2020). Further, binocular treatment has had 
mixed results when administered to children with deprivation 
amblyopia: children with MD from unilateral cataract showed modest 
or no improvement in visual acuity or contrast sensitivity following 
contrast-balanced binocular treatment (Hamm et al., 2018; Birch et al., 
2020). Children with dense congenital cataracts consistently showed no 
improvement even when cataracts were removed at 4–6 weeks after 
birth (Birch et al., 2020). Additional emerging treatments for amblyopia 
include short-term patching of the amblyopic eye (inverse occlusion) 
that can promote durable recovery (Lunghi et al., 2018; Zhou et al., 
2019), and also behavioral training therapy that can improve visual 
acuity in children and adults (Vedamurthy et al., 2015; Pineles et al., 

2020; Kadhum et al., 2023). To our knowledge, the efficacy of these 
therapies has yet to be tested in patients with deprivation amblyopia.

Over the past decade, a bevy of novel approaches have been used to 
correct the effects of MD in animals. Several of these have elicited recovery 
in rodents by selective targeting of specific brain molecules or processes that 
regulate neural plasticity (Maya Vetencourt et al., 2008; Morishita et al., 
2010; Silingardi et al., 2010; Grieco et al., 2020; Venturino et al., 2021). 
Other manipulations have produced recovery or have elevated plasticity 
potential through experiential manipulations such as environmental 
enrichment or exposure to 60 Hz light flicker, which appear to work by 
modulating GABAergic inhibition (Sale et al., 2007; Greifzu et al., 2014; 
Venturino et al., 2021). Complete elimination of visually-driven activity 
through brief dark exposure can also enhance plasticity and promote 
recovery from MD following reintroduction of the animals to a lighted 
environment (He et al., 2007). The motivation for using dark exposure 
derives from studies, both theoretical and experimental, that have shown 
the threshold for Hebbian synaptic strengthening is changed by periods of 
reduced activity in the visual system (Bienenstock et al., 1982; Kirkwood 
et al., 1996; Cooper and Bear, 2012). Once removed from darkness, visually-
driven impulses promote strengthening of weak synapses serving the 
amblyopic eye (reviewed in Leet et al., 2022). The mechanism for this effect 
appears to include the modification of NMDA receptor structure and 
function (Quinlan et al., 1999; Philpot et al., 2001), as well as reconfiguration 
of the extracellular matrix surrounding thalamocortical synapses and 
inhibitory neurons (Murase et al., 2017). The beneficial effect of dark 
exposure on plasticity and recovery has now been demonstrated in three 
species across multiple labs: mice (Erchova et al., 2017); rats (He et al., 2007; 
Montey and Quinlan, 2011); and cats (Duffy and Mitchell, 2013; Gotou 
et al., 2021). However, dark treatment for human amblyopia is impeded by 
the logistical demands required to implement its clinical application. Dark 
therapy has also failed to promote recovery at older ages in cats (Duffy et al., 
2018; Holman et al., 2018).

An alternative approach to reduce cortical activity is silencing 
retinal ganglion cells by intraocular injection of tetrodotoxin (TTX). 
A single intravitreal microinjection of TTX, a potent voltage-gated 
sodium channel blocker, can eliminate retinal output activity for 

FIGURE 3

Ocular dominance histograms compare the effects of different rearing conditions that produce amblyopia. The ocular dominance of neurons sampled 
from the visual cortex of monkeys was measured by assessing the responsivity to stimulation of either the left or right eye. In normal animals there is a 
similar number of neurons connected to the right (group 1) and left (group 7) eye, with neurons connected to both eyes either equally (group 4) or 
somewhere in between (groups 2, 3, 5, 6; data from Kiorpes et al., 1998). Following monocular deprivation there is a strong shift in ocular dominance so 
that most neurons respond only to the non-deprived (fellow) eye (data from Hubel et al., 1977). Anisometropia produced by rearing with a contact lens 
placed in one eye also causes a shift in ocular dominance away from the affected eye, and like other amblyopia subtypes, reduces cortical binocularity 
(data from Kiorpes et al., 1998). Strabismus (esotropia or exotropia) does not result in disconnection of the affected eye but rather reduces the number of 
neurons responsive to both eyes – binocular cells (esotropia data from Kiorpes et al., 1998; exotropia data from Economides et al., 2021).
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FIGURE 4

Data from cat and monkey revealing that the effect of intravitreal injection of TTX is reversible. VEPs (solid circles) measured from V1 in a cat (A; Duffy 
et al., 2023) and monkey (B; preliminary data) using scalp electrodes show a reduction to non-visual baseline levels (open circles) after TTX injection. 
Measurement of VEPs post-inactivation reveal a full recovery back to pre-inactivation levels for both species, indicating that the effect of inactivation 
on VEPs is temporary. OCT scans acquired from the monkey displayed in panel (B) demonstrate comparable retinal nerve fiber layer (RNFL) thickness 
between pre- and post-inactivation measurements (C). Similarly, individual registered b-scans suggest no change in retinal or optic nerve anatomy 
following injection (D). Monkey VEPs were collected for an experiment in which 4 TTX injections were delivered into the right eye over 4  weeks (one 
injection per week). Pre-inactivation VEPs were measured from right V1 at 8  months of age. Inactivation VEPs were measured 24  h after the first 
injection. Post-inactivation VEPs were taken 1  week after the final of four injections. OCT scans were acquired using the Spectralis OCT system 
(Heidelberg Engineering, Heidelberg, Germany), after pupils were dilated with 1% tropicamide. Scans acquired included a high resolution 55×45 degree 
raster scan, and 20×20 degree high speed raster scans centered on the optic nerve head and macula. Images were processed using neural network-
based segmentation algorithms previously described (Srinivasan et al., 2022).

approximately 48 h (Stryker and Harris, 1986; Linden et al., 2009; 
Fong et al., 2016). In comparison to occlusion therapy that eliminates 
only visually-driven activity, inactivation of the retina eliminates both 
visually-driven and spontaneous activity. In the case of MD, only 
dominant eye inactivation is required to markedly attenuate visual 
cortex activity because the amblyopic eye is incapable of driving 
normal cortical activity due to its weak connections. Freed from 
suppression by the dominant eye during the period of inactivation, 
the deprived eye’s excitatory synapses can recover via long-term 
synaptic potentiation (Clothiaux et al., 1991; Fong et al., 2021; Leet 
et  al., 2022). Empirical evidence supporting this theoretical 
framework comes from cat studies (Kratz et al., 1976; Smith, 1981) 
as well as human case reports (Klaeger-Manzanell et al., 1994; El 
Mallah et  al., 2000; Vagge et  al., 2020; Resnick et  al., 2023) that 
demonstrate post-critical period recovery from MD after loss or 
damage to the fellow eye. Recent studies have leveraged this 
knowledge to investigate retinal inactivation as a treatment for 
amblyopia caused by MD. Inactivation of the dominant eye in MD 

mouse or cat produces recovery of visually-evoked potentials (VEPs) 
when applied after the classical critical period (Fong et al., 2021; 
Hogan et al., 2023). Anatomical recovery also occurs. Neurons post-
synaptic to the MD eye grow to normal size (Duffy et al., 2018). To 
be considered as a treatment for human MD, it will be of paramount 
importance to demonstrate full recovery of the inactivated eye in a 
primate model. Assessments to date in cats and monkeys have 
revealed no ocular pathology after inactivation for up to 10 days 
(Foeller and Tychsen, 2019; DiCostanzo et al., 2020; Duffy et al., 
2023; Hogan et al., 2023). Figure 4 demonstrates restoration of VEPs 
following brief monocular inactivation in a cat (A) and macaque 
monkey (B). In both species, VEPs measured after ~10 days of 
inactivation were restored to pre-inactivation levels about 1 week 
after the final TTX injection. Assessment of the inactivated monkey 
eye using optical coherence tomography (OCT) revealed no retinal 
nerve fiber or ganglion cell layer abnormalities after inactivation 
(Figures 4C,D). Future studies are aimed at determining if retinal 
inactivation can enable recovery from deprivation amblyopia in 
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monkeys, as well as assess the influence of age. Success in the primate 
model could pave the way to human studies.

Conclusion

Amblyopia caused by MD is a rare and debilitating visual impairment 
that responds poorly to conventional therapy. Novel treatments being 
developed in human patients largely exclude those with MD because it is 
so resistant to therapy. Animal models offer a unique opportunity to 
address this unmet need. Investigation and development of 
unconventional amblyopia therapies cannot easily be  pioneered in 
humans. With regard to inactivation therapy, the next logical step is to 
investigate its efficacy in primates. If successful, this innovation in MD 
treatment could be extended to target all types of amblyopia.
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