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Introduction: The naturalistic stimuli due to its ease of operability has attracted 
many researchers in recent years. However, the influence of the naturalistic 
stimuli for whole-brain functions compared with the resting state is still unclear.

Methods: In this study, we  clustered gray matter (GM) and white matter (WM) 
masks both at the ROI- and network-levels. Functional connectivity (FC) and 
inter-subject functional connectivity (ISFC) were calculated in GM, WM, and 
between GM and WM under the movie-watching and the resting-state conditions. 
Furthermore, intra-class correlation coefficients (ICC) of FC and ISFC were 
estimated on different runs of fMRI data to denote the reliability of them during 
the two conditions. In addition, static and dynamic connectivity indices were 
calculated with Pearson correlation coefficient to demonstrate the associations 
between the movie-watching and the resting-state.

Results: As the results, we found that the movie-watching significantly affected 
FC in whole-brain compared with the resting-state, but ISFC did not show 
significant connectivity induced by the naturalistic condition. ICC of FC and 
ISFC was generally higher during movie-watching compared with the resting-
state, demonstrating that naturalistic stimuli could promote the reliability of 
connectivity. The associations between static and dynamic ISFC were weakly 
negative correlations in the naturalistic stimuli while there is no correlation 
between them under resting-state condition.

Discussion: Our findings confirmed that compared to resting-state condition, the 
connectivity indices under the naturalistic stimuli were more reliable and stable to 
investigate the normal functional activities of the human brain, and might promote 
the applications of FC in the cerebral dysfunction in various mental disorders.
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1. Introduction

Functional connectivity (FC) was proposed as a measure to 
characterize the temporal synchronization between different brain 
regions (Aertsen et al., 1989; Friston et al., 1993). Biswal and colleagues 
found that primary motor network existed during the resting-state by 
performing FC, suggesting that the human brain has also functional 
pattern even though subjects did not perform a specific task (Biswal 
et al., 1995). Additional intrinsic function networks have also been 
extracted from resting-state fMRI (rsfMRI) adopting the FC measure, 
such as the auditory network (Cordes et al., 2000), visual network 
(Lowe et al., 1998), and default mode network (Greicius et al., 2003). 
Furthermore, FC under rsfMRI has been associated with demographic 
and cognitive measures, such as age (Dosenbach et al., 2010), gender 
(Zhang et al., 2016, 2018b), and fluid intelligence (Finn et al., 2015). 
FC during rsfMRI has also provided an impetus to the field of brain 
disorders, such as autism (Plitta et al., 2015), schizophrenia (Yang 
et al., 2018), Alzheimer (Dennis and Thompson, 2014), and depression 
(Villa et al., 2020). These studies have established that FC measures 
have many important applications in characterizing the human brain’s 
functional activities.

Since static FC (sFC) did not consider the dynamic of signal 
changes in time, researchers further investigate the dynamic 
fluctuation of FC (Chang et al., 2009). Dynamic FC (dFC) also have 
important applications in recognizing relationship between the 
behavioral/clinical measures and brain functional activities such as the 
attention scores (Fong et al., 2019), brain maturity (Qin et al., 2015) 
and cognitive vulnerabilities unmasked by a stressor like sleep 
restriction (Patanaik et al., 2018). Moreover, combining dFC and sFC 
features numerically improves predictions over either model alone 
(Fong et  al., 2019). dFC hold promise to provide fundamental 
information for the neurodegenerative diseases, including Alzheimer’s 
disease (Jones et al., 2012; Córdova-Palomera et al., 2017; Jie et al., 
2018), Parkinson’s disease (Madhyastha et al., 2015; Kim et al., 2017; 
Liu et al., 2018), and dementia with Lewy bodies (Lowther et al., 2014; 
Peraza et al., 2014). The aforementioned studies suggested that the 
dFC is as important as the sFC for understanding the functional 
activity of the human brain and psychiatric disorders.

Accumulating naturalistic stimuli studies including watching the 
movie and listening to the story have attracted the interest of many 
researchers as a compromise between rsfMRI and task-evoked fMRI 
(tfMRI). Compared with rsfMRI, naturalistic condition improves the 
similarity between subjects as they are experiencing the same stimuli 
(Hasson et al., 2004; Nastase et al., 2019). With continuous presentation 
of sound and visual information, naturalistic scanning is closer to the 
real life environment (Chen G. et al., 2020). Furthermore, previous 
studies demonstrated that the naturalistic paradigm was better than the 
resting-state for controlling the head motion, especially for children 
(Vanderwal et al., 2015, 2019; Greene et al., 2018). Movie-watching 
paradigm also has been shown to improve participant arousal levels 
(Vanderwal et al., 2017). Compared with tfMRI, naturalistic condition 
is easier to perform particularly for children, elders, and clinical 
populations (Vanderwal et al., 2015; Huijbers et al., 2017).

As both movie-watching and resting-state had no specific task 
when subjects were scanned, the naturalistic paradigm is more similar 
to rsfMRI than tfMRI, resulting in the universality of FC patterns that 
are especially associated with the resting-state. Finn and Bandettini 
demonstrated that compared to the resting-state condition, FC during 

the naturalistic viewing (i.e., movie watching) gave more accurate 
prediction of trait-like phenotypes in the domains of both cognition 
and emotion (Finn and Bandettini, 2021). A widespread FC pattern 
was identified that it could predict whether individuals are watching 
a movie or resting (Sanchez-Alonso et  al., 2021). To uncover 
differences between two states, Lynch and colleagues calculated the 
FC differences between them, and suggested that the naturalistic 
condition showed weaker FC than the resting-state after correction 
(Lynch et al., 2018). However, only 10 subjects were used in this study 
and the length of the movie clip was less than 6 min, suggesting that 
their findings need to be evaluated in a large group of subjects. In 
another study, the FC reliability of brain networks was significantly 
improved during natural viewing conditions over resting-state 
conditions, with an average increase of almost 50% across various 
connectivity measures (Wang et al., 2017).

The dFC measure has recently been used in the naturalistic stimuli 
as a method of detecting the neuro-information (Sastry et al., 2022). 
For clinical populations involving body dysmorphic disorder (BDD), 
Wong and colleagues uncovered that the naturalistic viewing could 
affect dynamic connectivity when symptoms of BDD were triggered 
(Wong et al., 2021). Previous studies have shown that although dFC 
values exhibited weaker reliability than sFC during the resting-state 
and in the naturalistic viewing condition, the reliability of dFC could 
be significantly improved in the naturalistic viewing (Zhang et al., 
2018a, 2021; Wang et al., 2021).

A basic question in neuroscience is how synchronous different 
subjects’ brains are under the real-world. To answer this question, the 
naturalistic condition such as movie have been used to simulate the 
real-world stimuli. Inter-subject correlation (ISC) and inter-subject 
functional connectivity (ISFC) have been performed to evaluate the 
synchronization between subjects. Hasson and colleagues calculated 
ISC during natural vision and found that similarities for visual, 
auditory, and their association cortices were significantly improved 
(Hasson et al., 2004). Furthermore, dynamic ISC was proposed to 
explore the consistent dynamic connectivity between different subjects 
in widespread brain regions (Di and Biswal, 2020). As an extension of 
ISC, Simony and colleagues introduced ISFC that was calculated 
between the time series in one ROI of one subject and the average time 
series in all ROIs of all subjects. ISFC could be  used to evaluate 
stimuli-evoked correlations, because non-neuronal artificial signals 
are not correlated between different subjects (Simony et al., 2016). 
Moreover, ISFC could be calculated with another way. Specifically, the 
correlation was evaluated between the time series of one ROI of one 
subject and all ROIs’ time series across other subjects. The approach 
of correlating each subject with every other subject (rather than 
correlating each subject’s data with all other subjects’ data average) 
preserves the variability from individual subjects (Cantlon and Li, 
2013). The authors found that primary sensory cortices appeared to 
have strong ISFC consistence (Ren et al., 2017). Furthermore, ISFC 
was proved as an effective measure to evaluate specific brain disorder, 
such as attention deficit hyperactivity disorder (ADHD; Tang et al., 
2019), and had benefit to discover the influence of negative family 
environments for children’s psychological wellbeing (Su et al., 2022). 
The joint model (ISFC + FC) yield the highest predictive accuracy and 
significantly predicted individuals’ social cognitive abilities. The 
model also proved the hypothesize that ISFC and FC provide distinct 
and complementary information about individual differences in social 
cognition (Xie and Redcay, 2022). ISFC has ability to explore the 
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importance of feed-back connections in action prediction (Cerliani 
et al., 2022). Dynamic ISFC (dISFC) was able to isolate effects of the 
naturalistic condition and to capture the temporal information of 
brain activity (Bolton et al., 2019). Furthermore, dISFC could be used 
to detect the functional brain configurations, which autism spectrum 
disorder and typical development subjects continuously adjusted 
based on movie cues under the naturalistic stimulation (Bolton et al., 
2020). The effect of naturalistic stimuli for FC and ISFC compared 
with rsfMRI has not been systematically addressed.

White matter (WM) is a dense structure that connects to different 
gray matter (GM) areas and occupies almost half of human brain (Teo 
et al., 1997; Zhang and Sejnowski, 2000; Arai and Lo, 2009; Harris and 
Attwell, 2012). Although the WM plays an important role in the 
human brain, the functional properties of WM were rarely analyzed 
and frequently ignored in fMRI. Recent studies have suggested that 
WM shows blood oxygen level-dependent (BOLD) signal fluctuations 
similar to those of GM (Peer et al., 2017; Jiang et al., 2019; Ji F. et al., 
2019; Ji G. J. et al., 2019). Peer and colleagues found that the signals of 
WM could be  organized with FC to generate symmetrical WM 
functional networks and the replication was proved in an independent 
group (Peer et al., 2017; Wang et al., 2021). Furthermore, by evaluating 
the reliability of sFC and dFC in GM and WM, Wang and colleagues 
found that the reliability of sFC was higher than that of dFC, applying 
to both WM and GM (Wang et al., 2021). Moreover, WM functional 
signals could be  used to explain neurological diseases, such as 
schizophrenia (Jiang et al., 2019; Fan et al., 2020), Parkinson’s disease 
(Ji G. J. et  al., 2019), and Alzheimer’s disease (Ji F. et  al., 2019). 
However, the influence of naturalistic condition for WM functional 
signals remains unclear.

In this study, we aim to investigate the influence of the naturalistic 
paradigm on the whole-brain FC compared with the resting state. 
We have mainly focused on the following three topics: (1) Compared 
with the resting-state, the differences of naturalistic paradigm for 
different connectivity in whole-brain (sFC, dFC, sISFC and dISFC in 
GM, WM, and between GM-WM); (2) Evaluating the reliability of 
different connectivity in the naturalistic and the resting-state 
conditions; (3) Associations between the naturalistic stimuli and the 
resting-state conditions, and associations between them for different 
connectivity measures. Specifically, we clustered GM templates with 
200 ROIs and 8 functional networks and adopted similar processing 
steps to obtain WM templates with 200 ROIs and 9 functional 
networks. sFC, dFC, sISFC, and dISFC were calculated for both 
movie-watching and resting-state at ROI- and network-levels. To 
compare sFC and dFC between the naturalistic and resting-state 
conditions, we calculated paired-T test to show significant changes 
between two states. The subject-wise bootstrapping (SWB) was 
performed to show the significant sISFC and dISFC induced by 
naturalistic viewing. ICC was performed to demonstrate the reliability 
of FC and ISFC. Heat maps were calculated to denote associations 
between two conditions and between static and dynamic properties.

2. Materials and methods

2.1. Human connectome project data

This study used data from the WU-Minn 7-Tesla Human 
Connectome Project (HCP). This is a widely used open-access 

dataset.1 Using the 7-Tesla scanner a total of 184 subjects were 
scanned. Eight subjects had incomplete data and were therefore 
excluded from this study. We  also removed four subjects with 
missing rest or movie images. Therefore, a total of 172 subjects 
could be used in this study. Briefly, in this study, four sessions were 
scanned across two or three different days. A number of imaging 
sequences including movie-watching and resting-state data was 
performed. Specifically, session1 included MOVIE1, MOVIE2, and 
REST1; session2 included REST2; session3 included REST3; and 
session4 included MOVIE3, MOVIE4, and REST4. The REST and 
MOVIE runs were collected using the same gradient-echo-planar 
imaging (EPI) sequence with the following parameters: repetition 
time (TR) = 1,000 ms, echo time (TE) = 22.2 ms, flip angle = 45 deg., 
field of view (FOV) = 208 × 208 mm, matrix = 130 × 130, spatial 
resolution = 1.6 mm3, number of slices = 85, multiband factor = 5, 
image acceleration factor = 2, partial fourier sampling = 7/8, echo 
spacing = 0.64 ms, bandwidth = 1,924 Hz/Px. The parameters of T1 
series were as following: TR = 2,400 ms, TE = 2.14 ms, TI = 1,000 ms, 
flip angle = 8 deg., FOV = 224 × 224 mm, voxel size = 0.7 mm 
isotropic, BW = 210 Hz/Px, iPAT = 2, acquisition time = 7 min and 
40 s. The direction of phase encoding alternated between posterior-
to-anterior (REST1, REST2, MOVIE2, MOVIE3) and anterior-to-
posterior (REST3, REST4, MOVIE1, MOVIE4). Frames (TRs, 
second) per run for REST = 900; frames of MOVIE1 = 921; frames 
of MOVIE2 = 918; frames of MOVIE3 = 915; frames of 
MOVIE4 = 901.

Detailed information about the Movie paradigm has been 
described elsewhere and therefore only briefly described here (Finn 
and Bandettini, 2021). The MOVIE runs contained several rest and 
movie clips. There was a rest clip before and after movie clips. The 
detailed MOVIE clips’ time points were described in Table 1.

2.2. The preprocessing steps of fMRI 
dataset

The preprocessing steps of fMRI data were performed using 
custom built MATLAB scripts and the Data Processing Assistant for 
Resting-State fMRI (DPARSF; Chao-Gan and Yu-Feng, 2010)2 and 
Statistical Parametric Mapping (SPM12).3 REST and MOVIE data sets 
were analyzed using the same preprocessing steps. The first 20 time 
points were discarded as the first clip of MOVE data was a 20s rest clip, 
and to minimize the T1 relaxation. Head motion was corrected using 
rigid body translation and rotation. T1-weighted anatomic images 
were co-registrated with functional images, then segmented to GM, 
WM, and CSF by using the DARTEL algorithm. Linear drift was 
detrended. CSF signal as covariates were regressed from functional 
images. Head motion was also regressed based on Friston 
24-parameter model (6 head motion parameters, 6 head motion 
parameters one time point before, and the 12 corresponding squared 
items; Friston et al., 1996). To further reduce the influence of head 
motion, we performed scrubbing regressors by motion “spikes,” which 
was defined by the frame-wise displacement (FD) > 1 mm and used 

1 http://humanconnectomeproject.org

2 http://rfmri.org/DPARSF

3 http://www.fil.ion.ucl.ac.uk/spm
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by previous WM BOLD signals studies demonstrating highly reliable 
FC both in GM and WM (Power et al., 2012; Peer et al., 2017; Jiang 
et al., 2019; Wang et al., 2020, 2021). Previous studies demonstrated 
that the head motion scrubbing did not affect correlation coefficients 
and could effectively reduce the influence of head motion (Power 
et al., 2012; Satterthwaite et al., 2013). A temporal filter with range 
from 0.01 to 0.1 Hz was performed to reduce the non-neuronal 
contribution to blood oxygen level dependent fluctuations. The 
functional images were smoothed separately within GM and WM 
using MATLAB scripts to avoid the confusion between GM and WM 
signals. Normalization was performed to transform the smoothed 
functional images to standard Montreal Neurological Institute (MNI) 
space with 3 × 3 × 3 mm3.

After preprocessing the data sets using the steps described 
above, the resting state clips (4 or 5) were removed from the 
MOVIE runs. The remaining time points of MOVIE runs 
were as follows: MOVIE1 = 801 (244 + 222 + 188 + 64 + 83, second); 
MOVIE2 = 818 (227 + 259 + 249 + 83, second); MOVIE3 = 795 
(181 + 185 + 204  + 142 + 83, second); and MOVIE4 = 801 
(233 + 230 + 255 + 83, second; Table 1). MOVIE1 and MOVIE2 were 
concatenated as MOVIE Day1 (time points = 801 + 818 = 1,619, 
second); MOVIE3 and MOVIE4 were concatenated as MOVIE Day2 
(time points = 795 + 801 = 1,596, second); REST1 and REST2 were 
concatenated as REST Day1 (time points = 880 + 880 = 1,760, second); 
REST3 and REST4 were concatenated as REST Day2 (time 
points = 880 + 880 = 1,760, second; Table  2). The advantage of 
concatenation was to increase signal length to improve signal-noise 
ratio. Furthermore, except the last movie clip, all other movie clips 
are different, so it is hard to average MOVIE runs. Though some 
subjects were not scanned in 2 days but in 3 days, we still separate 
them in Day1 and Day2 as shown above.

2.3. Creation of group-level masks and 
functional networks

Group-level structural GM and WM masks were calculated 
separately by MATLAB scripts. First, spatially normalized GM maps 
or WM maps were averaged from all subjects (Figure 1A, step 1). 
Then, the subcortical and cerebellum were removed based on the 
Harvard-Oxford atlas and Buckner atlas. Only values greater than 0.6 
were identified as WM. The voxels were recognized as GM if they were 
not WM and their values were higher than 0.2. If less than 80% of 
them from all subjects was not a number based on obtained GM and 
WM masks, the voxels were removed.

Since the brain function is based on the cooperation of many 
regions whose voxels may be  adjacent in space, normalized cut 
spectral clustering (NCUT) was determined to generate ROIs by its 
spatial constraint (Craddock et  al., 2012). Because WM had no 
functional template and we  wanted to keep the processing steps 
similar between GM and WM, we clustered functional templates with 
200 ROIs as Craddock and colleagues recommended for GM and WM 
by using preprocessed REST1 images. As the processing steps to 
perform clustering for GM and WM were similar, we  have only 
described it for the WM clustering. Voxel-level signals were extracted 
from REST1 fMRI data using the group-level WM mask (Figure 1A, 
steps 2, 3). Then, functional template with 200 ROIs was obtained 
based on NCUT by using voxel-level signals (Figure 1A, step 4). To 
detect FC on a larger scale compared with ROI-level, we also clustered 
network-level functional templates for both GM and WM. Similar to 
the processing for extracting voxel-wise signals, we  got ROI-level 
signals from REST1 images by averaging all voxel time series in the 
ROIs based on the above template (Figure 1A, steps 5, 6). sFC matrices 
were calculated by the Pearson correlation coefficient of ROI-level 
signals (Figure 1A, step 7). We transformed sFC matrices from r to z 
by using the Fisher’s z transform. They were then averaged to generate 
the group-level z matrix. The group-level matrix was converted back 
to r (Figure 1A, step 8). Then, the group-level connectivity matrix was 
as input of K-means analysis to cluster functional networks from 2 to 
20. Based on the elbow criterion of the cluster validity index that was 
calculated by the ratio between within-cluster to between-cluster 
distance and the distance was decided by Squared Euclidean distance 
(Allen et al., 2014). We iterated 100 times to evaluate the relationships 
between the number of functional networks and the elbow criterion. 
By drawing the relationship curve figures, 8 GM functional networks 

TABLE 1 The information about movie runs.

Run Clip Start TP End TP Duration Run Clip Start TP End TP Duration

MOVIE1 1 21 264 244 MOVIE3 1 21 201 181

2 285 506 222 2 222 406 185

3 527 714 188 3 427 630 204

4 735 798 64 4 651 792 142

5 819 901 83 5 813 895 83

MOVIE2 1 21 247 227 MOVIE4 1 21 253 233

2 268 526 259 2 274 503 230

3 547 795 249 3 524 778 255

4 816 898 83 4 799 881 83

Here are the start time point, end time point, and duration of movie clips for all four movie runs. TP, time point.

TABLE 2 The description of concatenate MOVIE and REST runs.

Series Concatenate runs Time points

MOVIE Day1 MOVIE1 + MOVIE2 801 + 818 = 1,619

MOVIE Day2 MOVIE3 + MOVIE4 795 + 801 = 1,596

REST Day1 REST1 + REST2 880 + 880 = 1,760

REST Day2 REST3 + REST4 880 + 880 = 1,760

MOVIE1 and MOVIE2 were concatenated as MOVIE Day1; MOVIE3 and MOVIE4 were 
concatenated as MOVIE Day2; REST1 and REST2 were concatenated as REST Day1; REST3 
and REST4 were concatenated as REST Day2.
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FIGURE 1

Schema of clustering functional networks and FC measures analysis. (A) ROI-level and network-level functional templates were clustered based on 
normalized cut spectral clustering (NCUT) and K-means in WM. The processing steps were: (1) Group WM mask was generated based on all subjects’ 
WM masks. (2) All fMRI data were masked by the group WM mask. (3) Voxels-wise signals were extracted from masked fMRI data. (4) 200 ROIs 
functional template was clustered by NCUT using voxel-wise signals. (5) All fMRI data were masked by ROI-level template. (6) ROI-level signals were 
extracted from fMRI data after being masked. (7) Every subject’s FC matrices were calculated by Pearson correlation coefficient. (8) These matrices 

(Continued)
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and 9 WM functional networks were finally determined because they 
have more clear “turning point” than other network numbers 
(Figure 1A, steps 9, 10; Supplementary Figure S1). Because the serial 
numbers of ROIs in a network were not continuous, we reorganized 
ROIs based on the networks of GM or WM.

2.4. Static FC and static inter-subject FC

Voxel-wise time series were averaged in the ROIs to generate ROI 
time series for each subject. sFC matrices for all ROI pairs across all 
subjects were calculated by using Pearson correlation coefficients in 
MOVIE and REST images (Figure  1B). Fisher’ z transform was 
performed on all subjects’ sFC matrices and above transformed 
matrices were averaged as the group-level sFC matrix. The z values of 
group-level sFC matrix were transformed back to r for more intuitive 
exhibiting the degree of correlation.

Similar to sFC, the static inter-subject FC (sISFC) was calculated 
by the Pearson correlation coefficient based on ROI signals. The 
difference was that sFC was evaluated in the same subject but the 
sISFC was calculated between different subjects. Since the matrices of 
sISFC were not symmetrical for each ROI pair and the diagonal values 
were calculated in the same subject, we averaged each matrix of sISFC 
excluding the diagonal elements. Specifically, the sISFC between 
{Subject x – ROI a} and {Subject y – ROI b} is different from the sISFC 
between {Subject x – ROI b} and {Subject y – ROI a}. Even though 
both presented the sISFC between ROI a and ROI b. Therefore, we first 
performed the Fisher’s z analysis to transform r to z values for the ROI 
a and ROI b sISFC matrix generating sISFC-z matrices. Then, upper 
angular and lower angular values within the sISFC-z matrix were 
averaged as the z value of these two ROIs, which meant that the z 
transformed sISFC matrix was averaged except for its diagonal 
because the diagonal values were the (intra-subject) sFC. After 
averaging, the z values were transformed back to r values as the group-
level sISFC to show correlation level (Figure 1B). We performed the 
same steps above for all ROIs to obtain the group-level sISFC matrix.

2.5. Dynamic FC and dynamic inter-subject 
FC

Sliding window analysis has been commonly used to estimate the 
dynamic FC (dFC; Hutchison et al., 2013; Di and Biswal, 2020; Zhang 
et al., 2021). Previous studies have indicated higher reliability when 
the sliding window size was around 30 s in calculating dFC (Hutchison 
et  al., 2013; Allen et  al., 2014; Leonardi and Van De Ville, 2015). 
Therefore, the current study used a sliding window size of 30 time 
points (30 s), and a time step of 1 time point (1 s). ROI time series were 

extracted from all subjects by averaging all voxels time series in the 
ROI from the same subject. Pearson correlation analysis was 
performed on each sliding window between different ROI time series. 
Thus, there were a series of correlation coefficients across each pair of 
ROIs. We  calculated the standard deviation of these correlation 
coefficient series to generate a dFC matrix for each subject (Figure 1B). 
Group-level dFC was calculated by averaging all subjects’ 
dFC matrices.

Dynamic inter-subject FC (dISFC) was also computed to detect 
the dynamic property across different subjects. ROI signals were 
extracted by averaging all voxels signals in the same ROIs. dISFC was 
then calculated using different subjects’ ROI signals based on the 
sliding window with the same parameters described in dFC. As with 
sISFC, the matrices of dISFC were not symmetric. Therefore, 
we averaged the upper angular and lower angular of all ROI pairs 
dISFC matrices as the values of the group-level dISFC matrix 
(Figure 1B).

2.6. Movie-watching vs. resting-state 
conditions

To estimate the sFC and dFC differences between the movie-
watching and the resting-state conditions, MOVIE vs. REST matrices 
were calculated by subtracting REST matrices from the corresponding 
MOVIE matrices. The pair-T test was performed on pairs of ROI or 
network between the resting-state and the movie conditions to 
determine which ROIs or networks had significant differences 
between two conditions. For any pair of ROIs, there were 172 (number 
of subjects) correlation coefficients. Thus, the inputs of pair-T test 
were the vector of 172 sFC or dFC in the naturalistic condition and 
the vector of 172 sFC or dFC in the resting-state condition for each 
pair of ROIs. Fisher’s z transform was performed on the correlation 
coefficients of sFC before statistics. The above resulting matrices were 
shown as reverted z to r. Bonferroni correction was performed to 
estimate the significant differences with p < 0.05/n (n was the number 
of ROI-pairs or network-pairs).

2.7. Movie-evoked FC

An earlier study demonstrated that FC of the movie-watching 
contained the intrinsic FC in addition to the movie-evoked FC (Lynch 
et  al., 2018). To demonstrate the influence of movie contents, 
we  performed the statistic method of subject-wise bootstrapping 
(SWB). It has been shown that when using SWB, the false positive rate 
was the lowest compared with other nonparametric approaches (i.e., 
element-wise bootstrapping, subject-wise permutation, and 

were transformed to z matrices based on Fisher’s z. And they were averaged as group z matrix. Then group FC matrix was converted back from group 
z matrix. (9) Elbow criterion was used to decide the number of clusters (networks). The cluster validity index was the ratio between within-cluster to 
between-cluster distance. 9 clusters were determined as the results shown. (10) 9 WM networks were clustered by K-means. (B) FC methods. sFC was 
calculated by Pearson correlation coefficient. dFC was calculated by slice window method. Standard deviation was determined as dFC index. sISFC 
matrix was calculated based on Pearson correlation coefficient between ROI a and ROI b from different subjects. sISFC-z matrix was calculated by 
Fisher’s z transform. Group sISFC-z value between ROI a and ROI b was calculated by averaging upper triangular (UT) and lower triangular (LT) of the 
sISFC-z matrix. Group sISFC value was transformed back from z to r. dISFC was calculated using the slice window method between ROI a and ROI b 
from different subjects. dISFC index was also the standard deviation. UT and LT of dISFC matrix were averaged as the group dISFC value between ROI a 
and ROI b.

FIGURE 1 (Continued)
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element-wise permutation) and student’s t-test (Chen et al., 2016). 
Another reason for not using the student’s t-test is that most of the 
ISFC values are dependent, violating the principle of independence 
needed for t-test.

We also performed SWB for ISFC. Since the ISC is calculated 
between pairs of subjects in the same ROI or network, it results in a 
symmetrical ISC matrix. Thus, Chen and colleagues had only focused 
on the lower triangles. However, when the ISFC was calculated using 
different ROIs, the matrix of ISFC was not symmetrical. In other 
words, ISFC contains ISC (Simony et  al., 2016). To solve the 
asymmetrical matrix of ISFC, we calculated centrality-based measure 
on both the lower and upper triangles of ISFC matrices without using 
the diagonal elements of the matrices. Instead of the mean, 
we performed median as the chosen centrality measure of ISFC to 
prevent the back-and-forth transformation processing. For example, 
if using mean value, we should first performed the Fisher’s z transform 
for correlation coefficients, then average above z values, and further 
converted the z values back to correlation coefficients (r). Another 
reason is that the median is less sensitive to biases than the mean when 
data are not represent normal Gaussian distribution (Chen et  al., 
2016). The median of the lower and upper triangles of the ISFC matrix 
was calculated as the statistical parameter from all subjects of each 
ROI or network. Specifically, SWB was performed as following: (1) 
The median value of the ISFC matrix was calculated as the raw median 
value. (2) ISFC values were selected randomly to raw ISFC matrix size 
as bootstrapping ISFC matrix, then the bootstrapping median value 
was calculated based on this bootstrapping ISFC matrix. (3) If the 
bootstrapping median value was higher (lower) than raw median 
value, the number increases by one. (4) Bootstrapping was performed 
using 5,000 repetitions from step (2) to step (3). Then p-value was 
calculated based on the number divided by 5,000. (5) Multiple 
comparison correction was performed by Bonferroni (p < 0.05/n). (6) 
All these steps were performed for each ROI or network within GM, 
WM, and GM-WM. Only the ROI (or network) pairs that passed the 
multiple comparison correlation were shown.

2.8. Reliability

To estimate the reliability of results, the intraclass correlation 
coefficient (ICC) was performed on the FC or ISFC between Day1 and 
Day2 (Müller and Büttner, 1994). Specifically, ICC was computed as:

 
ICC BMS WMS

BMS k WMS
�

�
� �� �1  (1)

where BMS is the between-subjects mean squared variance, WMS 
is the within-subjects mean squared variance, and k is the repetition 
number of scans for each participant (k = 2). The reliability of FC and 
ISFC were calculated as follows: (1) sFC was calculated for all ROI 
pairs across all subjects separate on Day1 and Day2, resulting in 172 
(number of subjects) correlation coefficients for each ROI pair on 
Day1 or Day2. For each pair of ROIs, both Day1 and Day2 have the 
vectors of length 172. sFC ICC matrix was calculated based on the 
vectors between Day1 and Day2 across all ROI pairs. For dFC ICC, 
we used standard deviation to calculate ICC. Finally, sFC ICC and 
dFC ICC in GM, WM, and GM-WM were estimated based on these 

steps above within network- and ROI-levels. (2) For sISFC, we first 
calculated Pearson correlation coefficients between subjects for each 
ROI pairs, resulting in the sISFC matrix for each pair of ROIs. The 
lower and upper triangles of sISFC matrix (excluding diagonal 
elements) were reshaped to a vector (length is 172 × 172 − 
172 = 29,412). After arranging the vectors for both Day1 and Day2, 
sISFC ICC was calculated using the vectors of Day1 and Day2 for each 
pair of ROIs. Similar to dFC ICC, we analyzed the dISFC ICC using 
its standard deviation. These processing steps were performed in GM, 
WM, and GM-WM at the network- and ROI-levels separately.

After calculating the ICC, permutation analysis of ICC was 
performed between the movie-watching and the resting-state. The raw 
difference was calculated by mean ICC value of movie-watching 
subtracting mean ICC value of resting-state. The permutation was 
iterated with 5,000 times. In each iteration, ICC matrices between two 
conditions were shuffled, then separated to two matrices. The random 
difference was calculated by minus between mean values of these two 
matrices. The count was added when the raw difference was lower 
than the random difference. The p value was calculated by the count 
dividing by the iteration number.

3. Results

3.1. Clustering GM and WM functional 
networks

We performed the elbow criterion of the cluster validity index to 
estimate the numbers of functional networks in GM and 
WM. We found that the optimal numbers of functional networks in 
GM and WM were 8 and 9, respectively. These functional networks 
within GM were: lateral visual network (LVN), limbic network 
(LIMB), frontoparietal network (FPN), dorsal attention network 
(DAN), ventral attention network (VAN), medial visual network 
(MVN), sensorimotor network (SMN), and default mode network 
(DMN). These results have been labeled and shown in Figure 2. The 
primary networks contained LVN, MVN, and SMN. The high-level 
networks contained LIMB, FPN, DAN, VAN, and DMN. The 
functional networks in WM were: sensorimotor network (SMN-
WM), occipital network (ON-WM), superior temporal network 
(STN-WM), anterior corona radiata network (ACRN-WM), posterior 
corona radiata network (PCRN-WM), inferior corticospinal network 
(ICN-WM), deep network (DN-WM), orbitofrontal network (OFN-
WM), frontoparietal network (FPN-WM; Figure 2). The superficial 
layers contained SMN-, ON-, STN-, OFN-, and FPN-WMs. The 
middle layers contained ACRN- and PCRN-WMs. The deep layer 
contained DN-WM. The ICN-WM across superficial and 
middle layers.

To compare between the results of clustering and traditional 
networks, we decided the Yeo7 GM networks as the traditional GM 
networks and the Peer12 WM networks as the traditional WM 
networks. The Dice Coefficient was determined as the similarity 
algorithm. As the result shown, somatomotor (Sensorimotor), dorsal 
attention, ventral attention, limbic, frontoparietal, and default mode 
networks indicated the high connection between the Yeo’s networks 
and our networks. The visual network of Yeo was separate to two 
networks, which were lateral visual network and medial visual 
network. For WM networks, some of our WM networks integrated 
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FIGURE 2

Obtaining 8 GM and 9 WM functional networks. (A) GM networks: 01. Lateral visual network (LVN); 02. Limbic network (LIMB); 03. Frontoparietal 
network (FPN); 04. Dorsal attention network (DAN); 05. Ventral attention network (VAN); 06. Medial visual network (MVN); 07. Sensorimotor network 
(SMN); 08. Default mode network (DMN). (B) WM networks: 01. Sensorimotor network in WM (SMN-WM); 02. Occipital network in WM (ON-WM); 03. 
Superior temporal network in WM (STN-WM); 04. Anterior corona radiata network in WM (ACRN-WM); 05. Posterior corona radiata network in WM 
(PCRN-WM); 06. Inferior corticospinal network in WM (ICN-WM); 07. Deep network in WM (DN-WM); 08. Orbitofrontal network in WM (OFN-WM); 09. 
Frontoparietal network in WM (FPN-WM).
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Peer’s WM networks. To be specific, sensorimotor network contained 
semsorimotor superficial white-matter system and dorsal 
frontoparietal tracts; occipital network contained visual superficial 
white-matter system and inferior longitudinal fasciculus system; 
superior temporal network was similar to uncinate and middle 
temporal lobe tracts; anterior corona radiata network was similar to 
ventral frontoparietal tracts; posterior corona radiata network was 
similar to cingulum and associated tracts; inferior corticospinal 
network contained inferior corticospinal tract and posterior cerebellar 
tracts; deep network contained superior longitudinal fasciculus 
system; orbitofrontal network was similar to forceps minor system; 
frontoparietal network was similar to ventral frontoparietal tracts 
(Supplementary Figure S2).

3.2. FC and ISFC in GM

At the ROI-level and network-level analyses of GM regions, the 
resting-state and the movie-watching had similar functional patterns 
of sFC (Figures 3A,C). sFC demonstrated higher FC strengths within 
intra-networks than them within inter-networks (Figure  3A). 
We analyzed the differences of sFC between movie and rest conditions, 
and found the positive and negative values both existed in the 
difference matrix of sFC (Figure 3B). To better discuss the FC within 
networks, we  calculated number of elements, number of passed 
correction elements, number of positive elements, number of negative 
elements, and mean values within networks. More than half of the 
elements relating to LVN, MVN, and SMN passed significance based 
on Bonferroni correction. The above three networks had different 
performances of sFC during the resting-state and the movie-watching. 
All significant ROI pairs relating to LVN had higher sFC values in the 
naturalistic viewing, indicating the movie-watching heightened sFC 
relating to LVN. On the contrary, for significant ROI pairs in the SMN, 
the movie-watching condition showed weaker sFC than that during 
the resting-state. For MVN, most ROI pairs exhibited enhanced sFC, 
but 19% of ROIs showed negative values. The averaged sFC values 
within the various networks ranged between −0.077 and 0.07 
(Table 3). For the sFC Movie vs. Rest matrix at the network-level, 
primary networks had different performances. Specifically, in the 
movie-watching, sFC between LVN and MVN was higher than that 
in the resting state. But the sFC between MVN and SMN was stronger 
under the resting-state than under the naturalistic condition. The 
conditions had no significant difference between LVN and 
SMN. Between primary and high-level networks, sFC values between 
LVN and LIMV and between LVN and DAN were improved by the 
movie stimuli. However, sFC values were lower in the movie-watching 
condition than in the resting-state between LVN and FPN, between 
LVN and VAN, as well as between SMN and DAN. For the high-level 
networks, sFC between VAN and DMN was higher in the movie 
condition than that during the resting-state. However, sFC became 
weaker under the movie stimuli between LIMB and FPN, between 
FPN and DAN, as well as between DAN and VAN (Figure 3D).

The dFC patterns were similar in general between the resting-sate 
and the movie-watching at the ROI-level and network-level 
(Figures 3A,C). dFC showed weaker connectivity fluctuations in intra-
networks than those in inter-networks (Figure 3A). We analyzed the 
differences of dFC between Movie and Rest conditions, and the 
positive and negative values were found in the difference matrix of 

dFC (Figure 3B). The top 3 GM networks were LVN, MVN, and DAN, 
which had most elements that passed multiple correction. Specifically, 
30% of ROIs in the LVN have passed correction. It was found that all 
of them were weaker under the movie-watching than those in the 
resting-state. 27% of ROIs in the MVN demonstrated the significance. 
75% of these ROIs’ values were positive and 25% of them were 
negative. 18% of elements in the DAN have passed the correction. 17% 
of them were positive and 83% of them were negative. The range of 
averaged dFC values was from −0.017 to 0.01 (Table 3). As the dFC 
Movie vs. Rest matrix at the network-level, dFC between LVN and 
MVN became lower in movie-watching than in the resting-state. But 
dFC between MVN and SMN was higher in the naturalistic condition 
than that in the resting-state. Between primary and high-level 
networks, dFC showed lower values under the movie-watching than 
them in the resting-state between LVN and DAN as well as between 
DAN and MVN. Within high-level networks, dFC values were lower 
in the movie condition than them during the resting-state between 
FPN and VAN. But, the movie stimuli improved dFC values between 
LIMB and FPN, between DAN and VAN, and between LIMB and 
DMN (Figure 3D).

We did not find the specific functional pattern of sISFC and dISFC 
in the resting-state at the ROI-level. Under the movie-watching 
condition, compared to other functional networks, the sISFC values 
relating to LVN and MVN exhibited enhancement. However, dISFC 
did not show clear functional patterns (Figure 3A). At the network-
level, compared with the naturalistic condition, the resting-state did 
not show the clear sISFC and dISFC patterns. sISFC values of LVN, 
MVN, as well as between LVN and MVN were improved by the 
movie-watching condition. Compared with LVN, the enhancements 
of dISFC in MVN and between LVN and MVN were more evident 
(Figure 3C).

3.3. FC and ISFC in WM

As shown in the sFC matrices at the ROI-level and network-level, 
the movie-watching did not modify the functional patterns compared 
with the resting-state (Figures 4A,C). About the Movie vs. Rest matrix 
of sFC, the naturalistic condition increased FC within some networks, 
but the opposite situation also existed in some networks (Figure 4B). 
Specifically, about 30% of the ROIs passed the multiple comparison 
correction in the SMN-WM, and most (99%) of these ROIs were 
negative values. 33% of ROIs demonstrated significance within 
ON-WM, and 77% of them were positive values (Table 4). As the sFC 
Movie vs. Rest matrix at the network-level, sFC values between SMN- 
and ON-WMs and between STN- and OFN-WMs were lower in the 
naturalistic condition than them in the resting-state within the 
superficial layer. However, sFC between STN- and FPN-WMs was 
higher in the movie-watching than that during the resting-state within 
the superficial layer. As the WM network crosses superficial and 
middle layers, ICN-WM showed high sFC values with superficial 
networks, including SMN-, STN-, and FPN-WMs. As layers between 
superficial and middle, the sFC between STN- and PCRN-WMs was 
weak in the naturalistic condition. However, the sFC values between 
STN- and ACRN-WMs, and between PCRN- and FPN-WMs became 
strong from the resting-state to the movie condition. For layers 
between superficial and deep, the sFC between ON- and DN-WMs 
was lower in the movie-watching while sFC values between SMN- and 
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FIGURE 3

ROI- and network-levels FC and ISFC matrices in GM. (A) ROI-level sFC, dFC, sISFC, and dISFC matrices were calculated separately in the resting-state 
and the movie-watching. (B) sFC and dFC Movie vs. Rest matrices were calculated by subtracting REST matrices from the corresponding MOVIE 

(Continued)
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DN-WMs, and between DN- and OFN-WMs were higher in the 
movie-stimuli than them during the resting-state. The sFC between 
ACRN- and PCRN-WMs was improved by the movie-watching in the 
middle layer. Between middle and deep layers, the sFC between 
PCRN- and DN-WMs was higher in the movie condition than that 
during the resting-state (Figure 4D).

The dFC patterns under the movie-watching condition were 
similar to the corresponding values in the resting-state at the ROI-level 
and network-level (Figures 4A,C). For the dFC Movie vs. Rest matrix 
at the ROI-level, 22% of ROIs in the ON-WM demonstrated the 
significance and 83% of them were negative. Only a small fraction of 
elements (4%) passed multiple comparison correction in the 
SMN-WM (Table  4). For the dFC Movie vs. Rest matrix at the 
network-level, dFC between STN- and FPN-WMs of the superficial 
layers was lower during the movie-watching than that in the resting-
state. But dFC values between SMN- and ON-WMs, and between 
STN- and OFN-WMs were higher in the movie-stimuli than them 
during the resting-state. Between superficial and middle layers, dFC 
between STN- and ACRN-WMs became low from the resting-state to 
the movie-watching. For layers between middle and deep, the dFC 
also got low in the movie condition compared with the resting-state 
between PCRN- and DN-WMs (Figure 4D).

For ISFC matrices at the ROI-level, only the sISFC matrix of the 
movie-watching demonstrated distinct functional patterns. The sISFC 
patterns of ON- and STN-WMs were found to be distinct during the 
movie watching (Figure 4A). For sISFC and dISFC matrices at the 
network-level, the resting-state did not show clear patterns. The movie 
stimuli have improved sISFC values of the ON- and STN-WMs. 
Compared with sISFC matrix, only the ON-WM showed a relatively 
stable signal due to its low dISFC value during the movie-watching. 
On the other hand, inter-networks connectivity had relatively fewer 
sISFC and higher dISFC values compared with the intra-networks 
(Figure 4C).

3.4. FC and ISFC in GM-WM

Like GM and WM, the resting-state and the movie-watching had 
similar sFC patterns at the ROI-level and the network-level 
(Figures 5A,C). Unlike GM or WM in which intra-network FC values 
were talked at the ROI-level, we  calculated Pearson correlation 
coefficients between GM and WM networks both in the resting-state 
and during the movie-watching. In general, the correspondence 
between GM and WM functional networks were similar, and the only 
difference was that the GM network corresponding to the PCRN-WM 
became the MVN under movie-watching condition from DMN 
during the resting-state. However, as the absolute difference of 
correlation coefficients between MVN-PCRN (GM-WM 
networks) and DMN-PCRN was less than 0.01, GM network could 
be  thought as the DMN corresponding to the PCRN-WM 
(Supplementary Tables S1, S2). For the matrix of sFC Movie vs. Rest 
at the ROI-level, 40% of elements in SMN-SMN and MVN-ON passed 
correction. 99% of SMN-SMN values were negative. 47% of MVN-ON 
values were positive and 53% of them were negative. 32% of elements 
in LVN-ACRN, DMN-PCRN, and LVN-DN have demonstrated 
significance. 77% of LVN-ACRN values were positive. 100% of 
DMN-PCRN and 95% of LVN-DN values were negative (Table 5). 
Under the movie-watching condition, the sFC matrix showed stronger 
connectivity for MVN-ON and SMN-SMN. However, we  also 
observed weaker connectivity between GM-WM networks including 
the LVN-DN, LVN-ICN, VAN-FPN, and DMN-PCRN in the movie 
condition. LVN-ACRN, LIMB-STN, and DMN-OFN did not show 
significant differences between the resting-state and the naturalistic 
conditions (Figure 5D).

dFC of the resting-state and movie-watching performed 
similar functional patterns at the ROI-level and the network-level 
(Figures 5A,C). As dFC Movie vs. Rest matrices at the ROI-level, 
MVN-ON demonstrated most correction elements. Still, only 20% 

matrices. They were performed the pair-T test and were corrected by Bonferroni. ROIs that did not pass the Bonferroni were set blank. (C) Networks-
level sFC, dFC, sISFC, and dISFC matrices were calculated separately in the resting-state and the movie-watching. (D) The processing steps within 
network-level sFC and dFC Movie vs. Rest matrices were similar to ROI-level. LVN, Lateral visual network; LIMB, Limbic network; FPN, Frontoparietal 
network; DAN, Dorsal attention network; VAN, Ventral attention network; MVN, Medial visual network; SMN, Sensorimotor network; DMN, Default 
mode network.

FIGURE 3 (Continued)

TABLE 3 sFC and dFC in GM networks.

Networks NoE NoPE (NoPE/NoE) NoP (NoP/NoPE) NoN (NoN/NoPE) Mean

sFC dFC sFC dFC sFC dFC sFC dFC

LVN 225 138 (61%) 68 (30%) 138 (100%) 0 (0%) 0 (0%) 68 (100%) 0.070 −0.017

LIMB 1,089 300 (28%) 120 (11%) 166 (55%) 0 (0%) 134 (45%) 120 (100%) 0.004 −0.009

FPN 529 134 (25%) 70 (13%) 116 (87%) 0 (0%) 18 (13%) 70 (100%) 0.027 −0.011

DAN 256 72 (28%) 46 (18%) 30 (42%) 8 (17%) 42 (58%) 38 (83%) −0.014 −0.007

VAN 441 196 (44%) 50 (11%) 14 (7%) 34 (68%) 182 (93%) 16 (32%) −0.051 0.001

MVN 400 210 (53%) 106 (27%) 40 (19%) 80 (75%) 170 (81%) 26 (25%) −0.051 0.010

SMN 1,600 798 (50%) 242 (15%) 0 (0%) 240 (99%) 798 (100%) 2 (1%) −0.077 0.010

DMN 1,024 292 (29%) 24 (2%) 4 (1%) 10 (42%) 288 (99%) 14 (58%) −0.046 0

NoE, number of elements; NoPE, number of passed correction elements; NoP, number of positive elements from correction elements; NoN, number of negative elements from correction 
elements. LVN, lateral visual network in GM; LIMB, limbic network in GM; FPN, frontoparietal network in GM; DAN, dorsal attention network in GM; VAN, ventral attention network in 
GM; MVN, medial visual network in GM; SMN, sensorimotor network in GM; DMN, default mode network in GM.
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FIGURE 4

ROI- and network-levels FC and ISFC matrices in WM. (A) ROI-level sFC, dFC, sISFC, and dISFC matrices were calculated separately in the resting-state 
and the movie-watching. (B) sFC and dFC Movie vs. Rest matrices were calculated by subtracting REST matrices from the corresponding MOVIE 

(Continued)
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of elements passed multiple comparison correction. 40% of their 
values were positive and 60% of their values were negative. There 
were too few elements left after correction for other networks 
between GM and WM (Table 5). For the matrix of dFC Movie vs. 
Rest at the network-level, MVN-ON, LVN-ACRN, LVN-DN, 
DMN-OFN and VAN-FPN exhibited similar connectivity patterns 
with the sFC results. For other networks between GM and WM, 
dFC of SMN-SMN was higher while LIMB-STN performed weaker 
dFC value under the naturalistic viewing than them during the 
resting-state. Furthermore, LVN-ICN and DMN-PCRN did not 
show significant differences between the resting-state and the 
movie condition (Figure 5D).

For four matrices of ISFC at the ROI-level, only sISFC matrix in 
the movie condition showed functional patterns. sISFC values in 
LVN-ON and MVN-ON were stronger than other networks 
(Figure 5A). At the network-level, sISFC and dISFC did not denote 
any clear functional patterns in the resting-state. sISFC values of 
LVN-ON, DAN-ON, MVN-ON and LIMB-STN were improved by 
the naturalistic stimuli. For dISFC in movie-watching, only MVN-ON 
performed weaker signal fluctuation compared with the resting-state 
(Figure 5C).

3.5. Movie-evoked FC

The subject-wise bootstrapping (SWB) was performed to detect 
the significant activation induced by the movie stimuli. However, 
we did not observe any ROI or network that exhibited the significant 
activation in both sISFC and dISFC. We also repeated the analysis 
steps in the Day2 data and the results were similar to Day1. Though 
the movie-watching did enhance ISFC of the visual networks for both 

GM and WM, as the matrices have shown in Figure  5, the 
improvements were not strong enough to pass the 
nonparametric approach.

3.6. Reliability analysis

In general, the intraclass correlation coefficients (ICCs) in the 
movie-watching were higher than them during the resting-state in 
GM, WM, and GM-WM. In detail, sFC and sISFC values in the 
resting-state were low, and their ICCs were poor. sISFC and dISFC 
values of visual networks denoted relatively high reliability including 
the LVN, MVN, and ON-WM than other networks. sISFC and dISFC 
values between visual networks of GM and WM have also shown 
strong reliability. These results about visual networks performed 
similarly at the ROI-level and network-level.

Compared with the resting state condition, the sISFC ICC of SMN 
at network-level under the movie-watching showed relative 
improvement. At the ROI-level, the sISFC ICC of SMN was smaller 
than the corresponding value obtained at the network-level. The sISFC 
ICC of DAN exhibited a similar result between ROI- and network-
levels under the movie-watching condition. The network-level dFC 
ICCs between FPN and VAN and between LIMB and DMN were 
relatively high, and their ROI-level results had a similar result 
(Figure 6).

For WM, the sISFC ICCs within STN-WM, between ON- and 
ACRN-WMs, and between STN- and FPN-WMs were high in the 
movie-watching. As the dFC, the ICCs between SMN- and 
ACRN-WMs and between OFN- and FPN-WMs showed the high 
values under the movie condition. The dISFC ICC denoted high value 
between ON- and DN-WMs in the movie stimuli (Figure 7).

matrices. They were performed the pair-T test and were corrected by Bonferroni. ROIs that did not pass the Bonferroni were set blank. (C) Networks-
level sFC, dFC, sISFC, and dISFC matrices were calculated separately in the resting-state and the movie-watching. (D) The processing steps within 
Network-level sFC and dFC Movie vs. Rest matrices were similar to ROI-level. SMN, Sensorimotor network; ON, Occipital network; STN, Superior 
temporal network; ACRN, Anterior corona radiata network; PCRN, Posterior corona radiata network; ICN, Inferior corticospinal network; DN, Deep 
network; OFN, Orbitofrontal network; FPN, Frontoparietal network.

FIGURE 4 (Continued)

TABLE 4 sFC and dFC in WM networks.

Networks NoE NoPE (NoPE/NoE) NoP (NoP/NoPE) NoN (NoN/NoPE) Mean

sFC dFC sFC dFC sFC dFC sFC dFC

SMN-WM 1,156 352 (30%) 42 (4%) 2 (1%) 40 (95%) 350 (99%) 2 (5%) −0.067 0.005

ON-WM 1,024 342 (33%) 224 (22%) 262 (77%) 38 (17%) 80 (23%) 186 (83%) 0.028 −0.008

STN-WM 169 16 (9%) 6 (4%) 14 (88%) 0 (0%) 2 (12%) 6 (100%) 0.016 −0.007

ACRN-WM 576 102 (18%) 2 (0.4%) 68 (67%) 0 (0%) 34 (33%) 2 (100%) 0.010 −0.004

PCRN-WM 81 12 (15%) 0 (0%) 0 (0%) 0 12 (100%) 0 −0.034 −0.002

ICN-WM 169 26 (15%) 0 (0%) 0 (0%) 0 26 (100%) 0 −0.055 0.001

DN-WM 1,156 20 (2%) 2 (0.2%) 18 (90%) 0 (0%) 2 (10%) 2 (100%) −0.001 −0.002

OFN-WM 441 22 (5%) 12 (3%) 14 (64%) 0 (0%) 8 (36%) 12 (100%) 0.010 −0.008

FPN-WM 400 52 (13%) 2 (0.5%) 2 (4%) 0 (0%) 50 (96%) 2 (100%) −0.022 −0.003

NoE, number of elements; NoPE, number of passed correction elements; NoP, number of positive elements from correction elements; NoN, number of negative elements from correction 
elements; SMN-WM, sensorimotor network in WM; ON-WM, occipital network in WM; STN-WM, superior temporal network in WM; ACRN-WM, anterior corona radiata network in WM; 
PCRN-WM, posterior corona radiata network in WM; ICN-WM, inferior corticospinal network in WM; DN-WM, deep network in WM; OFN-WM, orbitofrontal network in WM; FPN-
WM, frontoparietal network in WM.
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FIGURE 5

ROI- and network-levels FC and ISFC matrices between GM and WM. (A) ROI-level sFC, dFC, sISFC, and dISFC matrices were calculated separately in 
the resting-state and the movie-watching. (B) sFC and dFC Movie vs. Rest matrices were calculated by subtracting REST matrices from the 

(Continued)
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For GM-WM, ROI-level sISFC ICC in DAN-ON was higher 
under the movie-watching than that during the resting-state. 
Generally, the sISFC reliability of GM-WM networks was enhanced 
by the naturalistic condition in network-level, especially in 
SMN-SMN, DAN-ON, LIMB-STN, LVN-ACRN, SMN-STN, 
MVN-PCRN, LIMB-FPN, and DAN-FPN. The dFC values of 
DMN-PCRN and FPN-FPN exhibited higher reliability than others in 
the resting-state. dISFC ICC of LVN-DN performed relatively high 
reliability under the movie-watching compared with the resting-state 
and other networks (Figure 8).

Permutation analysis was performed between the movie-
watching ICC matrix and the resting-state ICC matrix to evaluate 
the reliability differences between two conditions. As the result 
shown, most of FC and ISFC indicated p < 0.0001. The biggest p 
value was in network-level GM dFC ICC matrices between the 
movie-watching and the resting-state, which was around with 
0.01 (Supplementary Table S3).

3.7. Association between movie-watching 
and resting-state

We calculated the heat maps to estimate the associations between 
the resting-state and the movie-watching using both static and 
dynamic connectivity indices. Positive correlations for sFC were 
observed between the movie-watching and the resting-state in GM, 
WM, and GM-WM. Moreover, dFC also showed a degree of positive 
correlation between the movie condition and the resting-state. For 
sISFC and dISFC associations between naturalistic condition and 

resting-state, there were no correlations in GM, WM, and GM-WM 
(Figure 9).

Associations between sFC and dFC in the resting-state and the 
movie-watching showed negative correlations in GM, WM, and 
GM-WM. In addition, we did not observe any correlations between 
sISFC and dISFC under the resting-state, but a relatively negative 
correlation was observed between sISFC and dISFC in the movie-
watching (Figure 10).

4. Discussion

The current study compared the spatiotemporal characteristics of 
whole-brain FC between the naturalistic and the resting-state 
conditions. We found that the naturalistic stimuli not only improved 
sFC within and between networks compared with the resting-state, 
but lower sFC values also existed in some networks during the movie-
watching. dFC values demonstrated opposite in general. The movie-
watching did not change the FC patterns compared with the resting-
state. sISFC was enhanced by the naturalistic condition, but the 
movie-watching had limited effect on dISFC, especially for ROI-level. 
The naturalistic paradigm improved the reliabilities of sFC, dFC, 
sISFC, and dISFC. Moreover, sFC and dFC showed positive 
correlations between the two conditions. sISFC and dISFC had 
negative correlation under the naturalistic viewing, but they 
demonstrated no correlation during the resting-state.

We found the high consistency patterns between the resting-state 
and movie-watching conditions similar to previous studies about the 
rfMRI and tfMRI (Cole et al., 2014; Krienen et al., 2014; Gratton et al., 

corresponding MOVIE matrices. They were performed the pair-T test and were corrected by Bonferroni. ROIs that did not pass the Bonferroni were set 
blank. (C) Networks-level sFC, dFC, sISFC, and dISFC matrices were calculated separately in the resting-state and the movie-watching. (D) The 
processing steps within Network-level sFC and dFC Movie vs. Rest matrices were similar to ROI-level. GM: LVN, Lateral visual network; LIMB, Limbic 
network; FPN, Frontoparietal network; DAN, Dorsal attention network; VAN, Ventral attention network; MVN, Medial visual network; SMN, Sensorimotor 
network; DMN, Default mode network. WM: SMN, Sensorimotor network; ON, Occipital network; STN, Superior temporal network; ACRN, Anterior 
corona radiata network; PCRN, Posterior corona radiata network; ICN, Inferior corticospinal network; DN, Deep network; OFN, Orbitofrontal network; 
FPN, Frontoparietal network.

FIGURE 5 (Continued)

TABLE 5 sFC and dFC between GM and WM networks.

Networks 
(GM-WM)

NoE NoPE (NoPE/NoE) NoP (NoP/NoPE) NoN (NoN/NoPE) Mean

sFC dFC sFC dFC sFC dFC sFC dFC

SMN-SMN 1,360 546 (40%) 128 (9%) 8 (1%) 117 (91%) 538 (99%) 11 (9%) −0.014 −0.004

MVN-ON 640 259 (40%) 129 (20%) 121 (47%) 51 (40%) 138 (53%) 78 (60%) −0.006 −0.005

LIMB-STN 429 117 (27%) 47 (11%) 65 (56%) 7 (15%) 52 (44%) 40 (85%) −0.027 −0.004

LVN-ACRN 360 115 (32%) 14 (4%) 88 (77%) 5 (36%) 27 (23%) 9 (64%) 0.009 −0.006

DMN-PCRN 288 93 (32%) 9 (3%) 0 (0%) 2 (22%) 93 (100%) 7 (78%) 0.045 −0.008

LVN-ICN 195 26 (13%) 0 (0%) 8 (31%) 0 18 (69%) 0 0.033 −0.006

LVN-DN 510 165 (32%) 0 (0%) 9 (5%) 0 156 (95%) 0 0.038 −0.006

DMN-OFN 672 72 (11%) 26 (4%) 24 (33%) 0 (0%) 48 (67%) 26 (100%) −0.007 −0.006

VAN-FPN 420 117 (28%) 10 (2%) 10 (9%) 7 (70%) 107 (91%) 3 (30%) 0.051 −0.009

NoE, number of elements; NoPE, number of passed correction elements; NoP, number of positive elements from correction elements; NoN, number of negative elements from correction 
elements; SMN-SMN, sensorimotor network in GM and sensorimotor network in WM; MVN-ON, medial visual network in GM and occipital network in WM; LIMB-STN, limbic network in 
GM and superior temporal network in WM; LVN-ACRN, lateral visual network in GM and anterior corona radiata network in WM; DMN-PCRN, default mode network in GM and posterior 
corona radiata network in WM; LVN-ICN, lateral visual network in GM and inferior corticospinal network in WM; LVN-DN, lateral visual network in GM and deep network in WM; DMN-
OFN, default mode network in GM and orbitofrontal network in WM; VAN-FPN, ventral attention network in GM and frontoparietal network in WM.
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2016). They suggested that the patterns of the functional networks 
were relatively stable, and the tasks or naturalistic condition only 
influenced the strength of FC. Lynch and colleagues denoted that all 
of the significant connectivity differences were stronger under the 
resting-state than that under the movie-watching, particularly for 
visual networks (Lynch et  al., 2018). However, several weaker 
connections were observed in the current study under the resting-
state than them during the naturalistic condition. Further, the increase 
and decrease in connectivity occurred in both primary and high-level 
GM networks, and superficial, middle, and deep WM layers. This 
denotes the influence of the naturalistic viewing for connectivity is not 
dependent on the traditional classifications of primary and high-level 
networks in GM and layers in WM, but the effect of the movie-
watching for FC relates to the whole-brain. The explanations could 
be that: (1) The naturalistic condition contains a wealth of information, 

which induced different effect for different functional networks. (2) 
Functional networks might affect each other (Demirci et al., 2009). 
Tian and colleagues found considerable resemblance among movie-
watching FC based on different movies (Tian et al., 2021), suggesting 
that the type of movie has limited impact on FC.

The higher ISFC under the naturalistic viewing was found to 
be associated with visual networks. Specifically, sISFC of LVN, MVN, 
ON-WM, and MVN-ON was improved during the movie-watching, 
demonstrating that ON-WM may show more similarly visual function 
to MVN than LVN. We  found the sISFC within STN-WM was 
improved during the naturalistic viewing as STN-WM could 
be consider as the hub for the distributed brain network in complex 
stimuli (Jefferys et al., 2012; Lahnakoski et al., 2012). The movie-
watching condition reduced dISFC values of MVN, ON-WM, and 
MVN-ON at the network-level. But for other networks at the 

FIGURE 6

The ICC analysis of FC and ISFC in GM. (A) ROI-level sFC, dFC, sISFC, and dISFC ICC matrices were calculated separately in the resting-state and 
movie-watching. (B) Network-level sFC, dFC, sISFC, and dISFC ICC matrices were calculated in the resting-state and the movie-watching separately. 
LVN, Lateral visual network. LIMB, Limbic network; FPN, Frontoparietal network; DAN, Dorsal attention network; VAN, Ventral attention network; MVN, 
Medial visual network; SMN, Sensorimotor network; DMN, Default mode network.
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network-level and all networks at the ROI-level, the naturalistic 
viewing performed limited effect about dISFC.

As the number of time points in MOVIE DAY1 and MOVIE 
DAY2 are different, we balanced the number of time points between 
them by extracting the first 1,596 time points of MOVIE DAY1, and 
compared the difference matrix of FC and ISFC. The results showed 
that there was limit change of FC and ISFC after the balance in the 
whole-brain (Supplementary Figures S3–S5).

The reliability of FC and ISFC was evaluated by ICC. In general, 
ICC values of the movie-watching were higher than them of the 
resting-state, denoting that the naturalistic viewing could improve the 
reliability of FC and ISFC. In addition, previous studies have 
demonstrated that ICCs of sFC were stronger than that of dFC within 
whole-brain under the resting-state (Wang et al., 2021). In our study, 
we also found that the reliability of sFC was higher than that of dFC 

under the naturalistic condition. Further reliability analysis showed 
the low reliability corresponding to sISFC and dISFC under the 
resting-state, denoting that ISFC may not be suitable for the resting-
state due to the huge variance between subjects in the resting-state. 
The reason may be that subjects may have different thoughts under 
the rest scanning inducing the high signal fluctuation between 
subjects. Therefore, ISFC values were lower in the resting-state than 
those under the movie-watching. Though ISFC maps showed relative 
reliability in the naturalistic condition, ISFC ICC values were weaker 
than FC ICC values under the naturalistic viewing. The reason may 
be that FC is affected by more noise than ISFC, as ISFC could isolate 
the noise (Simony et al., 2016).

Chen and colleagues suggested nonparametric approaches 
and parametric methods for ISC (Chen et al., 2016, 2017; Chen 
G. et al., 2020). As these statistical approaches were designed for 

FIGURE 7

The ICC analysis of FC and ISFC in WM. (A) ROI-level sFC, dFC, sISFC, and dISFC ICC matrices were calculated separately in the resting-state and 
movie-watching. (B) Network-level sFC, dFC, sISFC, and dISFC ICC matrices were calculated in the resting-state and the movie-watching separately. 
SMN, Sensorimotor network; ON, Occipital network; STN, Superior temporal network; ACRN, Anterior corona radiata network; PCRN, Posterior corona 
radiata network; ICN, Inferior corticospinal network; DN, Deep network; OFN, Orbitofrontal network; FPN, Frontoparietal network.
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ISC and nonparametric approaches were easier to be performed, 
we  determined SWB as the statistics of ISFC to detect the 
significantly movie-evoked connectivity. However, no significant 
ISFC was observed including visual networks, suggesting that 
though the naturalistic paradigm could enhance the inter-subject 
synchronization, the enhancement is not strong enough to pass 
the statistics. The reason may be  that different subjects have 
different responses to the complex movie stimuli. Furthermore, 
non-significance of ISFC may also be because that the statistics 
approaches of ISC are not suitable for ISFC. ISFC is calculated 

between all of ROIs or networks across subjects, but ISC is 
evaluated between subjects in a same ROI or network.

The heat maps were performed to estimate the associations 
between static and dynamic properties during two conditions and the 
associations of connectivity indices between the naturalistic viewing 
and the resting-state. We found positive correlations between sFC of 
the resting-state and sFC of the naturalistic condition in GM, WM, and 
GM-WM. We also observed the relatively positive correlations between 
dFC of two conditions in whole-brain, suggesting a degree of similarity 
of FC between the resting-state and the movie-watching. Furthermore, 

FIGURE 8

The ICC analysis of FC and ISFC between GM and WM. (A) ROI-level sFC, dFC, sISFC, and dISFC ICC matrices were calculated separately in the resting-
state and movie-watching. (B) Network-level sFC, dFC, sISFC, and dISFC ICC matrices were calculated in the resting-state and the movie-watching 
separately. GM: LVN, Lateral visual network; LIMB, Limbic network; FPN, Frontoparietal network; DAN, Dorsal attention network; VAN, Ventral attention 
network; MVN, Medial visual network; SMN, Sensorimotor network; DMN, Default mode network; WM: SMN, Sensorimotor network; ON, Occipital 
network; STN, Superior temporal network; ACRN, Anterior corona radiata network; PCRN, Posterior corona radiata network; ICN, Inferior corticospinal 
network; DN, Deep network; OFN, Orbitofrontal network; FPN, Frontoparietal network.
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both sISFC and dISFC showed no correlations between the two 
conditions, as there was scarcely any ISFC between subjects under the 
resting-state. The resting-state and the movie-watching showed 
similarly negative correlations between sFC and dFC in GM, WM, and 
GM-WM. We did not find any correlation between sISFC and dISFC 
under the resting-state, but sISFC values had weakly negative 
correlations with dISFC values under the naturalistic paradigm in 
whole-brain, suggesting that the movie-watching enhanced ISFC 
compared with the resting-state. However, considering the statistic 
results and the range of ISFC values, the enhancement is relatively weak.

Previous study has shown that even though movie contents were 
different in different scanning runs, there was considerable resemblance 
among movie-watching FC based on different movies (Tian et al., 2021). 
The similarity was also demonstrated in our study, and the most obvious 
networks were visual networks in gray matter and occipital network in 
white matter. However, the functional networks connectivity was 
reasonably considered to be influenced by the movie content. In HCP 
data, MOVIE1 and MOVIE3 contained clips from independent films 
(both fiction and documentary) made freely available under Creative 
Commons license on Vimeo. MOVIE2 and MOVIE4 contained clips 
from Hollywood films including action, adventure, science fiction, 
biography, drama, crime, thriller, and so on. In this study, we combined 
MOVIE1 and MOVIE2 as MOVIE Day1, and combined MOVIE3 and 
MOVIE4 as MOVIE Day2. The different movie types between MOVIE 
Day1 and MOVIE Day2 were science fiction (Day1), crime (Day1), 
thriller (Day1), comedy (Day2), family (Day2), and fantasy (Day2). The 
ICC values of LIMN, DAN, STN-WM, and OFN-WM were lower than 

other networks. LIMN could mediate emotional regulation and reward 
processing (Chen Y. L. et  al., 2020). There was an evidence for a 
modulatory role of the DAN on the orienting of attention in space (Ptak 
and Schnider, 2010). The correlation between STN-WM and LIMN was 
higher than 0.8. Therefore, STN-WM probably has the similar function 
as LIMN. OFN-WM performed over 0.7 correlation coefficient with 
DMN that works in unison with language networks at certain points in 
the narrative, while exhibiting antagonistic responses at other times 
(Simony et al., 2016). Overall, as these networks demonstrated emotion, 
attention, and so on brain functions, different types of movie clips might 
induce different signals in a brain. Therefore, the low ICC values of these 
networks might be affected by different scanning runs and different 
movie types.

In this study, there are some limitations. (1) When subjects 
were watching movies, the brains were in a higher arousal 
condition with less head motion (Vanderwal et al., 2017). The 
effect of the noise should be evaluated about connectivity between 
the resting-state and the movie-watching in the following studies. 
(2) In this study, the subject studied were mostly between 22 and 
35 years of age and did not cover the entire life span. It is quite 
possible, as has been shown in recent papers, that there are 
differences in sFC and dFC as the age range is increased and 
across gender (Jiang et al., 2020; Wen et al., 2020; Sen and Parhi, 
2021; Snyder et al., 2021; Di and Biswal, 2022). Thus, it is quite 
possible that as a greater age range is used the systematic 
differences of the spatiotemporal characteristic of FC may 
be  present. (3) Whether parametric method is better than 

FIGURE 9

Heat maps of sFC, dFC, sISFC, and dISFC between the resting-state and the movie-watching in GM, WM, and GM-WM. We calculated the Pearson 
correlation coefficients for all connectivity indices between the resting-state and the naturalistic viewing. The densities were evaluated based on these 
correlation coefficients by using circles method.
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nonparametric method for ISFC, and whether the influence 
between ROIs or networks of different subject should be consider 
in the parametric statistics, they are needed to be clarified in the 
future studies. (4) As the FC metrics were calculated based on 
data obtained from Caucasian populations, therefore there is 
potential influence when performing same calculations to 
Chinese populations (or other ethnic populations). Ge and 
colleges have studied the influence of populations about brain 
function between Chinese and people living in Western countries 
that from HCP dataset, and found that the corresponding large-
scale brain parcellations were highly reproducible across the two 
datasets, with the language processing task showing the largest 
differences (Ge et  al., 2022). However, whether ISFC will 
be influenced by populations, it need to be clarified in the further. 
Also, we did not focus on gender differences, thus FC may show 
variations after regressing them. (5) As some windows spanned 
two different runs, there is a potential effect about dFC and 
dISFC values.

5. Conclusion

This study investigated the effect of naturalistic viewing for whole-
brain FC and ISFC, including sFC, dFC, sISFC, and dISFC compared 
with the resting-state. And we also evaluated the reliability of FC and 
ISFC in two conditions. Moreover, we  explored the associations 
between static and dynamic properties and the associations between 

the naturalistic and the resting-state conditions. Specifically, the 
movie-watching not only improved FC values of inter- and intra-
networks, but the decrease also exited. Besides, ISFC was enhanced 
generally under the naturalistic viewing. In this study, we did not find 
any ROI or network passed statistics of SWB for ISFC. The naturalistic 
paradigm generally enhanced reliabilities of sFC, dFC, sISFC, and 
dISFC compared with the resting-state, especially for sISFC and 
dISFC. Finally, the resting-state was positive correlation with the 
naturalistic viewing for sFC and dFC. Furthermore, sFC had negative 
correlation with dFC under the resting-state and the movie-watching. 
sISFC also showed relatively weak negative correlation with dISFC in 
the naturalistic viewing. As there was no significant ISFC and the 
range of ISFC values was small, the movie-watching has limit 
improvement for ISFC in this study.
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