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Introduction: This study aimed to examine the white matter characteristics of 
visual artists (VAs) in terms of visual creativity and the structural connectivity 
within the cortical visual system.

Methods: Diffusion spectrum imaging was utilized to examine the changes 
in white matter within the cortical visual system of a group of VAs (n  =  25) 
in comparison to a group of healthy controls matched for age and education 
(n  =  24). To assess the integrity of white matter and its relationship with visual 
creativity, we conducted a comprehensive analysis using region-based and track-
specific tractographic examinations.

Results: Our study uncovered that VAs demonstrated increased normalized 
quantitative anisotropy in specific brain regions, including the right inferior 
temporal gyrus and right lateral occipital gyrus, along with the corresponding 
white matter fiber tracts connecting these regions. These enhancements within 
the cortical visual system were also found to be  correlated with measures of 
visual creativity obtained through psychological assessments.

Discussion: The noted enhancement in the white matter within the cortical 
visual system of VAs, along with its association with visual creativity, is consistent 
with earlier research demonstrating heightened functional connectivity in the 
same system among VAs. Our study’s findings suggest a link between the visual 
creativity of VAs and structural alterations within the brain’s visual system.
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Introduction

Visual arts encompass a diverse array of creative endeavors, 
spanning disciplines such as painting, sculpture, ceramics, design, 
crafts, photography, film, and architecture (Roodhouse, 2006). Visual 
artists (VAs) cultivate their artistic skills and capabilities through 
training in various esthetic elements like construction, composition, 
and abstraction, all with the purpose of bringing their artistic vision 
and conceptual ideas to life (Lin et al., 2013).

The human cortical visual system consists of two major pathways 
through which visual information undergoes processing. The dorsal 
pathway, leading to the parietal lobe, is involved in analyzing spatial 
relationships and motion, as well as facilitating object-directed actions 
and visuomotor control (Goodale and Milner, 1992; Kravitz et al., 
2013; Freud et al., 2016). This pathway, also known as the “where” 
route for vision action, provides spatial awareness and information 
about movement direction (Kravitz et al., 2011). On the other hand, 
the ventral pathway, also known as the “what” route for vision 
perception, focuses on identifying objects and tracking their features 
such as size, shape, and color (Zachariou et al., 2014). This pathway 
extends from the posterior pole of the occipital cortex to the 
temporal lobe.

Creativity is a fundamental mental skill in the realm of visual arts 
(Getzels and Csikszentmihalyi, 2020). The creative aspect of producing 
visual artwork has been found to activate the inferior temporal gyrus 
(ITG) in the temporal lobe, which is part of the ventral visual pathway 
(Kozhevnikov et al., 2013). The ITG plays a crucial role in processing 
complex visual information related to faces, places, objects, and scenes 
(Flaherty, 2005; Sugase-Miyamoto et al., 2011; Schaer et al., 2012; 
Conway, 2018; Beccone, 2020). Through extensive training in the 
visual arts, this pathway can be strengthened, leading to enhanced 
coherence in the neural networks associated with creativity (Miller 
et al., 1996; Petsche, 1996; Jung et al., 2010).

In our previous functional connectivity (FC) study, we found a 
correlation between the visual creativity of VAs and the strength of 
intrinsic FC within the two main visual pathways of the cortical visual 
system (Hong et  al., 2023). This observed trait change, known as 
learning-induced neuroplasticity, can be  attributed to the 
consolidation of neural circuits that are actively engaged during long-
term training in the visual arts and esthetic experiences (Hong et al., 
2023). More specifically, VAs exhibit enhanced FC with the ITG, 
which is connected to the visual areas such as the occipital gyrus and 
cuneus, and this enhanced connectivity appears to be associated with 
visual creativity (Hong et al., 2023).

Numerous prior studies have demonstrated the efficacy of white 
matter imaging in tracking changes in the organization of the brain’s 
white matter, spanning a timeframe of six weeks to nine months 
(Scholz et al., 2009; Schlegel et al., 2012, 2015). In the current study, 
we  employed the Q-Space diffeomorphic reconstruction (QSDR) 
approach of diffusion spectrum imaging (DSI) (Yeh et al., 2010; Yeh 
and Tseng, 2011; Zhang et al., 2013) to investigate the plasticity of fiber 
tracts between specific regions of the cortical visual system, building 
upon the work by Hong et al. (2023). The objective of our study was 
to investigate the structural underpinnings of visual creativity in VAs 
by analyzing the generalized fractional anisotropy (GFA) and 
normalized quantitative anisotropy (NQA) of white matter properties. 
Our findings provide valuable insights into the role of brain structural 
characteristics in the expression of visual creativity.

Materials and methods

Participants

A group of 25 students majoring in VA with an average age of 
24.8 ± 1.6, including 5 males, was recruited from Taipei National 
University of the Arts. These students had received an average of 
11.1 ± 4.6 years of specialized visual artistic training. For comparison, 
24 healthy controls (CON) of similar age were selected from a local 
university of arts. The CON group, with a mean age of 23.0 ± 1.8 and 
4 males, had no more than 3 years of systematic art training. All 
participants, in both the VA and CON groups, self-reported as right-
handed and had no history of metal implants, brain damage, or 
neuropsychiatric disorders. Individuals displaying significant 
emotional instability, as determined by the Beck Depression Inventory 
(Beck et al., 1996) and Beck Anxiety Inventory (Beck and Steer, 1990) 
were excluded. Additionally, the Wechsler Abbreviated Scale of 
Intelligence (WASI-III) (Chen and Chen, 2002) was used to ensure 
that both groups had comparable levels of general intelligence. This 
study adhered to the principles of the Declaration of Helsinki and 
obtained written informed consent from all participants, with 
approval from the Institutional Review Board of Taipei Veterans 
General Hospital.

Psychological measurements

As a subproject within our broader program on neurasthenics 
(visual art, instrumental arts, dance, singing, percussion, etc.), this 
study focused on investigating a group of VA and a CON group 
consisting of non-artist healthy individuals. All artist groups had 
undergone common psychological measurements and neuroimaging 
scanning protocols. In this study, the creativity of VA is regarded as a 
fundamental mental skill, as the process of creating artwork reflects 
their creativity (Getzels and Csikszentmihalyi, 2020). To evaluate 
participants’ proficiency in tasks involving visual (figural) and verbal 
manipulation, all individuals completed the self-reported 40-item 
Traditional Chinese version of the Abbreviated Torrance Test for 
Adults (ATTA) (Chen, 2006). The ATTA assesses creative thinking 
abilities in terms of fluency, originality, elaboration, and flexibility 
(Chen, 2006). Fluency measures the quantity of ideas generated within 
a specific time frame, while originality assesses the ability to generate 
unique ideas. Elaboration evaluates the capacity to elaborate on ideas 
with details, and flexibility measures the ability to generate a variety 
of different ideas (Althuizen et al., 2010; Shen and Lai, 2014). The 
creativity index of the ATTA score is computed by summing the four 
capacity scores. It is subsequently rescaled using contraction 
techniques and presented as the creativity level of the ATTA score, 
which ranges from 1 (minimal) to 7 (substantial) (Althuizen et al., 
2010). The tests were conducted and evaluated following established 
protocols (Chen, 2006).

Image acquisition

MRI data were collected using a 3 T Siemens Tim Trio MRI 
System (Siemens Medical, Erlangen, Germany) equipped with a 
32-channel head coil at National Yang-Ming University in 
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Taiwan. DSI images offer an advantage over the conventional 
diffusion tensor imaging technique by enabling the identification 
of crossing fibers within the white matter fiber bundles of the 
brain (Martinez-Heras et al., 2021), leading to a more realistic 
representation of brain network connections (Suo et al., 2021). 
Quantitative anisotropy (QA) measurement is based on a model-
free nonparametric approach, which calculates the density 
distribution of water diffusion (Yeh and Tseng, 2011). Previous 
research has demonstrated that QA-aided tractography offers 
higher resolution compared to fractional anisotropy (FA)-aided 
and GFA-aided tractography (Yeh et al., 2013). The DSI images 
were obtained using a spin-echo diffusion echo planar imaging 
sequence (EPI) with the following parameters: a repetition time 
(TR) of 9,700 ms, an echo time (TE) of 136 ms, 56 axial slices, a 
field of view (FOV) of 200 × 200 mm2, a matrix size of 80 × 80, a 
voxel size of 2.5 × 2.5 × 2.5 mm3, a bandwidth of 2,156 Hz/Px. The 
diffusion acquisition scheme consisted of 102 diffusion-encoding 
directions distributed in a half sphere of diffusion-encoding 
space (q-space) (Kuo et al., 2008). The maximum b-value was set 
to 4,000 s/mm2, with one image acquired at b = 0 s/mm2. To 
provide anatomical reference for normalization, high-resolution 
T1-weighted images were obtained using a three-dimensional 
magnetization prepared rapid gradient echo (3D MPRAGE) 
sequence. The parameters for the T1-weighted images were as 
follows: a TR of 2,530 ms, a TE of 3.03 ms, 192 axial slices, a flip 
angle of 7 degrees, a FOV of 224 × 256 mm2, a matrix size of 224 
× 256, and a slice thickness of 1 mm. Cushions were used to 
minimize head movements during the image acquisition process. 
All images were prescribed in a trans-axial view parallel to the 
anterior commissure-posterior commissure line. Twelve 
participants were dropped out and 12 participants were discarded, 
resulting in a final sample for further analysis.

Image processing

The DSI data of each participant underwent processing using 
DSI-Studio.1 By employing sampling coordinates, whole-brain QA 
maps were generated for every voxel. To estimate the QA value for 
each participant, the QSDR approach and deterministic fiber 
tractography were applied (Yeh et al., 2010; Yeh and Tseng, 2011; 
Zhang et al., 2013). QA serves as a fiber-specific metric, quantifying 
different fiber populations. Additionally, voxel-specific GFA measures, 
common to all fiber populations within a voxel, were examined. 
Deterministic fiber tracking was used to map connections between 
various brain regions. QSDR, a model-free technique based on 
generalized Q-sampling imaging, calculates the density distribution 
of water diffusion at different orientations. This is achieved using a 
high-resolution standard brain atlas constructed from 90-diffusion 
spectrum imaging datasets in the ICBM-152 space. During the QSDR 
process, DSI Studio initially computes the QA mapping in the 
participant’s native space and subsequently normalizes it to the MNI 
QA map. Furthermore, QSDR records the R-squared value, which 
represents the goodness-of-fit between the participant’s QA map and 

1 http://dsi-studio.labsolver.org/

the MNI QA map. To ensure comparability across participants and 
minimize inter-subject variations, the QA values were further 
normalized by scaling the maximum QA value of each participant to 
one (termed as normalized QA, NQA). NQA reduces inter-subject 
spin-density differences and assumes that all the subjects have the 
same compactness of white matter (Yeh et al., 2019b).

Region-based and track-specific fiber 
tractographic analyses and between-group 
comparisons

To conduct whole-brain tractography, we utilized the DSI-Studio 
software (see text footnote 1). In this study, a deterministic fiber 
tracking algorithm (Yeh et  al., 2013) was employed, with a QA 
threshold set at 0.12. The angular threshold was randomly chosen 
from a range of 15 degrees to 90 degrees. Similarly, the step size was 
randomly selected between 0.5 voxels and 1.5 voxels. For the seeding 
process, 1,000,000 points were initiated within the white matter. 
Tracks that were shorter than 30 mm or longer than 200 mm were 
discarded. Additionally, an angular threshold of 60 degrees and a step 
size of 1 mm were applied. To remove false connections, topology-
informed pruning, as described by Yeh et al., was implemented (Yeh 
et al., 2019a).

Next, we conducted region-based and track-specific analyses 
on each participant, as described by Dhakal et al. (2021). GFA and 
NQA values were estimated for all possible tracts that traverse six 
specific brain regions: the right ITG, left ITG, right lateral 
occipital gyrus (LOG), left LOG, right cuneus, and left cuneus, 
based on our prior FC study of VA (Hong et al., 2023). To define 
the regions of interest, we utilized the FreeSurferDKT atlas (Klein 
and Tourville, 2012). This approach is referred to as region-based 
tractography. Additionally, we  examined the fiber pathways 
connecting these regions, which is termed as track-specific 
tractography. From the individual region-based and track-specific 
fiber tractographic analyses, we  extracted the GFA and NQA 
values. These values were then subjected to group comparisons to 
identify and characterize the differences in white matter properties 
between VAs and CONs.

Correlation analysis

In light of the recognition of VAs as proficient creative 
practitioners (Degarrod, 2016), we  undertook an investigation to 
examine the correlation between GFA and NQA values derived from 
region-based and track-specific fiber tractography with the scores on 
the ATTA scale within both the VA and CON groups. Our primary 
emphasis was on assessing creativity level, as this metric holistically 
best represents creative performance and closely aligns with an 
individual’s standing within the normative data for Taiwan 
(Chen, 2006).

Statistical analysis

The statistical analyses for the psychological measurements, 
region-based and track-specific tractographic metrics, and 
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correlation analyses between the VA and CON groups were 
conducted using SPSS Statistics (version 23.0, IBM Corp., 
Armonk, NY). Since artists often exhibit subtler brain structural 
changes compared to clinical neuropsychiatric patients with 
prominent brain pathology, we  initially employed a more 
permissive statistical criterion (p = 0.05, without correction for 
multiple tests on seeds and tracts analyzed) to uncover potentially 
important but understated information. To bolster the reliability 
of more robust findings, we employed Bonferroni corrections by 
adjusting the p-value. This adjustment involved dividing the 
p-value by the count of seeds and tracts, respectively, examined 
in region-based and track-specific tractographic analyses. 
Nonetheless, employing the Bonferroni correction method may 
lead to the inadvertent neglect of subtle effects. In exploratory 
and preliminary research, the primary objective typically revolves 
around generating hypotheses and uncovering potential trends 
or patterns that can serve as foundations for future research 
endeavors (Fife, 2020). To achieve a harmonious approach in our 
exploratory and preliminary research, we have opted to present 
both unadjusted p-values and correction adjusted p-values in 
our findings.

Results

Demographic data and psychological 
assessments

No significant differences were observed between the groups in 
terms of age, gender, and intelligence (Table  1). However, when 
compared to the CON group, the VA group exhibited significantly 
higher scores in visual (figural) creativity (VA: 5.32 ± 2.75, CON: 
3.03 ± 2.26, p < 0.001), fluency (VA: 16.44 ± 1.58, CON: 14.96 ± 1.55, 
p = 0.045), elaboration (VA: 17.68 ± 1.79, CON: 15.9 ± 2.8, p = 0.004), and 
flexibility (VA: 15.36 ± 1.7, CON: 14.5 ± 1.6, p = 0.048). The VA group 

also had higher ATTA creativity index (VA: 73.0 ± 6.13, CON: 
66.29 ± 8.35, p < 0.001) and ATTA creativity level (VA: 5.56.0 ± 1.25, 
CON: 4.25 ± 1.46, p < 0.001) compared to the CON group. It is worth 
noting that the VA group showed a trend toward higher originality 
performance compared to the CON group, although this difference was 
not statistically significant (VA: 17.24 ± 2.2, CON: 15.8 ± 2.6, p = 0.077) 
(Table 1).

Region-based fiber tractography 
comparisons between VA and CON groups

In Figure  1, we  provide an illustration of fiber tracts passing 
through the right and left ITG region for a representative participant. 
Significant differences were observed in region-based tractographic 
NQA values within the left cuneus, right ITG, and right LOG when 
comparing the VA and CON groups (Figure 2). However, there were no 
significant differences in GFA values between the two groups. 
Importantly, the VA group exhibited higher NQA values in regions 
associated with visually guided spatial memory, visual–spatial 
processing, and navigation.

Track-specific fiber tractography 
comparisons between VA and CON groups

In Figure 3, we present the fiber pathway(s) that connect the right 
ITG and right LOG for a representative participant. Our results, 
depicted in Figure 4, reveal a significant difference in NQA within the 
pathway linking the right ITG and LOG, which corresponds to the 
right inferior longitudinal fasciculus (ILF) according to the Human 
Connectome Project diffusion MRI template (HCP842 tractography 
atlas) (Yeh et al., 2018), between the VA and CON groups. However, 
no significant differences in GFA were observed between the 
two groups.

TABLE 1 Demographic data and psychological results.

VAs CONs
p value

(n  =  25) (n  =  24)

Age (years) 24.8 ± 1.6 23.0 ± 1.8 0.38

Sex (male/female) 5/20 4 /20 0.67

Duration of learning (years) 11.1 ± 4.6 – –

Education (years) 16.8 ± 1.6 16.3 ± 1.2 0.14

WAIS-III 110.97 ± 7.38 109.51 ± 7.22 0.55

ATTA Verbal creativity 1.10 ± 0.9 0.67 ± 0.76 0.54

Visual creativity 5.32 ± 2.75 3.03 ± 2.26 < 0.001***

Fluency 16.44 ± 1.58 14.96 ± 1.55 0.045*

Originality 17.24 ± 2.2 15.8 ± 2.6 0.077

Elaboration 17.68 ± 1.79 15.9 ± 2.8 0.004**

Flexibility 15.36 ± 1.7 14.5 ± 1.6 0.048*

Creativity index 73.0 ± 6.13 66.29 ± 8.35 < 0.001***

Creativity level 5.56 ± 1.25 4.25 ± 1.46 < 0.001***

Data expressed as mean ± standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001; VA, visual artist; CON, control; WAIS-III, Wechsler Adult Intelligence Scale-III; ATTA: Abbreviated Torrance 
Test for Adults.
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FIGURE 1

Fiber pathways through the ITG seed region in each hemisphere for a representative participant. In this visual depiction, fibers are color-coded to 
represent their orientation: red indicates fibers along the X-axis (left–right), green indicates fibers along the Y-axis (anterior–posterior), and blue 
indicates fibers along the Z-axis (inferior–superior). R, right; L., left; (S), superior; (A), anterior; ITG, inferior temporal gyrus.

FIGURE 2

Between-group region-based tractography difference. The VAs group exhibited significantly higher NQA measures in the L cuneus, R ITG, and R LOG. 
*p <0.05; **p<0.01 (unadjusted). †denotes significant after Bonferroni’s correction (p  =  0.0083, number of seeds analyzed is 6). Error bars represent the 
standard error of the mean. NQA, normalized quantitative anisotropy; VA, visual artist; CON, control; L, left; R, right; ITG, inferior temporal gyrus; LOG, 
lateral occipital gyrus.

FIGURE 3

Fiber pathways in the right ILF between right ITG and right LOG for a representative participant. In this visual depiction, fibers are color-coded to 
represent their orientation: red indicates fibers along the X-axis (left–right), green indicates fibers along the Y-axis (anterior–posterior), and blue 
indicates fibers along the Z-axis (inferior–superior). R, right; (S), superior; (A), anterior; ILF, inferior longitudinal fasciculus; ITG, inferior temporal gyrus, 
LOG, lateral occipital gyrus.
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FIGURE 5

Differential Correlation Between NQA in the R ILF and the creativity level of ATTA Scores in VAs and CONs. In the R ILF, the strength of NQA between 
the R ITG and the R LOG exhibits a positive correlation with the creativity level of ATTA scores in VAs. Conversely, the strength of NQA in the R ILF does 
not show any correlation with creativity level of ATTA scores in CONs. NQA, normalized quantitative anisotropy; R, right; ILF, inferior longitudinal 
fasciculus; ATTA, Abbreviated Torrance Test for Adults; VA, visual artist; CON, control; ITG, inferior temporal gyrus; LOG, lateral occipital gyrus.

Differential correlation between NQA in 
the right ILF and ATTA scores

Within the VA group, a noteworthy positive correlation (VA, 
r = 0.453, p < 0.05) emerged between creativity level and NQA in the 
right ILF, connecting the right ITG and right LOG regions. In contrast, 
the CON group exhibited no significant correlation (CON, r = −0.065, 
p = 0.72) (as depicted in Figure 5). Furthermore, upon closer scrutiny, 
no significant correlations were observed between white matter 
metrics (specifically, GFA and NQA values derived from region-based 

and track-specific fiber tractography) and various other ATTA 
subscores, including fluency, originality, elaboration, and flexibility, 
within both the VA and CON groups.

Discussion

In our investigation of the effects of long-term visual artistic 
training on white matter plasticity, we employed region-based and 
track-specific fiber tractography methods. The results revealed an 

FIGURE 4

Between-group track-specific tractography difference. The VA group exhibits significantly higher NQA measures in the R ILF between the R ITG and R 
LOG. Error bars represent the standard error of the mean. *p <0.05 (unadjusted). The permissive significance level does not meet the rigorous 
adjustment (p  =  0.0056, number of tracts analyzed is 9). NQA, normalized quantitative anisotropy; VA, visual artist; CON, control; R, right; L, left; ILF, 
inferior longitudinal fasciculus; ITG, inferior temporal gyrus; LOG, lateral occipital gyrus.
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enhancement in fiber integrity among VAs in specific fiber tracts that 
traverse the right ITG, right LOG, and left cuneus (Figure 2). Notably, 
the most pronounced enhancement was observed in the ILF, which 
connects the right ITG and right LOG, as depicted in Figure 4. It is 
worth mentioning that the degree of enhancement in the ILF showed 
a positive correlation with the creativity level measured by the ATTA 
scale in VAs, as shown in Figure 5. These structural improvements 
have the potential to enhance essential visuospatial abilities utilized by 
visual artists during the creative process, as suggested by (Winner 
et al., 1991).

Enhancing white matter integrity through 
long-term visual artistic training

Neuroplasticity in the human brain refers to the remarkable ability 
of neural networks to restructure and adapt in response to various 
factors, including experience, injury, learning, and healing (Sampaio-
Baptista and Johansen-Berg, 2017). Specifically, white matter plasticity, 
which is influenced by neural activity and learning (Stevens et al., 
1998; Ishibashi et al., 2006; Gibson et al., 2014; McKenzie et al., 2014; 
Fields, 2015), involves the restructuring of neural networks by 
enhancing myelination, axon diameter, internode length, and ion 
channel density (Zatorre et al., 2012). These changes contribute to the 
improved efficiency of transmitting action potentials (Takeuchi et al., 
2010; Sampaio-Baptista and Johansen-Berg, 2017; Frizzell et al., 2020; 
Wu et al., 2021; Kirby et al., 2022).

NQA, which reflects the structural properties of white matter, is 
influenced by various factors including axon density, axon size, and 
myelination of axons and glial cells (Zatorre et al., 2012). Higher levels 
of NQA indicate that long-term visual artistic training may 
be associated with increased axon density and myelination in white 
matter. In the context of long-term visual artistic training, our 
investigations have revealed that visual VAs exhibit enhanced fiber 
tracts in their brains. These augmented fiber tracts potentially form 
the foundation for the proficient execution of the skills and strategies 
acquired through artistic training and learning, enabling the creative 
production of artwork (Brown and Kim, 2021). This process 
necessitates optimal cognitive engagement. The structural architecture 
of visual artists thus plays a critical role in facilitating their functional 
interactions for the purpose of creative artistic expression.

Creative skills linked to adaptive white 
matter alterations in VAs

The VA group demonstrated higher levels of creativity, as 
indicated by their elevated ATTA scores, compared to the CON group 
(Table  1). In the VA group, we  observed a significant positive 
correlation between the creativity level, as measured by the ATTA 
score, and the NQA values of the ILF connecting the right ITG with 
the right LOG (Figure 5). The production of artworks heavily relies on 
the cortical visual system, particularly the ITG located in the ventral 
pathway. The ITG plays a crucial role in object, face, and scene 
perception (Conway, 2018). It is also involved in visual creativity, 
encompassing visual imagery, visual perception (Ishai et al., 2000), 
and visual attention for object recognition (Zhang et al., 2011). Our 
findings suggest that the ventral pathway is strengthened and 

consolidated in individuals with visual artistic training, as evidenced 
by the increased NQA between the ITG and LOG resulting from long-
term practice in translating artistic concepts into visual form. The 
current fiber tractographic study reinforces the findings of our 
previous research on the FC of the cortical visual system in VAs (Hong 
et al., 2023). In our prior study, we demonstrated a positive correlation 
between visual creativity and increased FC between the ITG and 
occipital cortices of the ventral pathway (Hong et  al., 2023). The 
present findings provide further support for these observations. Taken 
together, these results suggest that long-term training in visual arts 
may contribute to the strengthening of the ventral pathway and the 
establishment of white matter structural connectivity associated with 
visual creativity. The strength of white matter structural connectivity 
has the potential to be linked to visual creativity.

Challenges in using GFA to detect white 
matter alterations in skilled artists

Our investigation utilizing region-based and track-specific fiber 
tractography analysis yielded no substantial GFA variations. This 
outcome can be  attributed to the limitations of GFA, which is 
susceptible to the partial volume effect and exhibits value reduction in 
the presence of fiber crossing or voxels affected by the partial volume 
effect (Yeh et al., 2010, 2013). To support our findings, we refer to a 
previous study that employed a similar DSI approach (using NQA and 
GFA to study white matter properties) to explore white matter 
plasticity in jazz improvisers (Dhakal et  al., 2021). This further 
reinforces the lack of efficacy in utilizing GFA for detecting white 
matter alterations in skilled artists.

Limitations and future direction

The current study possesses certain limitations. Firstly, our 
evaluation of creativity was solely based on the ATTA measure, 
which predominantly captures general creativity. To obtain a more 
comprehensive understanding, future investigations should 
incorporate additional task variations that specifically target 
different aspects of visual creativity. This approach will facilitate a 
more in-depth exploration of the various psychological factors 
involved in long-term training in the visual arts. Secondly, our 
study exclusively focused on the cortical visual system, considering 
its fundamental role in visual arts. However, it would be valuable 
for future researchers to conduct a more extensive brain-wise 
analysis of network properties and structural architecture 
(Bullmore and Sporns, 2009; Yeh, 2020) in order to better 
characterize the white matter networks associated with the 
identified neural substrates of visual creativity (De Pisapia et al., 
2016; Pidgeon et al., 2016; Zhu et al., 2017). This expanded analysis 
would contribute to a better understanding of the central 
mechanisms underlying visual creativity. Finally, it’s imperative to 
view this report as an exploratory and preliminary study, given our 
approach of using both permissive and stringent statistical 
methods to present and discuss the findings with the goal of 
uncovering potentially valuable insights that can guide future 
investigations. It is noteworthy that structural brain changes in 
artists may not be as conspicuous as those observed in clinical 
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patients with pronounced neuropsychiatric and bio-behavioral 
symptoms, where such brain alterations are more apparent. 
Therefore, we  advocate for future research to uphold robust 
statistical standards by incorporating larger sample sizes.

Conclusion

In conclusion, our study indicates that long-term visual artistic 
training has an impact on axon myelination, leading to enhanced 
efficiency in the creation of artwork. This study reveals a structural 
neuroplasticity in the cortical visual system that is induced by 
training and corresponds to the skilled performance observed in 
visual artists.
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