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This paper investigates the selection of voxels for functional Magnetic Resonance

Imaging (fMRI) brain data. We aim to identify a comprehensive set of discriminative

voxels associated with human learning when exposed to a neutral visual

stimulus that predicts an aversive outcome. However, due to the nature of the

unconditioned stimuli (typically a noxious stimulus), it is challenging to obtain

su�cient sample sizes for psychological experiments, given the tolerability of

the subjects and ethical considerations. We propose a stable hierarchical voting

(SHV) mechanism based on stability selection to address this challenge. This

mechanism enables us to evaluate the quality of spatial random sampling and

minimizes the risk of false and missed detections. We assess the performance

of the proposed algorithm using simulated and publicly available datasets. The

experiments demonstrate that the regularization strategy choice significantly

a�ects the results’ interpretability. When applying our algorithm to our collected

fMRI dataset, it successfully identifies sparse and closely related patterns across

subjects and displays stable weight maps for three experimental phases under

the fear conditioning paradigm. These findings strongly support the causal role

of aversive conditioning in altering visual-cortical activity.

KEYWORDS

fMRI, groupwise regularization, voxel selection, stable hierarchical voting (SHV),

randomized structural sparsity (RSS), e�ective vote ratio (EVR)

1. Introduction

Machine learning approaches have become popular in cognitive neuroscience, often

in the context of using neuroimaging techniques to discriminate between brain patterns

associated with different experimental conditions, emotional states, cognitive processes, and

ultimately health outcomes. Variable selection and feature selection have become the focus

of studies using brain-based data with tens or hundreds of thousands of variables. The

objective of the research addressing this problem falls broadly into two categories: (1) brain

image decoding, e.g., Haxby et al. (2001) and brain-computer interface (BCI) (Wolpaw

et al., 2002; Saha et al., 2021), as well as (2) multivariate hypothesis testing (Bzdok et al.,

2017; Kia et al., 2017; Wen et al., 2019) including identification of candidate biomarkers

for medical diagnosis (Demirci et al., 2008). The former applications pursue the maximum

predictive power of the predictors, providing faster and more cost-effective predictors, while

the latter put more attention on providing a better understanding of the underlying process

that reflects the spatiotemporal nature of the generated data. In the present study, we are

interested in the second application, i.e., brain decoding.We specifically address the problem
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of identifying the brain activity patterns that are associated with

specific behavior. The classic univariate analysis typically models

each response channel separately, which is inconsistent with the

multivariate nature of neuronal population codes and also with the

observation that noise is spatially correlated. Separate modeling of

each response entails low power for testing and comparing models,

for two reasons: (1) Single fMRI responses may be noisy, and the

evidence is not combined across locations. (2) The analyses treat

the responses as independent, thus forgoing the benefit exploited

by linear decoding approaches to model the noise in a multivariate

manner. This is particularly important in fMRI data analysis, where

nearby voxels have highly correlated noise. As spatial resolution

increases, we face the combined challenge of increasing the number

of individual voxels (inflating the feature space) and also increasing

the noise in those individual voxels.

In order to understand the learning process of human in

response to an initial neutral visual stimulus predicting an aversive

outcome, we conducted a study using fMRI to observe the large-

scale neurophysiological changes. In neuroimaging, a decoder

is a predictive model that, given a series of brain images, fits

the binary classification information regarding an experimental

condition, a stimulus category, a motor behavior, or a clinical

state. In the context of aversive conditioning, one of two initially

harmless stimuli [referred to as conditioned stimuli (CS)] acquires

motivational significance by consistently predicting the occurrence

(CS+) of a negative event [known as the unconditioned stimulus

(US)], while the other stimulus (CS−) predicts its absence. Since

US is generally a noxious stimulus, it is difficult to obtain

satisfactory sample sizes for such psychological experiments, given

the tolerability of the subjects already ethical considerations.

Therefore, we here focus on linear brain decoding because of its

broader usage in analyzing inherently small sample size (Pereira

et al., 2009). The estimated classification or regression weights

can be visualized in the form of brain maps, which can aid in

understanding how brain activity in space and time underlies a

cognitive function (Mourao-Miranda et al., 2005). Selecting an

appropriate set of voxels as the input for the classifier construction

is of critical importance. The voxels corresponding to the non-zero

weights are considered as the relevant features. The identification

of discriminative voxels is based on the values of the weight

vector, and their importance is proportional to the absolute values

of the weights.

Due to the high-dimensionality of neuroimaging, high

correlations among different voxels and low signal-to-noise ratios

(SNRs), multiple weight maps yielding the same predictive power.

In other words, different models lead to very similar generalization

performance, and the recovered brain maps often suffer from

lack of interpretability. Therefore, improving the interpretability

of brain decoding approaches is of primary interest in many

neuroimaging studies, especially in a group analysis of multi-

subject data. At present, there are two main approaches proposed

to enhance the interpretability of multivariate brain maps, as

reviewed by Kia et al. (2017): (1) Introducing new metrics into

the model selection procedure. (2) Introducing new hybrid penalty

terms for regularization. The first approach to improving the

interpretability looks for the best values for the hyper-parameters of

a model (Lemm et al., 2011; Hoyos-Idrobo et al., 2018). The second

approach involves applying regularization or prior knowledge (Zou

and Hastie, 2005; Yuan and Lin, 2006; Rasmussen et al., 2012)

to restrict model complexity, also known as dimension reduction.

This approach is commonly used for the ill-posed nature of brain

decoding problems (Geman et al., 1992).

As a representative of the second category, structured sparsity

models (Chambolle, 2004; Bach et al., 2012; Micchelli et al., 2013)

extend the least absolute shrinkage and selection operator (LASSO)

model by promoting sparse models in some preferred way. For

example, regression weights may be encouraged to be constant or

vary smoothly within regions of the brain (Michel et al., 2011;

Baldassarre et al., 2012; Gramfort et al., 2013). Despite the fact

that sparsity has traditionally been connected with interpretability,

these structured sparsity models incorporating additional spatial

constraints into the predictive model, allowing for even greater ease

of interpretation by further grouping the discriminative voxels into

few clusters based on prior information (Yuan et al., 2011; Li et al.,

2014; Shimizu et al., 2015). Besides, stability selection is applied as

an effective way to control the false positives (Meinshausen and

Bühlmann, 2010; Ye et al., 2012; Shah and Samworth, 2013; Cao

et al., 2014; Rondina et al., 2014; Wang and Zheng, 2014). While

the control of false positives can be achieved, a significant false

negative rate is often expected, especially in the case of redundant

and correlated voxels, this correlation prior is not explicitly taken

into consideration. In Wang and Zheng (2014) and Wang et al.

(2015) the authors proposed a “randomized structural sparsity”,

incorporating the idea of structural sparsity in the stability selection

framework, together with the subsampling scheme which further

help to refine and outline the exact shapes of the discriminative

regions. These regions may not be the same size as the prior

partitions, which is crucial for neighboring voxels belonging to the

same brain area. Although they may be highly correlated, not all

neighboring voxels are necessarily significant discriminative voxels

(Witten et al., 2014). A similar strategy was used inWan et al. (2014)

and Yan et al. (2015) to predict cognitive outcomes via cortical

surface measures. The results showed improved decoding accuracy

and interpretability of brain maps.

In order to enhance the stability and reproducibility of

our model during optimization, we apply group constraints

and regularization across multiple subjects. This technique is

commonly used in transfer learning or multitask learning (Bakker

and Heskes, 2003; Raina et al., 2006; Dai et al., 2007; Pan and Yang,

2010). In our paper, we make the assumption that the regions of

discriminative voxels are relevant or overlapping to a certain extent

across subjects. Additionally, we assume that only a few clusters are

actually discriminative for the classification problem. To achieve

these goals, we propose to use a mixed l1 and groupwise l2 norm for

regularization. The l2 norm penalizes large coefficients and yields

a non-sparse weight distribution inside the group, while the l1

norm promotes sparsity on selected clusters. This nested mixed-

norm regularization enables us to construct stable and interpretable

models by pooling data from multiple subjects. It is important to

note that the l2 norm does not imply the application of unified

weights to the functionally significant clusters, which might be a

too strong constraint and impractical for the real data.

Based on stability selection and the groupwise structural, we

propose a stable hierarchical voting (SHV) mechanism to monitor
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the quality of spatial random sampling and reduce the risk of

false and missed detections. When using uniform sampling, there

is a possibility that many noisy and uninformative voxels will be

included. To address this issue, we use multiple cross-validations

of test accuracy during the voting process to select high-quality

samples. In addition, small perturbations in the observations can

cause instability in the model generated (Arlot et al., 2010). To

mitigate this problem, we apply model averaging to aggregate

the output of multiple models as suggested (Nemirovski, 2000).

Furthermore, the number of selected candidate features is allowed

to be much larger when incorporating group structure (Jenatton

et al., 2011; Xiang et al., 2015), which allows us a more global search

among brain regions.

2. Methods

2.1. Pre-segmentation

For the class of methods that use structural information for

dimensionality reduction, the number of clusters to be generated

is estimated based on finding a compromise between several

factors: (1) To enhance area homogeneity, it tends to conduct fine

segmentation for small patches. (2) To avoid the false negative

selection due to spatial sparsity induced by the l1 norm, it tends

to perform rough segmentation for large patches. (3) The number

of trials is taken into consideration as the unknowns of the

optimization problem is now equal to the number of clusters. From

the previous study (Craddock et al., 2013), with 200 ROIs, the

resulting parcellations consist of clusters with anatomic homology

and thus offer increased interpretability.

In our work, we first obtain the structural information about the

brain according to their strong local correlations. Here we perform

a data-driven segmentation operation to partition the voxels into

small clusters using the normalized cut (NCut) (Shi and Malik,

2000; Cour et al., 2005). To define the affinity between two voxels v1
and v2 we combine three cues: (1) the correlations of the raw BOLD

time series, (2) the correlations of BOLD features for each trial, (3)

a connection radius σd to attenuate the influence from far away

voxels. Voxels in close proximity with similar BOLD waveforms

are likely to be part of the same cluster. Additionally, incorporating

correlations among features helps to minimize the impact of signal

clutter. Furthermore, averaging the features results in a fit with

lower variance compared to individual features, especially when

they are positively correlated (Park et al., 2006; Wang et al.,

2015). This aspect also contributes to the potential enhancement

of stronger features.

The affinity matrix is computed based on finding the combined

data frommultiple subjects since uniform segmentation is required

for group-wise regularization. Let us denote the preprocessed fMRI

data matrix as X̃ ∈ R
Nt×NV , where Nt is the number of scans, NV

is the number of voxels. To access the columns of a matrix, the v-th

column is denoted as (:, v). We construct the affinity matrix A as

follows:

Av1 ,v2 = |corr(X̃(:, v1), X̃(:, v2))| · exp(−dist(v1, v2)
2/σ 2

d )

where |·| gets the absolute value, corr(·, ·) is the correlation between

two variables, and dist(·) evaluates the Euclidean distance of two

voxels in 3D space.

2.2. Classification using groupwise
structural sparsity

Let us denote the feature matrix from subject i as Xi ∈ R
NT×NV ,

i ∈ {1...NS}, where NT is the number of trials, NV is the number

of voxels, and NS is the number of subjects. For this study, we are

interested in classifying the experimental conditions. We denote

the binary labeling information as y ∈ R
NT , y(t) ∈ {1,−1} that

correspond to the CS+ and CS− conditioning, respectively. The

stability sampling is performed in terms of the subsampling on

the features, i.e., the columns of Xi, as well as subsampling of the

observations, i.e., the rows of Xi. Then parceling information is

used to average the features within a cluster. We denote the set of

the clusters via the pre-segmentation as G, and denote the number

of clusters as NC . Specifically, each cluster gj ∈ G, consists of highly

correlated neighboring voxels, the sampled voxels lying in cluster j

are noted as a set gj
′ ⊂ gj ∈ G, for each chosen trial t, and D(t, j) is

the corresponding average of X(t, g
′

j ) of cluster j. The model can be

simplified to the following low dimensional problem.

F = argmin
w

NT
∑

t=1
log

(

1+ exp
(

−y(t)
(

D(t, :)w+ b
)))

+λ
NC
∑

j=1
‖ w(j) ‖ (1)

where w ∈ R
NC is the weight vector. w(j) denotes the weight

of j-th cluster, corresponding to the subset gj ∈ G. The voxels

corresponding to weight with large absolute value are considered

as discriminative voxels (Wang et al., 2015).

In this paper, we propose to consider a group of subjects

together and constrain the model using a mixed l1/l2 norm. We

combine the weight vectors from all subjects into a matrix W ∈

R
NC×NS . Correspondingly, the objective of the model is below:

F = argmin
W

NS
∑

i=1

NT
∑

t=1
log

(

1+ exp
(

−yi(t)
(

Di(t, :)W(:, i)+ bi
)))

+λ
NC
∑

j=1
‖W(j, :) ‖ (2)

As shown in Figure 1, the l2 norm over multiple subjects for

each cluster is proposed as a group constraint, i.e., the rows of

W shown in the red box of Figure 1B, while the l1 norm on

clusters further enforces structural sparsity on the solution. Using

the mixed l1 and l2 norm as a joint optimization criterion allows

the pooling of data frommultiple subjects and enforces consistency

of the selection of clusters across subjects. For the convenience of

optimization, the weight matrix is vectorized, and the individual

feature matrix and the label information are integrated from all

subjects accordingly.

Note that the number of clusters obtained is typically much

smaller than the number of voxels (NV ) and comparable to the total

number of total samples. By reducing the number of unknowns and
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FIGURE 1

Estimate cluster weights using joint optimization of multiple subjects with l2 norm group constraint. (A) Structural sparsity model of single subject;

(B) groupwise structural constraint using mixed l1/l2 norm; (C) for the convenience of optimization, the weight matrix W is vectorized, and the

individual feature matrix Di are incorporated to form a block diagonal matrix with an additional column of all 1. The label information is merged from

all subjects accordingly.

integrating data from multiple subjects, we are able to use fewer

samples to estimate the parameters.

2.3. Algorithmic framework

Unlike the general stability selection framework (Meinshausen

and Bühlmann, 2010; Shah and Samworth, 2013;Wang et al., 2015),

our algorithm, stable hierarchical voting (SHV), represents a step

further with stricter control for model variance among subjects.

The detailed description is outlined in Algorithm 1. Based on

stability selection and the groupwise structural constraint, SHV

employs a stable hierarchical voting mechanism to monitor the

sample quality of spatial random sampling and reduce the risk

of false and missed detections. The proposed method utilizes a

two-level nested loop approach to construct a predictive decoding

model for multi-subject data, while considering mixed regularity

constraints. The outer loop randomly samples voxels and performs

dimensionality reduction feature expressions on the corresponding

motifs; The inner loop assesses the predictive ability of these

features, by computing the average prediction correctness through

cross-validation. Subsequently, the outer loop performs cumulative

voting on the selected voxel samples, based on their prediction

ability as evaluated by the inner loop. This structuring guarantees

that only votes with high test precision are considered.

In the following, i denotes the subject index, i = {1, 2, · · · ,NS},

j denotes the cluster index, j = {1, 2, · · · ,NC}, and m denotes the

voxel index, m = {1, 2, · · · ,NV }. For the outside layer, we perform

constrained block subsampling in terms of voxels (columns) and

calculate the averaged feature matrix, the number of resamplings

denotes as NK . Let the subsampling fraction be αcol ∈ (0, 1) and I

denotes the set of voxel indices randomly picked.

To avoid instabilities of the generated model caused by

perturbations of the observed data, we apply model averaging to

mitigate this problem (Nemirovski, 2000; Arlot et al., 2010). For

loop k, the weight vector for lth cross-verification is denoted as

W l(:, i), the score vector si,k is calculated by the following equation

si,k(j) =
1

NL

NL
∑

l=1

|W l(j, i)|, j = {1, 2, · · · ,NC} (3)

where | · | get the absolute value, and NL denotes the number of

cross-verification, which is usually chosen according to the sample

size and balance with the computation cost.

We hierarchically define the selectors, from cluster to voxel,

respectively. Let π(∗,Nsel) be the operation to select the top Nsel

non-zero coefficients from vector ∗, and return the selector by

marking the selected components to be unit valued (zero valued for

the non-selected ones). If the actual non-zero components is less

than Nsel, less components are selected.

Because uniform sampling is likely to include many noisy and

uninformative voxels, for NK times of spatial resampling, we only

countNi loops when the test accuracy of cross verification go above

the sampling quality control factor q. The number of selected loops

is determined based on a quality control ratio αK ∈ (0, 1), only
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Require:

Dataset of subject i: Xi ∈ R
NT×NV, i ∈ {1..NS};

Label information y ∈ R
NT, where NT is the number

of trials, NV is

the number of voxels;

Predefined parcellation G;

Groupwise sparsity penalization parameter λ;

Loops of spatial randomizations NK; Loops of

cross verification NL;

Subsampling ratio αrow ,αcol in terms of rows and

columns of X;

Minimum acceptable precision p; Sampling

quaility control ratio β;

The number of clusters one wish to select Nsel;

Ensure:

Effective vote ratio (EVR) for each voxel.

1: for k = 1 to NK do

2: for l = 1 to NL do

3: for i = 1 to NS do

4: Perform subsampling on voxels (columns of

Xi) and calculate the averaged feature

matrix: Di ← Xi
[:,I] ← Xi, where I ⊂

{1, 2, · · · ,NV }, Di ∈ R
NT×NC.

5: Perform subsampling on trials (rows of Xi):

Di
[J ,:] ← Di and update y[J ] ← y, J ⊂

{1, 2, · · · ,NT}.

6: end for

7: Estimate W with Equation 2.

8: end for

9: for i = 1 to NS do

10: Calculate the average test accuracy Rtest
i,k

across all the cross-verification loops.

11: end for

12: end for

13: for i = 1 to NS do

14: Select Ni well sampled loops out of NK loops

according to Rtest
i,k

15: for k = 1 to Ni do

16: Compute the score vector si,k with Equation 3.

17: Select the Nsel clusters with highest

coefficients in si,k.

18: end for

19: end for

20: Compute the effective vote ratio φV
i according to

Equation 6.

Algorithm1. The algorithm frameworkof groupwise structural sparsity for

discriminative voxel identification.

the top [αKNK] loops with the highest test accuracy are taken into

consideration.

For group-level statistical inference, we compute the cluster-

wise voting rates φC that incorporate the votes from multiple

subjects

φC =
1

NS

NS
∑

i=1

π(
1

Ni

Ni
∑

k=1

π(si,k,Nsel),Nsel) (4)

We accumulate the votes of all the qualified selectors and then

normalize the value with the sampling times of the voxel. Given that

a sampled voxel m that belongs to cluster j, the voting rate of φV
i is

defined as

φ̃
V

i (m) =

∑Ni

k=1
δ(m ∈ Ik & π(si,k,Nsel)(j) == 1)

∑Ni

k=1
δ(m ∈ Ik)

, m ∈ gj (5)

To ensure the stability and reliability of voting, the effective vote

ratio (EVR) is defined as

φV
i (m) = φ̃

V

i (m) · φC(j), m ∈ gj (6)

We chose the regularization parameter λ in Equation (2) that

maximize the averaged prediction accuracy below.

R̄ =
1

NS

NS
∑

i=1

(
1

Ni

Ni
∑

k=1

Rtesti,k ) (7)

2.4. Stability evaluation

We adopt the stability index defined by work Baldassarre et al.

(2017) to evaluate the stability of our results on real fMRI across

multiple subjects. The voxels selected by EVR for subject i are

denoted as Si = {m|φ
V
i (m) 6= 0}. Consider two sets of selected

voxels, namely S1 and S2. The corrected pairwise relative overlap is

calculated using the formula:

O(S1, S2) =
||S1 ∩ S2| − |S1| ∗ |S2|/NV |

max(|S1|, |S2|)
(8)

Here, |S1 ∩ S2| is the number of voxels that are present in

both sets, while |S1| ∗ |S2|/NV represents the expected number

of overlapping voxels between two random samples of size |S1|

and |S2| respectively, where NV is the total number of voxels. The

average pairwise overlap O is obtained by taking the average of the

relative overlap values of all pairs of subjects.

3. Results

3.1. Synthetic data

To test and analyze the proposed algorithm on a similar

problem scale as the real fMRI data, we work on a 53 × 63 ×

52 brain image that has 173,628 voxels of interest. Specifically

for small-sample fMRI data, we assume only 40 training 20

CS+ trials and 20 CS− trials since fMRI datasets of this size

are most commonly found in psychological paradigm validation

sessions. For the simulations, we use the Automated Anatomical

Labeling (AAL) atlas template that segments the brain into 116

anatomical regions (Tzourio-Mazoyer et al., 2002), commonly

used for different types of functional and anatomical analysis of

neuroimaging data. To test whether our algorithm has superior

discriminative power, we assume that there is a linear combination

of a portion of voxels with categorization ability in three brain

regions that have some overlap in different individuals. Specifically,

all subjects were assumed to have a functional network of
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three distributed discriminative brain regions G1 = {32, 44, 62},

comprising three brain regions in the frontal, parietal and occipital

lobes, each including over 300 discriminative voxels. Considering

the complexity of the brain functional network and dramatic

individual differences among subjects, we define 15 interference

regions for each individual, and the interfering brain regions were

not exactly the same for different individuals. For subject i, we

define individual interference region setGi
0 = {t | (72+i×3) ≤ t ≤

(86+ i×3)}, which are all continuous sets with 15 and three regions

skipped between two sets. Each region contains roughly 300 voxels.

The base value of elements Mi
j in both discriminative regions

and interference regions are generated from the standard uniform

distribution U(0, 1), where j = 1, 2, . . . , 116 representing the index

of regions, other voxels in the brain image are noise generated by

a standard Gaussian distribution. For discriminative regions G1 we

simulate a spatially distributed pattern constrained by linear model

yi1 =
∑

j∈G1
W̃i

j · M
i
j , and samples of CS+ fall in the top 40% and

CS- fall in the bottom 40% of the overall distribution of y1, therefore

the simulated data can be distinguished by the linear classifier. The

weight W̃i
j is scaled by a personalized factor αi

j that allows different

connectivity strength W̃i
j = Winit

j · αi
j , where Winit

G1
= {1, 1,−2}

and αi
j ∼ U(0.5, 1.5) that uniformly distributed with minimum

0.5 and maximum 1.5. For interference regions G0 we simulate

yi0 = Mi
j and samples of CS+ fall in the top 80% and CS− fall in

the bottom 80% of the overall distribution. At last, gaussian noise

is added to generate observations for single trials and single voxels

xit,v = yij + ǫt,v, ǫt,v ∼ N(0, 1), where t denotes the index of trials

and v the index of voxels.

The elements in discriminative and interference regions are

both random samples from the uniform distribution; therefore,

a single region should have no significant correlation with labels

in absence of noise. On the contrary, the linear combination

of regions in G1 is discriminative, whereas for G0, it is

not. It is noticeable that although the discriminative areas

are common for all subjects, the coefficients vary for each

subject. Intentionally, we added noise to simulate the case that

the interference regions may have an equal or even stronger

degree of correlation by chance, which would result in false

positives. Such simulation is crucial, especially for studies with

few samples. In the following, we conducted several experiments

on the synthetic data to examine the performance of the

proposed algorithm.

3.2. Ablation study

For the ablation study, we compare experimental results with

and without applying the proposed multi-subject l2 norm group

constraint and test the effect of the algorithm on the choice of hyper

parameters, including the effect of choosing different λ and Nsel on

the results for selected discriminative clusters. In the following, we

use the following notation:

• Our proposed method: estimate cluster weight using

joint optimization of multiple subjects with the proposed

Algorithm 1 and Equation (2);

• Alternativemethod: perform the same procedure of constraint

block sampling and in terms of voxels and sub-sampling cross

verification in terms of trials, then estimate cluster weight for

each subject separately using Equation (1);

For the block bootstrap sampling methods, block size might

affect the performance of the algorithm (Lahiri et al., 1999). Given

the number of blocks, there are inherent trade-offs in the choice

of block size. When only minimal loops of randomizations are

allowed, the choice of large blocks is likely not matching the indeed

supported geometry and are prone to many false positives, while

the choice of small blocks may result in many false negatives due to

ignorance of local correlation of adjacent voxels (Wang et al., 2015).

Empirically we chose 3× 3× 3.

We accumulate one vote for the identified discriminative

clusters corresponding to the top four weights with largest

magnitude, then summing up all the votes across subjects.

Although regularization helps to reduce model variance and

larger regularization parameter (λ in Equations 1, 2) yields

models with more degree of sparsity and fewer sets of selected

variables (clusters), we tested how λ influence the outcome of

selected discriminative clusters in both alternative method and our

proposed method. Please note that the proposed method and the

comparison method have different objective functions. Therefore,

we employ two sets of lambda values, each consisting of one larger

lambda and one smaller lambda. This is intended to showcase the

influence of Lambda tuning on the outcomes.

The cluster scores reported in Figures 2A, C, E, G are averaged

from 200 spatial subsampling steps each of which has 20 times cross

validation, and the corresponding voting results are reported in

Figures 2B, D, F, H. In Figure 2A we can see that for the alternative

method, numerous interference clusters get higher scores than the

true discriminative clusters. Larger λ, as shown in Figure 2C, helps

to reduce false positives, however also increases false negatives.

For the corresponding votes there is no single thresholding to

distinguish discriminative clusters from the interference clusters,

as can be seen in Figures 2B, D. For our proposed method,

in Figure 2E as we can see from the enlarged view, scores

estimated for discriminative cluster 44 are more consistent across

subjects compare to the alternative method in Figure 2A, and

the scores for interference clusters are relatively more sparse. As

the λ increases, the score of the interference regions attenuated

more significantly than the discriminative regions, as depicted

in Figure 2G. Meanwhile, as shown in Figures 2F, H, there exist

proper thresholds to separate all the three discriminative clusters

correctly, and sparsity helps to increase the classification gap

between the two.

For the synthetic data, we directly use the precision and recall

curve since we know where the true discriminative features are.

Precision (also called positive predictive value) is the fraction of

discriminative clusters among the retrieved clusters, while recall

(also known as sensitivity) is the fraction of discriminative clusters

that have been retrieved over the total discriminative clusters.

As shown in Figures 3A, B, when the same number of clusters

is selected, our proposed method achieves both higher recall

and precision score compare to the alternative approach (area

under the two curves). Notice that when four clusters are selected
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FIGURE 2

Cluster scores and vote results as estimated by alternative method at λ = 30 (A, B) and λ = 120 (C, D) and our proposed method at λ = 10 (E, F) and

λ = 30 (G, H). For cluster scores (A, C, E, G), the blue arrows indicate the enlarged view of the original image, each colored line represents the result

of one subject. For vote results (B, D, F, H), the red lines indicate the true discriminative clusters, and the blue lines indicate the interference clusters.

(Nsel = 4), all the three true discriminative clusters can be

detected. When increasing the number of selected clusters, our

proposed method still maintained a high recall rate, while the

alternative method does not seem to improve. Even when the

number of clusters set to seven, the recall rate drops instead. In

contrast to the alternative approach, our method is more likely to
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FIGURE 3

Given di�erent selected cluster number Nsel, the recall curve (A) and precision curve (B) of our algorithm and the alternative method are compared

on the synthetic data.

detect the real discriminative regions as increasing the number of

selected clusters.

3.3. Real fMRI data I—Haxby dataset

Based on the simulation experiments, we use a well-established

public dataset, Haxby, a study of face and object representation

in human ventral temporal cortex (Haxby et al., 2001). The work

innovatively incorporates the idea of structured sparsity into the

framework of stability selection (randomized structure sparsity,

RSS in short). The author compared their results with a range

of classical univariate voxel selection methods and multi-voxel

pattern identification methods, which showed relatively fewer false

positives and confirmed the validity (higher predictive accuracy) of

selected voxels. These methods include T-test, l2-SVM, l2 Logistic

Regression, l1-SVM, l1 Logistic Regression, randomized l1 logistic

regression, Smooth Lasso (Hebiri and Van de Geer, 2011) and

TV-L1 (Gramfort et al., 2013) and Randomized Ward Logistic

(Gramfort et al., 2012).

The Haxby dataset consists of six subjects with 12 runs

per subject (dataset can be downloaded at http://data.pymvpa.

org/datasets/haxby2001/). In each run, the subjects passively

viewed grayscale images of eight object categories, grouped in

24s blocks separated by rest periods. Each image was shown for

500 ms and was followed by a 1,500 ms inter-stimulus interval.

Full-brain fMRI data were recorded with a volume repetition

time of 2.5 s. Then a stimulus block was covered by roughly

nine volumes. For a complete description of the experimental

design, fMRI acquisition parameters, and previously obtained

results, check the reference on their website (Haxby et al., 2001;

Hanson et al., 2004). In this paper, we use the fMRI data

of subjects one to five and classifying the “House” and “Cat”,

which is a classic case for animal vs. non-animal classification.

Preprocessing of the data consisted ofmotion correction using SPM

12, normalization and registration to the Montreal Neurological

Institute (MNI) to facilitate inter-subject segmentation, removal

of linear trends in each session, etc. There is no smoothing

operation on the data. In the process of coregistration, the

structural data is coregistered with functional data. Due to the

missing of structural data, subject six is excluded from the

analysis.

To have a fair comparison, we use the same parameter settings

for RSS and our method: In particular, the number of clusters

NC = 200, the connection radius σd = 3, the block size 3×3×3, the

times of spatial randomization iterations NK = 200, subsampling

fraction αcol = 0.01, fixed regularization parameter λ = 0.3. Several

additional parameter is used in our approach for cross verification

NCV = 20,αrow = 0.9 and sampling quality control αK = 0.3,

Nsel = 15 is chosen for this study. This study was not interested in

the activities of the cerebellum and vermis regions, therefore these

regions were masked to rule out for consideration.

First, we compare the performance of our proposed method

and RSS when decreasing the number of training samples. We

use the first T sessions for training, which correspond to 1/2,

1/3, 1/4, and 1/6 of the data (T = 6, 4, 3, 2) for each subject.

In Figure 4, we show the EVR maps from our method (a1–a4,

not thresholded), and binominal test results of score maps across

subjects (b1–b4, thresholded at 0.5). It shows that our proposed

algorithm locates stable discriminative voxels at bilateral fusiform

and inferior temporo-occipital even with fewer training samples

(see the pattern in a3 and a4).

To evaluate the quality of the identified discriminative voxels,

we conducted 4-fold cross validation using a linear l2-SVM

classifier for both our proposed method and RSS. Figure 5

illustrates the changes in training and testing accuracy as the

number of voxels increases. The reported curves are averaged

across subjects and four times cross verification. Our method

allowed for early identification of discriminative voxels. However,

as more voxels were included (since the exact number of

discriminative voxels is unknown), there was an increase in

irrelevant voxels and noise. This led to a decline in the accuracy

curve. On the other hand, the alternative method did not effectively

identify discriminative voxels. With an increasing number of

voxels, both irrelevant and truly relevant voxels were included,
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FIGURE 4

Brain maps for discriminative voxels as estimated on Haxby data (Cat vs. House). (Left) EVR maps (unthresholded) by our proposed approach. (Right)

Maps of binominal test result for RSS, thresholded at 0.5. Both approaches used exactly the same amount of data for comparison (1) six sessions (the

first 1/2) of five subjects; (2) four sessions (the first 1/3) of five subjects; (3) three sessions (the first 1/4) of five subjects; (4) two sessions (the first 1/6)

of five subjects.

resulting in a flat curve. It is important to note that our method

consistently outperforms the comparison method, as our curve

consistently remains higher than the RSS curve.

3.4. Real fMRI data II—Fear conditioned
dataset

After conducting experiments on synthetic data and commonly

used public datasets, we initially tested and validated the robustness

and sensitivity of the parameters of the proposed method.

In general, our proposed approach outperforms the alternative

approach in terms of its strength in recovering the discriminative

pattern reliably when reducing the number of training samples, as

well as keeping the sensitivity of individual specificity. Further, we

exploratively conduct experiments on an earlier fMRI small sample

dataset and then visualize the results. The data were recorded from

a differential aversive conditioning study in which Gabors of one

orientation were occasionally paired with an electric shock (see

Petro et al., 2017; Ji et al., 2019, for details). For the habituation

block, participants were instructed that they would not feel any

shock but to fixate on the patterns. During the acquisition block,

participants were informed that they would intermittently feel

a cutaneous electric shock during the experiment but were not

instructed as to the contingencies of the shock administration. The

extinction phase was also uninstructed, such that participants were

not told that no more shocks were to be given. The data reported

here include 40 total trials per phase per participant. Each trial

consisted of one of the two gratings being presented for 5, 100ms,

during which its phase was alternated every 100 ms. An inter-trial

interval (ITI) consisted of an initial gray cross (37.5 cd/m2; 1◦ of

visual angle) presented in the middle of the screen for a random

duration between 0 − 8 s followed by a white cross (149.0 cd/m2)

for a duration of 3 s, immediately preceding trial onset with Gabor

patch presentation.

The Data were acquired during gradient-echo echo-planar

imaging sequence with a 3T Philips Achieva scanner [echo time

(TE), 30 ms; repetition Time (TR), 1.98 s; flip angle, 80◦; slice

number, 36; field of view, 224 mm; voxel size, 3.5× 3.5× 3.5mm3;

matrix size 64 × 64]. Preprocessing of BOLD fMRI data was

completed using SPM12. We followed the standard preprocessing

routines: slice timing correction, head movements realigning,
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FIGURE 5

The classification accuracy based on 4-fold cross verification on House & Cat each curve is estimated on each individual and then averaged across

folds and subjects. Six sessions (A), four sessions (B), three sessions (C), and two sessions (D) are used for training.

normalization and resampled to a spatial resolution of 3 × 3 ×

3mm3. Images were smoothed using a Gaussian kernel with a full-

width at half-maximum of 6 mm. Low-frequency temporal drifts

were removed from the BOLD data using a 1/128 Hz high-pass

filter.

Following our previous work (Petro et al., 2017), the general

linear models (GLMs) were constructed to extract features. The

GLM aimed to model the ssVEP-BOLD coupling over the entire

experiment. Thus, all trials were modeled separately using a GLM,

which consisted of a sequence of boxcar functions in which the

start was synchronized with the onset of each stimulus and width

equal to the duration of each trial. Each boxcar function was then

convolved with a canonical hemodynamic response function. Six

additional regressors describing participants’ head movements, as

determined during preprocessing, were added to this design matrix

to account for head movements during the scanning process.

Excluding the motion components from the coefficient matrix, the

single-trial coefficients are next used as features for decoding.

For the SHV scheme, the number of selected clusters is crucial,

and as the number of of Nsel increases, the random overlap of

clusters also increases. If Nsel is too large, it will reduce the

sensitivity of the cluster voting rate and EVR. However, if Nsel is

too small, it will result in more false negatives. We recommend

selecting this parameter based on prior knowledge. In this study,

we choose Nsel = 40 based on the previous analysis of EEG-ssVEP

(Ji et al., 2018, 2019). Segmentation was performed based on the

homogeneity of functional time series and feature correlations, as

described in Section 2.1. Since this study did not interested in the

activities of the cerebellum and vermis regions, these regions were

masked out (AAL template 91-116). For the current data set, we

select 200 for NC and set the connection radius σd as 3 voxels.

The results are reported in Figure 6. Although prediction accuracy

may not be the sole criteria for selecting a model, it generally

indicates that some of these voxels are truly discriminative when

the prediction accuracy is high. To evaluate the quality of the

discovered discriminative voxels, we employed a linear l2-SVM

classifier (Hebiri and Van de Geer, 2011). Although not required,

for all three experimental sessions, we pre-saved random seeds for

block subsampling and cross-validation to ensure the same settings

were made for all subjects to facilitate comparison.We set the times

of spatial randomization iterations NK = 1, 000, times of cross

verification NCV = 20, subsampling fraction αcol = 0.015 and

αrow = 0.9, sampling quality control ratio αK = 0.3.

We compute the EVR using Equation (6), the brain maps

are shown in Figure 7 which are not thresholded for visualization

purpose. Table 1 shows detail information for acquisition session,

including the corresponding coverage—the ratio between the

number of non-zero EVR voxels and the total number of voxels

in that region—to indicate the region size of discriminative

features, the “Peak-EVR" and “MNI" show the peak location and
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FIGURE 6

Segmentation snapshot of three experimental sessions: (A) habituation (HAB), (B) acquisition (ACQ), (C) extinction (EXT). Di�erent areas are marked

with di�erent colors, for a total of 200 brain partitions.

FIGURE 7

The EVR brain maps (unthreholded), which is the computed by averaging EVR across subjects.

peak intensity of each listed region. From the EVR map, the

discriminative voxels across three experimental sessions largely

pointed to the same regions, including the visual cortical areas

such as calcarine, lingual, cuneus, occipital, and fusiform gyrus,

and a set of functionally connected brain regions such as the

superior frontal gyrus (orbital and medial part), postcentral, the

superior temporal gyrus, the superior and middle temporal pole,

precuneus and parietal gyrus, anterior cingulate cortex, insula,

amygadala and thalamus. For acquisition, ROIs got the highest

regional coverage are: the calcarine, lingual, superior temporal

gyrus, hippocampus and parahippocampus, thalamus, as well as

middle frontal gyrus, parietal, precuneus, postcentral and fusiform

gyrus for their absolute number of discriminative voxels. To test

the influence of Nsel to the results of cluster voting rates, Figure 8 is

added. For most regions, increasing the number of selected clusters

yield larger overlap across subjects.

To quantify the relative importance of discriminative voxels, we

compute the mean effective vote ratio (EVR, see Eqution 6) across

nine subjects. The resulted brainmaps are shown in Figure 7, which

are not thresholded for visualization purposes, meaning that the

zeros displayed are actually zeros. By visual inspection, it is easy

to detect the significant discriminative area. For the convenience of

comparison, we also illustrate the EVR results of nine subjects in

Figure 9, that only data from a single subject are used.

Lastly, we compute the stability index O and the averaged

test accuracy R̄ both for our proposed method and alternative

method. The results are compared for 3 experimental sessions:

habituation (HAB), acquisition (ACQ), and extinction (EXT), as
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TABLE 1 The region size/coverage of discriminative features, the peak EVR value and the corresponding MNI coordinates are listed for each ROI during

the acquisition session.

Location
Region size

MNI Peak-EVR
(coverage)

Calcarine 478/1,285 −6,−49, 5 0.96

Inferior occipital 7/548 −15,−100,−7 0.19

Middle occipital 113/1,592 −30,−85, 35 0.39

Superior occipital 278/840 24,−76, 47 0.98

Lingual 425/1,266 −6,−52, 2 0.90

Cuneus 204/817 6,−82, 41 1.00

Fusiform 207/1,415 −18,−43,−10 0.85

Parietal 375/2,344 9,−82, 50 1.00

Postcentral 243/2,261 −54,−4, 20 0.98

Precuneus 282/2,029 −6,−76, 41 1.00

ACC 29/390 0, 8, 41 0.71

Amygdala 57/136 24,−1,−10 0.92

Thalamus 316/663 −15,−10, 17 0.94

Insula 127/1,101 −45, 8,−7 0.84

Hippocampus 192/562 24,−16,−13 0.86

ParaHippocampus 154/634 21, 5,−25 0.92

Superior temporal 507/1,640 −51,−10,−4 0.90

Superior temporal pole 67/764 63, 14,−1 0.96

Middle temporal pole 86/2,782 −51,−61, 17 1.00

Supplementary motor 45/1,367 −6, 5, 80 0.77

Middle frontal 325/2,947 48, 50, 5 0.95

Middle frontal, orbital 58/538 21, 65,−10 0.88

Inferior frontal, triangular 50/1,435 51, 44, 5 0.83

Superior frontal 104/2,266 −36, 62, 2 0.86

Putamen 25/597 −30,−19, 8 0.28

shown in Table 2. Compared to the alternative approach, the voxels

selected by our method achieves higher test correct ratio/prediction

accuracy. As indicated by the stability index, our results

yield solutions that more consistent and concentrated between

individuals. Meanwhile, the test accuracy stably increases across

experimental sessions and suggests heightened discrimination

between threat and safety in visual regions in acquisition compared

to habituation.

4. Discussion

We conduct numerical experiments on synthetic data and

commonly used public dataset to test and cross-validate our

proposed method. The results show that explicitly accounting for

stability/groupwise consistency during the model optimization can

mitigate some of the instability inherent in sparse methods. In

particular, using the mixed l1 and l2 norm as a joint optimization

criterion allows pooling data from multiple subjects and can

lead to solutions that are concentrated in a few brain regions

between different individuals. The number of selected candidate

features is allowed to be much larger when incorporating group

structure, which allows us a more global search among brain

regions. Introducing groupwise regularization as an additional

optimization criterionmay offer promise for future methodological

developments in the analysis of small-sample fMRI dataset.

These results are in line with recent predictive coding models

(Rao and Ballard, 1999; Friston, 2005; Spratling, 2008), in which

separate populations of neurons within a cortical region code the

current estimate of sensory causes (predictions) and the mismatch

between this estimate and incoming sensory signals (prediction

error). Here, we did not manipulate the prior expectation of the

occurrence or omission of stimuli (grating stimuli were present

in all trials), but the likelihood of the stimulus having a certain
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FIGURE 8

Voting rates changes with di�erent Nsel, in the proportion of the vote across nine subjects. The results are for acquisition for demonstration purposes

only.

FIGURE 9

EVR results of nine subjects of alternative approach on real fMRI data.

feature (i.e., orientation) and it’s followed by an electric shock.

Thus, expectancy about the events during CS− (safe outcome) vs.

CS+ (shock will occur after a fixed time interval) is learned as the

experimental session progresses.

Finally the proposed method also resulted in findings that

converge with other approaches, and with theoretical and

computational models or fear conditioning and object recognition.

Specifically, we found heightened discrimination between threat

and safety in visual regions in acquisition compared to habituation,

and we found increasing sparsification as fear learning progressed.

It is worthy to note that, the prediction accuracy (the correct

ratio on test set) may be significantly above chance, but far

from perfect. This indicates that the code contains some linearly

decodable information, but claims of linear separability may be

difficult to evaluate as it would require attributing the substantial

proportion of errors to limitations of the measurements (noise

and subsampling), rather than to a lack of linear separability of

the neuronal activity patterns. In the case of object perception,

the method proposed in this thesis resulted in more robust

and spatially coherent regions, illustrating its potential usefulness

and applicability to a wide range of questions in cognitive

neuroscience.
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TABLE 2 The stability index and the averaged test accuracy of our proposed method and alternative method across three experimental sessions,

habituation (HAB), acquisition (ACQ), and extinction (EXT), respectively.

Session Oalter. Oour R̄alter. R̄our

HAB 0.12 0.86 0.62 0.65

ACQ 0.20 0.87 0.65 0.69

EXT 0.22 0.87 0.70 0.73
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