AUTHOR=Zheng Yi , Wang Yusi , Wu Guangrong , Li Haiyang , Peng Jigen TITLE=Enhancing LGMD-based model for collision prediction via binocular structure JOURNAL=Frontiers in Neuroscience VOLUME=17 YEAR=2023 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1247227 DOI=10.3389/fnins.2023.1247227 ISSN=1662-453X ABSTRACT=Introduction

Lobular giant motion detector (LGMD) neurons, renowned for their distinctive response to looming stimuli, inspire the development of visual neural network models for collision prediction. However, the existing LGMD-based models could not yet incorporate the invaluable feature of depth distance and still suffer from the following two primary drawbacks. Firstly, they struggle to effectively distinguish the three fundamental motion patterns of approaching, receding, and translating, in contrast to the natural abilities of LGMD neurons. Secondly, due to their reliance on a general determination process employing an activation function and fixed threshold for output, these models exhibit dramatic fluctuations in prediction effectiveness across different scenarios.

Methods

To address these issues, we propose a novel LGMD-based model with a binocular structure (Bi-LGMD). The depth distance of the moving object is extracted by calculating the binocular disparity facilitating a clear differentiation of the motion patterns, after obtaining the moving object's contour through the basic components of the LGMD network. In addition, we introduce a self-adaptive warning depth-distance, enhancing the model's robustness in various motion scenarios.

Results

The effectiveness of the proposed model is verified using computer-simulated and real-world videos.

Discussion

Furthermore, the experimental results demonstrate that the proposed model is robust to contrast and noise.