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Image registration is one of the important parts in medical image processing

and intelligent analysis. The accuracy of image registration will greatly a�ect the

subsequent image processing and analysis. This paper focuses on the problem of

brain image registration based on deep learning, and proposes the unsupervised

deep learning methods based on model decoupling and regularization learning.

Specifically, we first decompose the highly ill-conditioned inverse problem of

brain image registration into two simpler sub-problems, to reduce the model

complexity. Further, two light neural networks are constructed to approximate

the solution of the two sub-problems and the training strategy of alternating

iteration is used to solve the problem. The performance of algorithms utilizing

model decoupling is evaluated through experiments conducted on brain MRI

images from the LPBA40 dataset. The obtained experimental results demonstrate

the superiority of the proposed algorithm over conventional learning methods in

the context of brain image registration tasks.

KEYWORDS

unsupervised learning, data-adaptive, brain image registration, model decoupling, sub-

problems

1. Introduction

Medical image registration is a vital step in the healthcare field, pivotal for diagnosing

(Song et al., 2021), and planning treatments (Tan et al., 2016). It aligns multiple images,

establishes spatial correlations, and assimilates varied data, thereby contributing to improved

diagnostic precision and personalized treatments.

The task of image registration (Hu et al., 2018), involves identifying the optimal spatial

transformation between two images, thereby establishing a unique correspondence between

points in each space that are associated with the same anatomical position. This task

is a high-dimensional, ill-posed optimization problem, commonly solved using a specific

objective function:

T∗ = argminD
(

If ,T (Im)
)

, (1)

where T∗ represents the optimal transformation, If is the template (or fixed) image, and Im is

the image to be registered (or moving image). The functionD(·, ·) quantifies the dissimilarity

or distance between these two images.

Traditionally, medical image registration has been conducted with model-based

methods. These models are typically categorized into parametric methods and global

variational methods. Parametric methods approximate deformations using parameters,
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such as Thin-Plate Splines (TPS) (Bookstein, 1989) or B-splines

(Xia and Liu, 2004), and solve an optimization problem to

find optimal parameter values. Conversely, global variational

methods frame the registration problem as an energy functional

minimization task, often involving partial differential equations

to ensure the diffeomorphism of the deformation field. Although

these model-based methods offer high registration accuracy

and robustness, they suffer from computational complexity and

limitations in capturing complex deformations.

Recently, the rapid advancements in deep learning and the

availability of extensive medical image datasets have catalyzed

the emergence of learning-based registration methods. The early

deep learning-based image registration models primarily utilized

supervised learning methods. In this approach, output labels such

as deformation vector fields or parameters are used during training

to learn the mapping from input image pairs to deformation fields

using neural networks. Various methods, including convolutional

neural network (CNN) and fully convolutional network (FCN)

(Sheikhjafari et al., 2022) architectures, have been explored

to tackle single-modal or multi-modal registration tasks, rigid

registration, and non-linear deformations. But these methods

require a large amount of predefined ground truth deformation

field labels, resulting in significant manpower costs. To overcome

the limitations of supervised learning, unsupervised learning

models for image registration have been developed. Rather than

necessitating predefined ground truth deformation field labels,

these models place reliance on the assessment of similarity between

registered images and template images to guide the network

learning process. Unsupervised learning models (Sideri-Lampretsa

et al., 2022) have demonstrated competitive performance compared

to traditional methods, surpassing them in metrics like Dice score,

residual sum of squares, peak signal-to-noise ratio, and structural

similarity. Despite their promising results, deep learning-based

registrationmethods face certain challenges, including the presence

of local minima during model optimization, which can impede

convergence to accurate solutions.

To address these existing challenges, this paper bridges

traditional model-based methods and modern learning-based

deep learning methods, aiming to balance global smoothness and

local data-adaptive discontinuity constraints. This combination

is anticipated to enhance the accuracy and precision of brain

image registration. Specifically, this paper introduces an

unsupervised learning method specifically designed for medical

image registration, focusing on brain images. The proposed

method incorporates a regularization term to tackle the inherent

complexity of the registration problem, thus splitting it into more

manageable sub-problems through model decoupling techniques.

These sub-problems are then addressed via deep learning networks,

namely Similarity-Net and Denoiser-Net. Our main contributions

include (a) the development of an innovative deep learning

method: This novel method uses model decoupling to simplify

the inverse problem of image registration. It accomplishes this by

decomposing the problem into two less complex subproblems,

(b) introduction of a deep learning algorithm based on model

decoupling: This proposed algorithm addresses the highly ill-posed

problem of image registration. The innovative aspect of this

algorithm lies in its ability to utilize deep learning techniques to

approximate the solutions to these lower complexity subproblems,

and (c) The obtained experimental results demonstrate the

superiority of the proposed algorithms over conventional learning

methods in the context of image registration tasks.

2. Related works

2.1. Deep learning based registration
methods

Supervised learning techniques in image registration utilize

known deformation vector fields during training, with loss

functions commonly comprising similarity and regularization

terms. The creation of deformation labels can be quite challenging,

prompting the use of random generation (Sun et al., 2018), or

model-based generation approaches (Yang et al., 2016). While these

techniques are valuable, they may encounter limitations due to the

general lack of labeled data.

Unsupervised learning approaches (Liu et al., 2022), such

as the VoxelMorph network (Balakrishnan et al., 2018), tackle

the challenge of obtaining ground truth deformation fields by

capitalizing on the similarity between registered images and

template images. The VoxelMorph network incorporates the U-

Net architecture (Ronneberger et al., 2015) for predicting the

deformation field and the Spatial Transform Network (STN)

module (Jaderberg et al., 2015) to apply the predicted deformation

to the target image. This structure circumvents the need for explicit

deformation labels, demonstrating the power of unsupervised

learning in accurate image registration.

2.2. Regularization based methods

Diffeomorphic regularization, a widely adopted method,

preserves the topological structure of images during registration

(Beg et al., 2005). Approaches based on stationary velocity

fields and architecture-based designs are common in this

respect (Trouvé and Younes, 2005; Vercauteren et al.,

2009). Recent advancements aim to predict diffeomorphic

deformation fields within deep learning frameworks, with

some methods, like SYMNet (Lu et al., 2019), directly

outputting pairs of diffeomorphic deformation fields. These

techniques aim to boost the smoothness and realism of

deformation fields, thereby improving the accuracy and efficiency

of registration.

Multi-scale regularization techniques, on the other hand,

utilize information from multiple scales to enhance the

robustness and accuracy of the process. Approaches such

as multi-scale information fusion (Srivastava et al., 2022),

multi-stage registration (de Vos et al., 2019; Cai et al.,

2022), and coarse-to-fine registration (Zhao et al., 2020;

Mok and Chung, 2022) have been developed to implement

multi-scale regularization. Despite an increased demand for

computational resources, these multi-scale techniques have

demonstrated superior performance in various medical image

registration tasks.
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FIGURE 1

Brain image registration network structure, both u and v represents the deformation field.

3. Method

3.1. Model framework

In the context of brain magnetic resonance image registration,

it is desired to maintain the topological structure of the images

before and after registration. To achieve this, we consider the

following optimization problem:

φ∗ = argminLsim

((

If , Im ◦ φ
)

+ λ · ‖∇φ‖22 , (2)

where, If represents the template image, Im represents the image to

be registered, φ denotes the predicted deformation field, and |∇φ|2

is the regularization term that imposes a smoothness constraint on

the deformation field. The parameter λ balances the relationship

between the fidelity term and the regularization term in the

loss function.

Considering the complexity of image registration problems, the

above optimization problem is a high-dimensional and ill-posed

problem. Therefore, we propose an optimization method based on

model decoupling. By introducing relaxation variables, the above

optimization problem is transformed into two sub-problems:

u∗ = argminLsim

((

If , Im ◦ u
)

+ α · |u− v|22
)

, (3)

v∗ = argmin |v− u|2 + β · |∇v|22, (4)

where, v is the relaxation variable, both u and v represents

the deformation field in this problem and α and β are

balancing parameters.

We design two neural networks to solve these two sub-

problems. The first sub-problem is primarily addressed by using the

Similarity-Net as the registration network, while for the nature of

the second sub-problem, we design a denoising network, Denoiser-

Net, to approximate the solution. By iteratively alternating between

these two networks, a deformation field with smoothness properties

is predicted. The model framework is illustrated in Figure 1.

Detailed information will be discussed in Sections 3.2 and 3.3.

We provide the specific steps of the model decoupling-

based method for solving the registration problem.

Model-decoupling-based brain image registration method.

Require: Image pairs (In
f
, Inm), parameters α,β > 0,

iterations k, learning rate lr, batch size B

Ensure: Optimal solutions u∗, v∗.

1: Input:
(

In
f
, Inm

)

, n = 1, · · · ,N.

2: Initialization: Network parameters of Similarity-Net

and Denoiser-Net, at this point i = 0.

3: for i ≤ k do

4: Randomly select a batch of data
(

I
j

f
, I

j
m

)

, j = 1, · · · ,B.

5: Fix the network parameters of the Denoiser-Net,

calculate u and v.

6: Compute loss (3), update Similarity-Net via

backpropagation.

7: Fix the network parameters of the Similarity-Net,

calculate u and v.

8: Compute loss (4), update Denoiser-Net via

backpropagation.

9: i = i+ 1.

10: end for

11: Output: u∗ = u, v∗ = v.

3.2. Similarity-Net

For the first sub-problem, we employ a similar optimization

method as VoxelMorph, using a network called Similarity-Net. We

adopt a network architecture similar to UNet, but with reduced

network parameters and model complexity. In the encoding part,

instead of performing a convolution operation with a stride of 1

after downsampling the image size, we introduce a convolution

operation with a stride of 2. Additionally, the number of channels

in the feature maps is reduced. In the decoding part, we restore

the image size gradually using direct interpolation instead of using

transposed convolution, aiming to reduce network parameters. In

the encoding part of the network, we perform four convolution

operations with a stride of 2 and save the corresponding feature

maps. In the decoding part, we restore the image size using
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FIGURE 2

Similarity-Net network framework.

FIGURE 3

One-dimensional dilated convolution operation.

nearest-neighbor interpolation, and before each interpolation step,

we connect the feature maps saved in the encoding part at the

corresponding scale. Finally, after two convolution operations, the

predicted deformation field is obtained.

Once the predicted deformation field is obtained, we not

only use the spatial transformation layer to register the moving

image but also evaluate the distance between the deformed

moving image and the template image using local cross-

correlation. The deformation field is then fed into the Denoiser-

Net network to adjust the deformation field to satisfy the

corresponding regularization constraints. The difference between

the input and output of the Denoiser-Net is computed as

the loss function, which guides the parameter updates of

the Similarity-Net. The specific network structure is shown

in Figure 2.

3.3. Denoiser-Net

The second sub-problem aims to obtain an output that is

similar to the input but possesses certain desired properties. This

is a common task in image denoising. To address this, we design

a small denoising network called Denoiser-Net to solve the second

sub-problem. Inspired by DnCNN (Huang et al., 2021) and ResNet

(Zhang et al., 2017), we adopt a residual learning approach, where

instead of directly mapping the input to the output, we learn the

residual between the output and the input. In this design, the

relationship between u and v can be expressed as:

v = u+ Residual(u). (5)

Furthermore, we incorporate a pyramid structure inspired by
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FIGURE 4

Denoiser-Net network framework.

FIGURE 5

LPBA40 dataset.

SPPNet (He et al., 2016) into the network construction, utilizing

parallel dilated convolution operations with multiple dilation rates

to achievemulti-scale information fusion. Dilated convolution, also

known as atrous convolution, enables explicit control over the

resolution of the computed feature maps in convolutional neural

networks and allows adjustment of the filter’s receptive field to

capture multi-scale feature information. It is a generalization of

conventional convolution operations. In the case of 1D signals, the

dilated convolution applied to the input feature map x with the

output feature map y and convolution filter w can be expressed as:

y[i] =
∑

k

x[i+ r · k]w[k], (6)

where y[i] represents the value at the i-th coordinate position of the

output feature map y, r denotes the dilation rate, and k represents

TABLE 1 DSC of di�erent methods.

Method S-Net SS-Net Ours VoxelMorph Ours+

DSC 0.6780 0.7027 0.7043 0.7053 0.7061

the k-th position of the filter. Figure 3 provides a visualization

of dilated convolution in 1D signals. In conclusion, the specific

structure of Denoiser-Net is illustrated in Figure 4.

4. Experiments

4.1. Data preparation

The brain image dataset used in this study is the publicly

available LPBA40 dataset. The LPBA40 dataset was collected at

the North Shore Long Island Jewish Health System (NSLIJHS)

and is maintained at the University of California, Los Angeles

(UCLA). The dataset consists of 40 brain magnetic resonance

imaging (MRI) scans from volunteers, with voxel sizes of 0.86 ×

0.86 × 1.5 mm3. The volunteers include 20 males and 20 females,

all free of any brain disorders, psychiatric history, or intellectual

developmental delay. The average age of the volunteers is 29.20 ±

6.30 years, with the youngest volunteer being 19.3 years old

and the oldest being 39.5 years old. The UCLA Laboratory

of Neuro Imaging (LONI) manually labeled 56 brain regions

for each image in the LPBA40 dataset. The specific definitions

of the brain regions can be found in Zhang and Ghanem

(2018). We performed a series of standardization processes on

the brain MRI images. Firstly, we used the FreeSurfer software

(Shattuck et al., 2008) for skull stripping and resampled the images

to a voxel size of 1 × 1 × 1 mm3. To avoid computational
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FIGURE 6

The DSC for di�erent methods in the regions of interest.

redundancy caused by blank regions in the images, we cropped

the images to a size of 144 × 192 × 160 mm3. To eliminate

the impact of grayscale value magnitude and distribution on

the experiments, we normalized and histogram-equalized the

cropped images. Finally, we applied affine alignment to all

the images to ensure the center of study in the non-linear

transformations across the brain images. Illustrations of the

preprocessed images in three directions on the same slice are shown

in Figure 5.

4.2. Experimental setup

The experiments were conducted on a Linux operating system,

specifically Ubuntu 18.04. The network was built using the

PyTorch deep learning framework. The training and testing were

performed on an NVIDIA GeForce RTX 3090 GPU with 24GB

of memory. To demonstrate the effectiveness of our proposed

model-decoupled method on brain data, we compared it with the

following methods:

(1) Similarity-Net: The network architecture is Similarity-Net

without the regularization term in the loss function and

without the inclusion of the denoiser network, which serves as

our baseline method. For convenience, we refer to this method

as S-Net.

(2) Similarity-Net with Smoothness Regularization (SS-Net): The

network architecture is Similarity-Net, and the loss function

includes smoothness regularization constraints but does not

include the denoiser network.

(3) VoxelMorph: The network architecture is U-Net, which has

more parameters than Similarity-Net, and the loss function

includes smoothness regularization constraints.

4.3. Evaluation metrics

In this study, we used the Dice similarity coefficient (DSC) as a

commonly used evaluation metric for quantitatively analyzing the

registration performance in brain image registration. The DSC is

defined as follows:

DSC(A,B) = 2
|A ∩ B|

|A| + |B|
, (7)

where DSC(A,B) represents the degree of overlap between two

corresponding brain regions A and B, where A and B denote the
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FIGURE 7

The registered images obtained through di�erent methods.

brain regions of the template image and the registered image,

respectively. The DSC value ranges from 0 to 1, with a higher value

indicating a higher degree of overlap and similarity between the two

brain structures.

4.4. Experimental results

For the experiment, 30 randomly selected images were used as

the training set, 2 images as the validation set, and 8 images as the

test set for inter-subject brain image registration. This resulted in

a total of 870 image pairs available for training. The network was

trained with a learning rate of 0.0005, 50,000 iterations, and a batch

size of 1.

Table 1 records the Dice Similarity Coefficient (DSC) obtained

under different methods. Here, “Ours+” refers to our proposed

method, where we replaced the sub-network in the first step with

VoxelMorph instead of Similarity-Net and performed alternating

iterations with Denoiser-Net. Observing the table, we can draw

the following two conclusions: (1) Compared to the method SNet,

which only uses Similarity-Net, our proposed method shows a
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FIGURE 8

The registered images obtained through di�erent methods.

significant improvement in the DSC metric. This indicates that our

proposed method effectively imposes regularization constraints on

the deformation field, thereby enhancing the registration accuracy.

(2) Compared to the method SS-Net, which directly incorporates

regularization terms into the loss function, our proposed method

also exhibits a slight improvement in the DSCmetric. Furthermore,

even after replacing Similarity-Net with VoxelMorph, our proposed

method still outperforms VoxelMorph, suggesting that our model-

based method can further narrow the solution space and reduce the

occurrence of local minima to a certain extent.

Figure 6 presents the DSC (Dice Similarity Coefficient) metrics

for S-Net, SS-Net, and our proposed method across 54 regions

of interest (ROIs) of interest. The parts marked with asterisks

(*) indicate that our method achieved higher DSC values in

those brain regions compared to the other two methods. Upon

statistical analysis, our proposed method demonstrated superior

registration performance in 33 brain regions. This suggests that

the improvement in the DSC metric achieved by our method is

not limited to specific brain regions but rather reflects an overall

enhancement in registration accuracy.

Figure 7 illustrates the visual results of S-Net, SS-Net, and

our proposed method on the LPBA40 dataset. The three columns

represent the visualization results for three slices. The top row

shows the target (moving) image, the middle row displays

the template (fixed) image, the third row depicts the image

registered using the S-Net method, the fourth row shows the

image registered using the SS-Net method, and the fifth row

displays the image registered using our proposed method. By

observing the results, it is evident that the image registered

using the S-Net method exhibits local discontinuities, connections,

and holes that are inconsistent with the actual data. On the

other hand, the images registered using the SS-Net method

and our proposed method appear smoother and closer to the

real data.

Figure 8 shows the residual maps of S-Net, SS-Net, and

our proposed method on the LPBA40 dataset. The three rows

represent the visualization results of three slices. The first column

corresponds to the target image, the second column is the template

image, the third row shows the difference between the two images

without registration, the fourth row shows the difference between

the image registered using the SS-Net method and the template

image, and the fifth row shows the difference between the image

registered using our proposed method and the template image. By

observation, our proposed method reduces the differences between

the registered floating image and the template image, and in some

regions, it performs similarly to or slightly better than SS-Net.

In conclusion, our proposed method outperforms S-Net

in terms of evaluation metrics and visual effects, and slightly

outperforms SS-Net. This demonstrates that the method based

on model decoupling and alternate iterative training strategy

effectively learns the smoothness regularization constraint, thereby

improving registration accuracy. Furthermore, in the experiments

with increased model complexity, i.e., the improved model based

on the VoxelMorph framework proposed by us still achieves a

certain degree of improvement in performance. This indicates that

our method can serve as a framework to be combined with other

more sophisticated networks, enhancing registration accuracy on

top of the existing network.

5. Conclusion

In our study, we propose a novel deep learning method that

employs model decoupling to augment the precision of registration
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tasks in medical imaging. By constructing separate networks for

fidelity and regularization terms, we achieve effective constraint of

the solution space, thereby reducing the occurrence of local minima

that might compromise result quality. Our method’s superior

performance was demonstrated through its application to image

registration tasks on brain magnetic resonance imaging (MRI),

enhancing the accuracy of image processing and analysis.

Although our research has made considerable strides in the

domain of image registration, there remain potential areas for

future exploration. One such aspect pertains to the performance

of the two subnetworks within our model. Given the dependency

of our unsupervised learning method’s registration accuracy on the

first network’s output, investigating the integration of potentially

more efficient network architectures into our framework could

be beneficial. This could pave the way for elevated overall

registration accuracy.

In terms of regularization, while our work leverages the

common differential diffeomorphic regularization for brain MRI

datasets, alternative regularization constraints could be explored

to further refine the results. This offers another promising avenue

for more comprehensive research in the future. By delving into

these areas, we anticipate building on our existing contributions

and facilitating further advancements in the field of brain image

registration through deep learning.
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