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Both e�ortful and e�ortless training have been shown to be e�ective in enhancing

individuals’ executive functions. E�ortful training improves domain-specific EFs,

while e�ortless training improves domain-general EFs. Furthermore, e�ortful

training has significantly higher training e�ects on EFs than e�ortless training.

The neural mechanism underlying these di�erent e�ects remained unclear. The

present study conducted meta-analysis on neuroimaging studies to explore the

changes of brain activations induced by e�ortful and e�ortless training. The

results showed that e�ortful training induced greater activation in superior frontal

gyrus, while e�ortless training induced greater activation in middle frontal gyrus,

precuneus and cuneus. The brain regions of MD system enhanced by e�ortful

training were more associated with core cognitive functions underlying EFs,

while those enhanced by e�ortless training were more correlated with language

functions. In addition, the significant clusters induced by e�ortful training had

more overlaps with the MD system than e�ortless training. These results provided

us with possibility to discuss the di�erent behavioral results brought by e�ortful

and e�ortless training.

KEYWORDS

e�ortful training, e�ortless training, executive functions, multiple demand system, fMRI,

meta-analysis

1 Introduction

Executive functions (EFs) refer to human’s ability to form goals, make and implement

plans effectively (Lezak, 1982), which has three basic components: updating, inhibition,

and shifting (Diamond, 2013). Updating refers to the ability of keeping and manipulating

information, inhibition refers the ability to ignore distraction and inhibit automatic

responses, and shifting refers to ability of switching flexibly between different rules

and mental processes (Miyake et al., 2000; Diamond and Lee, 2011). EFs are generally
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considered to be the basis of various cognitive abilities which

play a critical role in human cognitive development (Espy, 2004;

Diamond, 2013), and the impairment of EFs are frequently

observed in populations with developmental disorders including

attention deficit hyperactivity disorder (ADHD), autism spectrum

disorder (ASD), and others (Weyandt, 2009; Barendse et al.,

2013; Craig et al., 2016). Therefore, researchers have been

investigating how to enhance individuals’ EFs using various

effective interventions (Klingberg et al., 2005; Karbach and Kray,

2009; Johann and Karbach, 2020).

Training programs developed could be divided into two groups:

effortful and effortless training. Effortful training, designed to

make trainees engage their cognitive resource in order to achieve

the certain goal (Kahneman, 1973), was the mainstream training

method. Some of these programs train participants with cognitive

tasks that invoke specific EFs su bcomponent such as N-back task

for working memory (Buschkuehl et al., 2014; Heinzel et al., 2016),

stop-signal task for inhibitory control (Berkman et al., 2014; Wang

et al., 2020), and switching task for cognitive flexibility (Espinet

et al., 2013; van Bers et al., 2020). Other effortful training programs

train with software and game-based computer tasks, for example,

Cogmed and Lumosity (van der Donk et al., 2015; Steyvers et al.,

2019; Kelly et al., 2020; Steyvers and Schafer, 2020). For effortless

training, this emerging trend of method hypothesize that cognition

could be improved in programs that engage minimal cognitive

effort (Moreau and Conway, 2014; Tang et al., 2022). In this kind

of training approaches, participants were trained with mindfulness

practice (Van de Weijer-Bergsma et al., 2012; Nien et al., 2020),

physical exercise (Krafft et al., 2014; Hsu et al., 2018; Kleinloog et al.,

2019), and musical training (Moreno et al., 2011; Guo et al., 2021).

Training effects brought by training programs could be divided

into near and far transfer effects: the former one refers to

the improvement of performance on the tasks measured the

same or similar cognitive abilities, and the latter one refers to

the improvement of performance on tasks measuring different

cognitive domains (Barnett and Ceci, 2002; Sala et al., 2019).

Previous training and meta-analysis studies have indicated the

different effects of effortful and effortless training on individuals’

EFs. Since effortful programs were designed to improve specific EFs

domains, performance in the same or similar cognitive task could

be enhanced in these programs (Cao, 2019; Takacs and Kassai,

2019; Scionti et al., 2020) but less enhancement in tasks measuring

different EFs subdomain from the trained task (Kassai et al., 2019;

Sala and Gobet, 2019; Cao et al., 2020). On the other hand, effortless

training programs aimed at no specific EFs domain, and training

effects brought by this kind of programs could be viewed as far-

transfer effects. Therefore, the training effects of effortless training

were significantly lower than effortful training (Takacs and Kassai,

2019) but showing no difference between the gains in different EFs

subdomains (Chen et al., 2020). The difference between the training

effects indicates that the two training approaches improve EFs

from distinct mechanisms, effortful training influence the domain-

specific process of trained subdomain, while effortless training

improves relatively domain-general factors of EFs.

Distinct training effects of the two training approaches

might origin from different brain activity elicited. However, the

neural mechanism underlying the different training effects on

behavior performance remains unclear. Previous meta-analysis on

neuroimaging studies revealed that effortful training could induce

greater activations in the medial frontal gyrus, inferior parietal

louble, and precuneus (Li et al., 2015; Vartanian et al., 2022).

While for effortless training, Tang et al. (2022) raised hypothesis

that attention and self-control (including task performance on

EFs) could be enhanced by effortless training through the ACC-

PCC-striatum (APS) circuit. Meta-analytic evidence still lacks to

examine the neural mechanism underlying the effects of effortless

training on EFs. The multiple demand (MD) system are the core

brain regions that widely believed to closely related with human

intelligence and EFs, since these regions activate under a variety of

tasks with various demands, mainly composed of brain regions of

the prefrontal lobe and parietal lobe (Duncan, 2010; Woolgar et al.,

2018). Furthermore, past studies have also found that both effortful

and effortless training could induce changes of brain activations

within the MD system (Li et al., 2015; Mothersill and Donohoe,

2019; Yu et al., 2021; Vartanian et al., 2022). Therefore, we speculate

that besides the different behavioral effects, effortful and effortless

training could also induce different brain activity changes within

MD system.

In the present study, we conducted a neuroimaging meta-

analysis using activation likelihood estimation (ALE) to examine

the neural basis of effortful and effortless training on EFs (Eickhoff

et al., 2009, 2012). Next, we conducted contrast and conjunction

analysis to reveal the distinct and common brain regions influenced

by the two training approaches.

2 Methods

2.1 Data sources

Literature search was conducted through Web of Science and

Scopus. For the search strings, we used keywords that represents

EFs, different training approaches, and fMRI. We searched for the

literature published after January of 2000 and until the search date.

Furthermore, reference lists of the included articles were manually

searched for not missing relevant articles for the topic. In total, 62

studies containing 81 experiments were included.

2.2 Inclusion criteria and study selection

The screen for relevant studies was conducted corresponding

to PICOS-principles whose full descriptions are participants (P),

intervention (I), comparisons (C), outcomes (O), and study design

(S). The initial search revealed 28,551 articles. We incorporated

articles when they met the following criteria: (1) studies employed

fMRI technique to explore human brain activity related to the

review topic were included, (2) studies adopted a pretest-training-

posttest pattern were included while research only did one set

of fMRI scanning were excluded, (3) studies reporting activation

and deactivation data from subtractions between posttest and

pretest or baseline conditions were included, and (4) studies

reported results in detailed coordinates of whole-brain analysis in

standard reference space and with significant effect were included.
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Studies without sufficient data to perform ALE analysis after

contacting to the authors were also excluded. Due to the large

number of identified records from dataset, we used software

ASReview Lab v1.2.1 (Van De Schoot et al., 2021) for aiding the

literature screening process. Ninety-nine studies were remained

for successfully meeting all the criteria and obtaining full-text.

The full-text assessment was done by two independent authors,

which results 59 eligible studies with 69 experiments. A flow chart

illustrating the detailed literature searching and study selection

process can be viewed in Figure 1.

2.3 Coding of variables

The extraction of the relevant data was done with the

following details: (1) name of the lead author; (2) publication

year; (3) population characteristics (e.g., health type, age, and male

percentage), training characteristics (e.g., participants number,

training duration and frequency, and control condition); (4)

cognitive task paradigms employed to access the effect of training

and the type of cognition it tested; and (5) training type,

effortful training programs were operationalized as programs that

specifically targeted one or more components of EF as proposed

by Miyake et al. (2000) namely, working memory, inhibitory

control, and cognitive flexibility, while effortless training programs

were programs those engage minimal mental effort and involve

effortless practices or experiences, such as nature exposure and

flow experience (e.g., mindfulness, physical activity, and musical

training).

2.4 ALE analysis

Meta-analysis were conducted based on the ALEmethod (Laird

et al., 2005) using GingerALE 3.0.2 (https://www.brainmap.org/

ale/). The algorithm aims at determining the consistent locations of

brain activation in studies using similar experimental conditions.

In ALE, activation focis are treated as centers for the probability

distributions capturing the spatial uncertainty associated with each

focus. The probabilities of all foci reported in a given experiment

were then calculated to form the voxel-wise ALE score maps using

an automatically determined full-width half-maximum (FWHM)

value (Eickhoff et al., 2009), which is calculated by the number of

subjects in each experiment. The size of the FWHMof the Gaussian

kernel was adjusted for the expected between-subject and between-

template variability to model spatial uncertainty (Turkeltaub et al.,

2011). Next, in order to test whether the convergence was reliable,

ALE maps were compared to null-distributions acquired from

independent studies’ ALE values. The p-value was given by the

proportion of equal or higher values under the null-distribution. To

correct for multiple comparisons, we applied stringent threshold

algorithms of family-wise error rate (FWE) p < 0.05 (1,000

permutations for uncorrected p < 0.001) to reveal the training-

induced effects (Eickhoff et al., 2012).

Statistical comparisons between two ALEmaps were conducted

also based on GingerALE, using conjunction and contrast analysis

(Nichols et al., 2005; Eickhoff et al., 2011; Rottschy et al., 2012).

These analysis uncovered the similarity and differences in tr aining

effects between effortful and effortless training. We applied a

threshold of FDR pN < 0.01 (10,000 permutations), cluster size

> 200 mm3 to the conjunction, and contrast analysis. Finally, the

GingerALE software identified the brain locations of significant

clusters detected in the meta-analysis.

2.5 MD system ROI

To examine the overlap between the significant clusters and

humanMD system, we selected the MD system as ROI (Figure 2B).

The MD network was based on data from Fedorenko et al.

(2013), selecting frontoparietal regions responsive to cognitive

demands across seven diverse tasks (http://imaging.mrc-cbu.cam.

ac.uk/imaging/MDsystem).

2.6 Meta-analytic functional decoding

Using the Neurosynth Image Decoder, we decoded the

functional characteristics of meta-analysis network of the sub-

group meta-analysis result maps of effortful and effortless training.

The decoder calculates the similarity between any meta-analysis

network and other meta-analytical maps related to certain terms

by computing Pearson’s correlation coefficients across all voxels

(Bellucci et al., 2019). We selected the top 10 terms associated with

each training approaches to represent the most related cognitive

functions.

3 Results

3.1 Characteristics of included studies

There were total 408 foci of activation information within

59 studies, with a total of 1,167 subjects (Mage = 34.31, SDage =

20.24): 782 healthy people and 385 patients. Forty four studies

trained participants with effortful training approaches, while the

remaining fifteen studies used effortless training programs. For

the subcomponent of EFs measured, 31 studies measured working

memory, 26 studies measured inhibitory control, and three studies

measured cognitive flexibility. Detailed study characteristic were

elaborated in Supplementary Table 1.

There were total 408 foci of activation information within 61

studies, with a total of 1,167 subjects (Mage=34.31, SDage = 20.24):

782 healthy people and 385 patients. Thirty two studies trained

participants with effortful training approaches (with 71.9% of them

measured working memory, 25% of themmeasured inhibition, and

3.1% of them measured flexibility), while the remaining twenty

nine studies used effortless training programs (with 28% of them

measured working memory, 68% of them measured inhibition,

and 4% measured flexibility). For the age groups of studies

included, 17 studies (28.6%) trained children (age range: 0–18), 33

studies (51.7%) trained adults (age range: 19–64), and 12 studies

(19.7%) trained the elderly (age range: above 65). Detailed study

characteristic were elaborated in Supplementary Table 1.
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FIGURE 1

Flowchart for study including and screening.

3.2 Individual meta-analysis

First, we examined the overall meta-analysis result of the fifty-

nine studies that investigated the effect of cognitive training on

individuals’ executive functions. Results showed that convergence

occurred in the multiple-demand network, with the activation

peaks appeared at superior frontal gyrus (extending to cingulate

gyrus and medial frontal gyrus, see Table 1). Additionally, it should

be aware that there are two types of scopes for the superior frontal

gyrus. In the first opinion, the superior frontal gyrus is the gyrus

located on the frontal lobe’s superolateral surface (and does not

extend to the medial surface of the frontal lobe), while in the

second opinion, the superior frontal gyrus is the superior part of the

interhemispheric (medial) surface of the frontal lobe (Damasio and

Woods, 1995; Tamraz et al., 2004; Drake et al., 2009). According to

the location of the overall cluster given by GingerALE, this software

defined superior frontal gyrus followed the second opinion.

Next, we conducted individual meta-analysis separately on

studies using effortful and effortless training approaches. For

efffortful training, the ALE meta-analysis of all foci (Table 1 and

Figure 2A) revealed one significant cluster also located in the

superior frontal gyrus (extending to medial frontal gurys and

cingulate) with 46.2% voxels located within anterior cingulate

cortex (ACC). The ALE meta-analysis of all foci reported in

effortless dataset revealed four significant clusters (Table 2 and

Figure 2C) including left precuneus (extending to inferior and

superior parietal lobule, and angular gyrus), left middle frontal

gyrus (extending to inferior frontal gyrus), right cuneus (extending

to precuneus), and right middle frontal gyrus (extending to

superior frontal gyrus).

Furthermore, in order to examine the extent of how effortful

and effortless training improve brain activity in MD regions, we

calculated the number of overlapping voxels between the significant

clusters and MD region. The results revealed that 56% of voxels in

significant cluster induced by effortless training locates within MD

regions and 79% of voxels in significant cluster induced by effortful

training locates within MD regions. Moreover, the significant

clusters induced by effortful and effortless training overlapped with
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FIGURE 2

Results for significant clusters revealed by individual and contrast analysis. (A) Meta-analysis of e�ortful training. (B) ROI of MD system. (C)

Meta-analysis of e�ortless training. ALE, activation likelihood estimation.

different parts of the MD system. Clusters in effortless training

mainly overlapped with the inferior frontal sulcus, prefrontal cortex

of MD system, while cluster in effortful training mainly overlapped

with the pre-SMA and ACC part of the MD system.

3.3 Contrast and conjunction analysis

The contrast analysis between effortless and effortful training

revealed two significant clusters locating in the precuneus

(extending to angular gyrus and inferior parietal lobule) andmiddle

frontal gyrus (extending to inferior frontal gyrus). No significant

cluster was found in the conjuction analysis between the two

training approaches. Therefore, the conjunction results indicated

that though both training approaches improved the MD system,

they enhanced different parts from each other.

3.4 Meta-analytica functional decoding

The Neurosynth Image Decoder indicated that the meta-

analytical map of effortful training is primarily associated

with terms representing conflict monitoring and task demand

(Figure 3A), while effortless is more associated with terms

representing judgement and language functions (Figure 3B).

4 Discussions

The current study has shown that both effortful and effortless

training elicit significant changes of brain activation within the

MD system during EFs tasks. However, there are differences exist

between the effects of these two training approches on MD system.

First, significant cluster induced by effortful training located in

superior frontal gyrus, while those induced by effortless training

located in precuneus, middle frontal gyrus, and cuneus. Second,

effortful training induced most brain activation changes within

the MD system, while only half of the effortless training induced

clusters located within MD systems. These results contributed to

comprehending different behavioral effects brought by these two

training approaches.

For effortful training, the significant cluster located in the

superior frontal gyrus has been shown to be cruicial for human EFs

and cognitive control (Jobson et al., 2021; Friedman and Robbins,

2022). More importantly, ACC serves the cognitive control process

by involving in multiple specific cognitive progress including

pre-response conflict, decision uncertainty, response error, and

negative feedback (Ridderinkhof et al., 2004). In addition, the
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TABLE 1 Significant clusters revealed by individual meta-analysis.

Cluster Coordinates Z-value Cluster size Brain region

x y z

Overall

1 10 10 42 5.17 3216 mm3 Superior frontal gyrus (39.3%)

Medial frontal gyrus (31.8%)

Cingulate gyrus (28.9%)

E�ortful

1 1 16 46 4.13 2504 mm3 Superior frontal gyrus (43.2%)

Medial frontal gyrus (33.1%)

Cingulate gyrus (23.7%)

E�ortless

1 −32 −60 46 5.62 1064 mm3 Precuneus (43.9%)

Inferior parietal lobule (24.4%)

Superior parietal lobule (17.1%)

Angular Gyrus (14.6%)

2 −50 20 26 5.00 984 mm3 Middle frontal gyrus (60.5%)

Inferior Frontal Gyrus (39.5%)

3 22 −76 24 4.26 712 mm3 Cuneus (72.1%)

Precuneus (27.9%)

4 32 18 54 4.93 664 mm3 Middle frontal gyrus (46.7%)

Superior frontal gyrus (30%)

Subgyral (23.3%)

TABLE 2 Contrast analysis results of e�ortless and e�ortful training.

Cluster Coordinates Z-value Cluster size Brain region

x y z

E�ortful < e�ortless

1 −36 −62 40 2.86 408 mm3 Precuneus (56.3%)

Angular gyrus (31.3%)

Inferior parietal lobule (12.5%)

2 −48 26 24 2.55 248 mm3 Middle frontal gyrus (81.8%)

Inferior frontal gyrus (18.2%)

superior frontal gyrus is the core brain region in MD system that

support human general intelligence (Duncan, 2010). Therefore, the

increased EFs of individuals brought by effortful training could

be explained by the enhancement of the core brain region that

supports human high-level cognition.

On the other hand, though effortless training also induced

enhancement of MD system activities, the enhanced regions

were different from effortful training and thus brought different

behavioral results. First, the significant clusters induced by effortless

training overlaps 23% less than effortful training, and this indicated

that MD systems were more representative in effortful training

than effortless training. Second, according to the hierarchical

clustering of MD systems (Camilleri et al., 2018), the MD

system could be divided into three cliques: “sub-cortical sub-

group,” the “organizers,” and the “workers.” Specifically, regions

in the “organizer” clique are more associated with planning

and monitoring, while regions in the “worker” clique act like a

heterogeneous set of workers dynamically recruited based on task

demands. In the present study, the significant cluster induced by

effortful training located within “the organizers” clique of the MD

system, while those nduced by efforless training located within “The

Workers” clique. Furthermore, according to the meta-analytical

decoding results in the present study (see Figure 3), the meta-

analytical result map of effortful training is more correlated with

the terms associated with core cognitive functions supporting EFs,

while the map of effortless training is mainly correlated with
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FIGURE 3

Results of meta-analytical functional decoding of (A) e�ortful training and (B) e�ortless training. The y-axis represents the terms associated with

each training types, and x-axis represents the similarity (Pearson’s correlation).

terms associated with judgement and semantic functions. Taking

these finding together, we could reach a conclusion that effortful

training is strongly correlated with the core brain regions that

support human EFs and intelligence, and this is consistent with

the phenomenon that effortful training could induce larger training

effects on the behavioral performance of human EFs (Takacs and

Kassai, 2019).

In conclusion, the different brain clusters found in the

present meta-analysis revealed the potential neural mechanisms

for effortful and effortless training on human EFs. However, some

limitations still exist. First, due to limited number of studies,

we could not further conduct aubgroup analysis to examine the

effect of different sub-types of training on different subdomains

of EFs, and the different training effects on different population

characteristics (e.g., age and health type). Since there might be

different training effects between young and old participants

(Braver et al., 2009), healthy and unhealthy participants (Cao et al.,

2020), the present results including different populations might

caused by mixed results. Second, present results from ALE meta-

analysis cannot illustrate causal relationship between the neural

and behavioral indices, and further neuroimaging studies could be

conducted to examine the possible causal relationships.
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