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Alzheimer’s disease (AD) emerges as a perturbing neurodegenerative malady, with 
a profound comprehension of its underlying pathogenic mechanisms continuing 
to evade our intellectual grasp. Within the intricate tapestry of human health 
and affliction, the enteric microbial consortium, ensconced within the milieu of 
the human gastrointestinal tract, assumes a role of cardinal significance. Recent 
epochs have borne witness to investigations that posit marked divergences in the 
composition of the gut microbiota between individuals grappling with AD and 
those favored by robust health. The composite vicissitudes in the configuration 
of the enteric microbial assembly are posited to choreograph a participatory 
role in the inception and progression of AD, facilitated by the intricate conduit 
acknowledged as the gut-brain axis. Notwithstanding, the precise nature of this 
interlaced relationship remains enshrouded within the recesses of obscurity, 
poised for an exhaustive revelation. This review embarks upon the endeavor 
to focalize meticulously upon the mechanistic sway exerted by the enteric 
microbiota upon AD, plunging profoundly into the execution of interventions that 
govern the milieu of enteric microorganisms. In doing so, it bestows relevance 
upon the therapeutic stratagems that form the bedrock of AD’s management, 
all whilst casting a prospective gaze into the horizon of medical advancements.
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1. Introduction

Alzheimer’s disease (AD) represents a progressive neurodegenerative disorder characterized 
by the degeneration of cognitive domains, encompassing but not confined to memory, language, 
visual–spatial function, and executive abilities. The transition of AD patients unfurls from initial 
phases typified by apathy and depression to subsequent stages distinguished by communication 
difficulties, orientation disturbances, cognitive disarray, and impaired judgment, potentially 
impacting one or multiple cognitive domains (D'Onofrio et  al., 2012). Epidemiological 
investigations have highlighted AD as the most prevalent neurodegenerative disorder 
beleaguering the geriatric populace on a global scale. Within the last two decades, the mortality 
rate associated with AD has undergone a marked escalation, eclipsing a staggering 145% (Jia 
et  al., 2020; Alzheimer’s disease facts and figures, 2023). In the current research milieu, 
conjectures proffer that the neuropathological signatures of AD encompass the emergence of 
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amyloid-beta (Aβ) neuritic plaques, the presence of 
hyperphosphorylated tau protein within neurofibrillary tangles 
(NFTs), in conjunction with the attrition and debilitation of neuronal 
constituencies and synaptic junctions (Long and Holtzman, 2019).

In recent times, substantial attention has been directed towards 
the elucidation of the implication of the gut microbiota in AD. The gut 
microbiota denotes a complex assemblage of diverse microorganisms 
inhabiting the human digestive tract. This intricate ecosystem 
comprises bacteria, fungi, viruses, archaea, and protozoa, 
distinguished by their morphological, physiological, and genetic 
attributes (Whitman et al., 1998; Zhang et al., 2021). A mounting body 
of experimental and clinical evidence indicates that the gut microbiota 
holds the potential to exert influence on the brain through the 
multifaceted gut-brain axis, encompassing the immune, metabolic, 
endocrine, and nervous systems, as well as the gut-brain barrier 
(Guarner and Malagelada, 2003; Adak and Khan, 2019). Consequently, 
perturbations in gut ecology and the labyrinthine interplay between 
microbiota and the host manifest as pivotal contributory agents in the 
milieu of AD.

In the practical realm of pharmaceutical application, in 
comparison to agents that exert their effects upon the cerebral domain, 
medications acting upon the intestinal microbiota possess the 
distinctive capacity for directly modulating the composition and 
functionality of the gut microorganisms, obviating the necessity of 
traversing the blood–brain barrier to gain access to the cerebral 
milieu. On the axis of safety, methodologies centered around 
modulating the gut microbiota are conventionally deemed to embody 
a relative sense of security. Pertaining to therapeutic efficacy, the 
orchestration of the gut microbiota stands poised to systematically 
ameliorate the overall somatic well-being. Within the expanse of this 
comprehensive survey, we shall embark upon a discourse concerning 
the manner by which the intestinal microbial consortium establishes 
an intricate intersection with the cerebral domain, elucidating its 
mechanistic involvement in the genesis and progression of AD. Our 
focal point shall revolve around the contemplation of the 
contemporary landscape and potentiality inherent in the alteration of 
the intestinal microbial milieu and its consequential metabolic 
fluctuations, in the context of avenues for amelioration and treatment 
vis-à-vis the realm of AD pathology.

2. Intestinal microbiota

With the advent of high-throughput sequencing techniques, our 
comprehension of the extraordinary microbial community residing 
within the human gut has deepened. The population of the gut 
microbiota is extensive, and its diversity and abundance are host-
specific, subject to various influences such as gender, age, dietary 
nutrition, and geographic environment (Backhed et al., 2005; Rajilic-
Stojanovic et al., 2007; Hugon et al., 2015; Johnson et al., 2019). The 
gut microbiota thrives within the surfaces and fluids (external 
symbionts) of multicellular organisms, encompassing the skin, 
digestive tract, and respiratory tract. Within the confines of the 
digestive tract alone, an estimated 1014 distinct species of gut 
microbiota exist (Whitman et al., 1998; Guarner and Malagelada, 
2003). As expounded within the genetic reservoir of the human 
gastrointestinal microbiome, a myriad of symbiotic bacteria and 
archaea, engaged in mutually advantageous relationships, collectively 

constitute an expansive chemical forge characterized by inherent 
dynamism. These entities possess the inherent capability to 
biosynthesize a diverse array of compounds vital for their own 
metabolic maintenance, concurrently coordinating the assembly of 
molecules that resonate throughout the expanse of the biotic domain. 
The interplay with the host’s physiological well-being remains 
profoundly interwoven; however, the intricate biological tableau 
orchestrating within the human organism, coupled with the intricate 
interplay of multifarious factors, presents a formidable challenge when 
attempting to distill the impact of the microbial consortium on the 
central nervous system. The precise operative mechanisms continue 
to linger cloaked in ambiguity. Consequently, this domain is beset by 
a myriad of challenges, compelling a deeper investigative pursuit to 
meticulously unravel the intricate interrelation between the 
microbiota and the central nervous system, alongside their precise 
contributions to diverse pathological conditions and states of health.

2.1. Classification of intestinal microbiota

Prior to birth, during the prenatal period, the human intestinal 
tract exists in a microorganism-free state within the confines of the 
mother’s womb. However, following birth, the colonization of the gut 
microbiota rapidly initiates through contact with the maternal birth 
canal and exposure to external environmental factors (Chong et al., 
2018). As time progresses, both the diversity and abundance of the gut 
microbiota increase progressively in conjunction with age. The 
classification of gut microbiota is typically based on ecological 
characteristics, morphology, and physiological traits, with taxonomic 
classification at the bacterial genus level being the most commonly 
employed method. Based on current research in human microbiology, 
the intestinal microbiota within the human body predominantly 
comprises the phyla Firmicutes, Bacteroidetes, Proteobacteria, and 
Actinobacteria. Furthermore, the composition of microbial 
communities within the intestinal tracts of distinct individuals 
exhibits variation, and their respective functionalities are also unique 
(Hayashi et al., 2002; Hold et al., 2002; Wang X. et al., 2003; Eckburg 
et al., 2005; Arumugam et al., 2011; Hugon et al., 2015).

The Firmicutes phylum stands as a prevailing consortium of 
microorganisms within the human gastrointestinal tract, embracing 
a quintet of genera, to wit: Clostridium, Ruminococcus, 
Faecalibacterium, Eubacterium, and Lactobacillus (Hayashi et al., 
2002; Eckburg et  al., 2005; Wall et  al., 2007). Emerging as the 
subsequent salient cohort within the human intestinal milieu, the 
Bacteroidetes phylum embodies Gram-negative obligate anaerobes. 
Drawing upon insights extrapolated from the evolutionary lineages 
discerned via 16S rRNA gene phylogenetics, it partitions into three 
principal clades: Bacteroides, Prevotella, and Porphyromonas (Salyers, 
1984; Patrick, 2015; Wang C. et al., 2021). Operating predominantly 
as facultative anaerobes, the Proteobacteria phylum contends with 
the exacting demands imposed by the anaerobic milieu of the 
intestinal tract, within which a substantial contingent therein 
undertakes a pathogenic vocation (Lupp et al., 2007). Conversely, 
within the Actinobacteria phylum, a cohort characterized as Gram-
positive obligate anaerobes, a nuanced yet pivotal presence emerges. 
Although not wielding numerical dominance in the intricate milieu 
of the intestines, it is within this cohort that the genus 
Bifidobacterium finds its abode. Noteworthy is the prevalence 
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commanded by this genus within the confines of the human 
intestinal milieu, where it assumes a role of pronounced significance 
as a purveyor of probiotic influence, concomitantly contributing to 
the overarching landscape of human health (Cani et  al., 2007; 
Shkoporov et al., 2008; Barka et al., 2016). While certain assemblages 
of bacterial constituents may harbor proclivities towards pathogenic 
proclamations, as evidenced by their propensity to incite 
inflammatory retorts, compromise intestinal epithelial fortifications, 
and incite orchestrated immune rejoinders, it is paramount to 
recognize that a substantive faction of the intricate intestinal 
microbiota is deeply embroiled in multifarious metabolic enterprises. 
These encompass an expansive portfolio including but not limited 
to polysaccharide catabolism, intricate conversions of bile acids and 
steroids, endogenous synthesis of vital vitamins, intricate 
biotransformations of polyphenolic entities, orchestration of 
immune modulatory responses, and the efficacious expulsion of 
entrenched pathogens. Collectively, these orchestrated endeavors 
undertake a momentous mantle, profoundly interfacing with facets 
of human nourishment, foundational metabolic orchestration, and 
immunological processes of marked consequence (Falagas and 
Siakavellas, 2000; Loubinoux et al., 2002; Casterline et al., 2017). It 
is through these intricate symphonies of activity that a pivotal 
foundation is laid, one that fundamentally upholds the delicate 
equilibrium underpinning the tapestry of human physiological 
well-being.

3. Alzheimer’s disease

AD stands as a multifaceted neurodegenerative disorder marked 
by gradual cognitive decline, encompassing various pathological 
factors. The etiological underpinning of this affliction intricately 
intertwines with the anomalous aggregation of Aβ peptides within 
aged plaques, forming a convoluted presentation. This occurrence 
arises as a resultant consequence of enzymatic cleavage endured by the 
amyloid precursor protein (APP) along its proteolytic trajectory. 
Moreover, AD correlates with the decline of cholinergic neurons and 
the onset of neurofibrillary tangles provoked by hyperphosphorylated 
tau (Knopman et  al., 2021). Amid the diverse array of theories 
expounding on the pathogenesis of AD, the present chapter 
predominantly directs its focus toward the overarching mechanisms 
that substantiate AD pathogenesis, in conjunction with potential 
pathways associated with the gut microbiota.

3.1. The amyloid cascade hypothesis

The amyloid cascade hypothesis retains its dominion as the 
preeminent postulate pertaining to the etiological substrates of 
AD. This proposition proffers that the neurodegenerative mechanisms 
within the ambit of AD find their chief impetus in the aberrant genesis 
and conglomeration of Aβ proteins, inciting neuronal perturbation 
and attenuated synaptic malleability (Selkoe, 1991; Selkoe and Hardy, 
2016). The quintessential moieties constituting the senile plaques that 
materialize within the AD cerebral milieu predominantly enshroud 
Aβ, originating from the proteolytic cleavage of the amyloid precursor 
protein (APP) through discrete secretase moieties (β- and γ-secretases; 
Soldano and Hassan, 2014).

Aβ, a peptide, exhibits various variants, with Aβ40 playing both 
toxic and protective roles, while Aβ42 demonstrating higher 
neurotoxicity compared to Aβ40 (Yankner et al., 1990; Murray et al., 
2009). Mutations in genes such as APP, PSEN1, and PSEN2 can lead 
to the production of longer and more abundant Aβ species. In terms 
of Aβ clearance mechanisms, genetic variations of ApoE4 and 
impaired Aβ degradation can contribute to the accumulation and 
oligomerization of Aβ in the peripheral and association cortices. Aβ 
oligomers can impact synapses, contributing to the formation of NFTs 
that gradually diffuse into plaques (Szaruga et al., 2017). Additionally, 
Aβ42 oligomers can activate microglia and astrocytes, triggering an 
inflammatory response that disrupts neuronal ion homeostasis and 
results in oxidative damage (Hardy and Selkoe, 2002; Selkoe and 
Hardy, 2016).

The accumulation of Aβ gives rise to synaptic dysfunction, 
impairments in dendritic spine and synaptic plasticity, as well as 
defects in neurotransmitter systems, ultimately leading to cognitive 
impairments. Even in the absence of plaques, Aβ exerts synaptic 
toxicity and has a dual effect on synaptic function. At physiological 
concentrations, Aβ enhances N-methyl-D-aspartate receptor 
(NMDAR) excitation, promoting presynaptic functions and 
enhancing synaptic release. However, at pathological concentrations, 
Aβ reduces presynaptic efficacy. Abnormally elevated levels of Aβ42 
show a strong affinity for GluN2B-containing NMDARs, disrupting 
synaptic plasticity, and resulting in postsynaptic inhibition and loss of 
dendritic spines (Mucke et al., 2000; Mucke and Selkoe, 2012; Dupuis 
et  al., 2023). Furthermore, Aβ triggers intermittent neuronal 
hyperactivity in the cortex and hippocampus prior to plaque 
formation, leading to significant remodeling of inhibitory neural 
circuits and excessive inhibition of granule cells. This creates a cycle 
of sustained neuronal overactivation (Palop et al., 2007; Zott et al., 
2019). Collectively, these processes impair the structure and function 
of neurons, ultimately contributing to the development of AD.

3.2. Glial cells

Recent research has revealed that alterations in microglia and 
astrocytes contribute to the latent progression of AD prior to the onset 
of cognitive impairments (De Strooper and Karran, 2016). Microglia, 
the resident immune cells in the brain, continuously monitor the 
microenvironment under normal physiological conditions. In AD 
patients, abnormalities in neuroglial cells (microglia, astrocytes, and 
neurons) result in the production of pro-inflammatory cytokines 
(such as interleukin-1β [IL-1β], IL-6, tumor necrosis factor-alpha 
[TNF-α], etc.), chemokines, the complement system, as well as 
reactive oxygen and nitrogen species. These factors disrupt neuronal 
activity at nerve terminals, leading to synaptic dysfunction and loss, 
which is associated with memory decline (Lawson et al., 1990; Orsini 
et al., 2014; Wang et al., 2015). However, activated microglia, apart 
from their pro-inflammatory role, can also release anti-inflammatory 
factors (such as IL-10, arginase-1, etc.) to repair damaged neural 
tissue, exhibiting an anti-inflammatory phenotype. The detailed 
mechanisms underlying the dual role of M1/M2 microglia in AD are 
still not fully understood (Subhramanyam et  al., 2019; Wang 
Q. et al., 2021).

Astrocytes, on the other hand, play a crucial role in modulating 
neuronal and vascular functions. They can regulate the properties of 
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the BBB through specific signaling mechanisms in their endfeet. 
Disruption of astrocytic endfeet can lead to BBB leakage, 
compromising its integrity (Acosta et al., 2017).

3.3. Glucose metabolism

The metabolic processes related to glucose, including insulin 
signaling transduction and glucose metabolism, play a significant role 
in the pathophysiology of AD and neuronal senescence. The reduced 
uptake of glucose in critical brain regions, leading to inadequate energy 
supply for neurons, is associated with cognitive decline observed in AD 
patients (Kim and Egan, 2008; Wang Q. et  al., 2022). Insulin and 
incretins, such as glucagon-like peptide 1 (GLP-1) and glucose-
dependent insulinotropic polypeptide (GIP), are involved in the 
regulation of glucose homeostasis and have complex effects on 
neurodegenerative processes.

Insulin traverses the intricate barricade of the BBB through 
specialized insulin transporters, thereby exerting its modulatory 
prowess upon ubiquitous insulin receptors, ubiquitously scattered 
across the expanse of the cerebral terrain. These receptors find their 
abode nestled amidst the intricate network of neurons and glial cells, 
assuming a cardinal mantle in the orchestration of cellular metabolic 
cascades, neuronal ontogenesis, and divergence, transcriptional 
orchestration of genetic blueprints, plasticity of synapses, and 
preservation of neural architecture (Blazquez et al., 2014; Rhea et al., 
2018; Shaughness et al., 2020).

Perturbation in insulin functionality, deemed insulin 
resistance, manifests as a decrement in the receptivity of designated 
tissues to the orchestrated maneuvers of insulin, thus engendering 
a plausible nexus with the intricate choreography of typical AD 
hallmarks, namely the orchestrated aggregation of Aβ and tau 
proteins (Pivovarova et al., 2016; Akhtar and Sah, 2020; Nowell 
et al., 2023). Scrutinizing endeavours have unveiled that peptides 
resembling the glucagon-like ilk, notably GLP-1 and GIP, rouse the 
entero-insulin signaling axis into motion, thus assuming the 
custodianship of glycemic equilibrium. Operating through a 
plenitude of mechanisms, encompassing the tempering of neural 
inflammatory surges, modulation of tau phosphorylation gradients, 
augmentation of synaptic efficacy, mitigation of amyloidogenic 
protein agglomerations, and abatement of insulin resistance, these 
agents wield a profound sway over neuronal kinetics, consequently 
casting a benevolent cadence upon mnemonic capacities (Grieco 
et al., 2019). In murine paradigms, the involvement of GLP-1 in 
fortifying the bedrock of learning and memory (During et  al., 
2003; Isacson et  al., 2011), embellishing the bulwarks of 
neuroprotection and synaptic plasticity within the hippocampal 
precincts (McClean et  al., 2011; Porter et  al., 2011), whilst 
concurrently reining in the specter of β-amyloid plaque accretions 
and activation of microglial cohorts in models mimicking the 
facets of AD, has been duly showcased (McClean et  al., 2011). 
Notwithstanding these advancements, the temporal trajectory 
underpinning the emergence of insulin resistance within the 
precincts of AD patients remains an enigma, enshrouded in the 
intricacies of its multifaceted manifestation. The etching of 
aberrant insulin signaling onto the canvas of AD appears to be an 
intricate tapestry, intricately interwoven within the labyrinthine 
recesses of the ailment’s pathogenesis (Ghasemi et al., 2013).

3.4. Blood–brain barrier

BBB comprises an endothelial cell-based membranous lining 
situated within cerebral micro-vessels. This intricate structure 
functions as a pivotal interface, meticulously orchestrating interactions 
among the immune system, neural cells, and circulatory entities 
(Sagare et al., 2012).

In the realm of AD, the intricate interplay of molecular events 
involving alterations and malfunctions of the BBB has garnered 
substantial attention due to its profound implications for the initiation 
and advancement of chronic inflammatory processes. Both tau protein 
and Aβ have been distinctly implicated in the perturbation of BBB 
integrity, thereby instigating a detrimental cascade that amplifies the 
course of neurodegenerative processes and the consequent 
inflammatory responses. The deposition of Aβ within the vascular 
framework triggers pro-inflammatory and cytotoxic cascades, leading 
to increased permeability of the BBB in AD patients (Zenaro et al., 
2017). The emergence of tau protein in the perivascular vessels 
encircling the hippocampal terrain exhibits a noteworthy correlation 
with the compromised state of BBB functionality. These fissures in the 
robustness of BBB integrity bestow passage to molecules of an 
inflammatory nature and immune effectors, thereby augmenting the 
overall inflammatory milieu characterizing AD (Blair et al., 2015; Cai 
et  al., 2018). Preserving the function and integrity of the BBB is 
emerging as an important aspect in the context of AD. Strategies aimed 
at modulating BBB function and reducing its permeability may have 
therapeutic potential in mitigating neuroinflammation and limiting the 
progression of AD. Consequently, the modulation of BBB function and 
the preservation of its integrity emerge as pivotal considerations within 
the realm of AD investigation. Notably, the imperative quest persists for 
augmented investigations that are poised to unravel the intricacies 
enshrouding BBB dysfunction in the context of AD, consequently 
furnishing targeted modalities for the preservation of BBB integrity in 
this pathological milieu.

3.5. Other pathological mechanisms

Beyond the elucidated pathological pathways, a multitude of 
factors converge in shaping the trajectory of AD development. These 
factors encompass diverse aspects, including post-translational 
modifications of tau protein, namely phosphorylation, truncation, and 
glycosylation, alongside impairments in the autophagy-lysosomal 
pathway, mitochondrial dysfunction, aberrant cholinergic 
transmission, oxidative stress, genetic susceptibility, aging, and 
influences stemming from lifestyle and environmental factors (Guo 
et al., 2020).

4. Intestinal microbiota and AD

4.1. Alterations in intestinal microbiota in 
AD

Numerous inquiries have unveiled substantial perturbations in 
both the abundance and composition of the intestinal microbiota 
among individuals afflicted with AD, as well as within corresponding 
animal models. These alterations encompass a discernible reduction 
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in the diversity of gut microbiota and the prevalence of probiotic 
strains, concomitant with an elevation in pro-inflammatory bacterial 
populations and their derivatives. These shifts are intricately 
intertwined with the underlying pathogenesis of AD. A preceding 
investigation notably underscored that prior to the detection of 
cerebral Aβaggregation, a conspicuous disruption in the homeostasis 
of the intestinal milieu becomes manifest in the Tg2576AD murine 
model (Honarpisheh et al., 2020). A rigorous analysis employing high-
throughput 16S rRNA sequencing of fecal specimens collected from 
AD patients, individuals with Mild Cognitive Impairment (MCI), and 
healthy counterparts has brought to light a noteworthy reduction in 
the abundance of microbial species responsible for the production of 
short-chain fatty acids within the AD cohort, when juxtaposed with 
normative subjects (Verhaar et al., 2021). Empirical evidence supports 
the assertion that within the AD spectrum, taxa such as Bacteroidetes, 
Fusobacteria, Bifidobacterium, and Lactobacillus exhibit conspicuously 
heightened abundance, in stark contrast to the health control group. 
Conversely, the prevalence of Firmicutes and Clostridiaceae is 
distinctly subdued in the AD cohort. Furthermore, these observed 
variations in microbial abundance follow a discernible gradient of 
alteration from the early stages of MCI to the more advanced phases 
of AD progression (Vogt et al., 2017; Hung et al., 2022).

An additional investigation, delving into the intricate interplay 
between specific bacterial taxa and cerebral amyloidosis within 
individuals afflicted by cognitive impairment, unveils a conspicuous 
nexus. The deposition of cerebral amyloid in patients with cognitive 
impairment exhibits a concordance with heightened fecal 
concentrations of pro-inflammatory taxa, exemplified by Escherichia 
and Shigella, juxtaposed with the waning presence of anti-
inflammatory taxa typified by rectal Bacteroides and fragile 
Bifidobacterium (Cattaneo et al., 2017). Subsequent inquiries not only 
elucidate an inverse correlation between amyloidogenic protein 
content and the abundance of fecal lactobacilli in AD patients but also 
establish a positive correlation with lipopolysaccharides and Gram-
negative colonic Enterobacteriaceae (Li et al., 2019). In a pioneering 
endeavor, Dodiya et  al. (2019) performed fecal microbiota 
transplantation from AD mice into therapeutically treated AD mice, 
resulting in the restoration of dysbiotic gut microbiota and partial 
recovery in Aβ pathology and microglial morphology. This 
substantiates the causal role of the microbiota in regulating Aβ and 
microglial physiology within the AD murine model.

4.2. Modulation of AD progression by the 
gut microbiota

The gut-brain axis delineates a foundational biological framework 
expounding the dynamic interplay underpinning the gastrointestinal 
tract and the cerebral domain. This intricate system orchestrates a 
myriad of visceral organs and intricate tissues, encompassing the 
expansive intestinal milieu, neural networks, and the immunological 
infrastructure (Strati et al., 2017). These elements engage in elaborate 
neural and chemical dialogues, fostering intricate interchanges. The 
symbiotic symphony of this interaction assumes paramount import 
within arenas of affect, behavior, and cognition. The composite 
constituents constituting the enteric-cerebral axis encompass these 
pivotal anatomical entities: (i) The alimentary canal, pivotal not solely 
in digesting and absorbing nutrients but also as a thriving niche for a 

profusion of symbiotic microorganisms. (ii) The enteric nervous 
system, often colloquially referenced as the “second neuronal center,” 
exercises autonomic dominion over gastrointestinal motility and 
secretory functions, engaging in reciprocal discourse with the cerebral 
realm via neurotransmitter-mediated transmissions. (iii) The central 
nervous system, epitomizing the body’s preeminent command nexus, 
harmonizes bidirectional influence with the intestinal milieu and the 
enteric nervous network through intricate neurotransmitter signaling. 
(iv) The immune ensemble, paramount in fortifying the organism 
against pathogens and maintaining immune equilibrium, expedites 
signal transduction linking the enteric milieu and the cranial expanse 
through specialized immune effectors and mediators. (v) The 
microbial consortium, pivotal in digestive processes, immune 
modulation, and neural conductions, assumes an indispensable mantle.

At present juncture, it is widely accepted that the modalities 
governing interconnections and signaling amongst these anatomical 
entities are principally channeled through five discernible 
communicative pathways interfacing with the central nervous system: 
the gut microbiota metabolic pathways, the immunological itinerary, 
the vagal neural trajectory, the neuroendocrine avenue, and the 
modulation of the BBB (Figure  1). These pathways may act in 
autonomy or synergistically, thus intricately molding the etiology and 
progression of AD (Carabotti et al., 2015; Agirman and Hsiao, 2021; 
Ding et al., 2021).

4.2.1. Gut microbiota and metabolism
The gut microbiota possesses the capacity to engage, whether by 

direct action or indirect mediation, in the production of diverse 
metabolites. This repertoire spans neurotoxic agents, short-chain fatty 
acids, amino acid derivatives, bile acids, trimethylamine-based 
compounds, as well as lipopolysaccharides (LPS; Kowalski and Mulak, 
2019). Through such multifaceted biochemical contributions, the gut 
microbiota consequently wields a notable impact upon the operational 
dynamics and comportment of the central nervous system.

Short-chain fatty acids (SCFAs), including butyrate, propionate, 
and acetate among others, as the resultant products of dietary fiber 
fermentation, intricately governed by the gastrointestinal microbiota, 
primarily associated with the Bacteroidetes phylum (Koh et al., 2016). 
The study unveiled that SCFAs across the formidable BBB via 
monocarboxylic acid transporters localized upon the endothelial 
milieu (Hoyles et  al., 2018). Remarkably, SCFAs demonstrate the 
potential to maintain the integrity of the BBB, hinder diverse pathways 
that connect non-specific inflammatory responses of the BBB to 
extracorporeal microbial infections, and moreover, foster the 
reinstatement of BBB permeability in murine models simulating 
cerebral injuries (Braniste et al., 2014; Li et al., 2016). Furthermore, 
SCFAs might wield an influence upon the peripheral immune milieu, 
orchestrating the modulation of cerebral functionality. By virtue of 
enhancing the intestinal barrier and intercepting the translocation of 
bacteria and bacterial constituents, or through direct reciprocal 
interplays microglia, thereby impacting their morphological attributes 
and operational dynamics, these compounds transmute their 
capability to sequester antigens and alleviate the synthesis of 
proinflammatory cytokines such as IL-12 and TNF-α, thus indirectly 
assuaging systemic inflammation (Chang et al., 2014; Corrêa-Oliveira 
et al., 2016; Sun J. et al., 2020). This cascading effect could potentially 
yield a diminution in neuroinflammation and the accrual of Aβ in the 
cerebral milieu. The orchestration of gene expression hinges upon the 
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manipulation of chromatin conformation encompassing DNA, 
primarily executed via histone acetylation (Marks et al., 2004). Histone 
deacetylases (HDACs) emerge as pivotal arbiters in cerebral ontogeny, 
as well as a spectrum of neuro-psychiatric maladies, spanning but not 
confined to depression, schizophrenia, and AD (Volmar and 
Wahlestedt, 2015). Indications underscore that SCFAs also manifest 
ameliorative impacts on erudition and memory in specimens of the 
wild type and neurodegenerative murine prototypes (Fischer et al., 
2007). This facilitation stems from HDAC inhibition mediated by 
SCFAs, coupled with the modulation of neurotrophic agents (Stafford 
et al., 2012).

While being endogenously generated by the host’s hepatic system, 
bile acids (BA) serve a purpose within the gastrointestinal tract, 
facilitating the digestion and absorption of lipids. Nevertheless, the 
intricate milieu of the intestinal microbiota harbors the inherent 
capability to metabolize BA, thereby intricately engaging in the 
enterohepatic circulation and intricate processes of cholesterol 
metabolism. The intricate metabolism and biotransformation of BA 
inherently demand the dynamic engagement of the intestinal 
microbiome (Winston and Theriot, 2020). Supported by both 
empirical and clinical evidence, the proposition gains ground that 
cerebral specimens afflicted with AD evince perturbations in BA 
signaling in contrast to their cognitively intact counterparts 
(Mahmoudiandehkordi et al., 2019). These deviations materialize as 
perturbed BA concentrations not only in cerebrospinal fluid and 
serum but also as anomalies in cholesterol metabolism (Baloni et al., 

2020). Consequently, a compelling deduction emerges, postulating 
that the microbiota might wield a discernible influence over the 
BA-mediated repercussions associated with AD. The precise 
mechanics undergirding this intricate interplay ostensibly intertwine 
with the disruptive potential inherent to anomalous bile acid species, 
thereby culminating in an exacerbated permeability of the cerebral 
BBB (Quinn et  al., 2014). Intriguingly, among these species, 
Taurochenodeoxycholic acid, an indigenous hydrophilic bile acid, 
emerges as a pivotal protagonist, effectively modulating cerebral Aβ 
levels through its adept manipulation of lipidomic metabolic 
trajectories (Nunes et al., 2012).

Metabolites originating from the gut microbiota assume a 
pivotal role in orchestrating tryptophan (Trp) metabolism within the 
intricate landscape of AD, encompassing intricate pathways 
involving ligands for the aromatic hydrocarbon receptor, the 
kynurenine (Kyn) pathway, and the serotonin pathway (Hartai et al., 
2007; Giil et al., 2017). Both Trp and Kyn demonstrate the ability to 
traverse the formidable blood–brain barrier. Subsequent metabolites, 
including quinolinic acid, wield a notable impact on neurotransmitter 
metabolism through modulation of the NMDAR, thus exerting a 
discernible influence on cognitive faculties within the cerebral 
domain (Agus et  al., 2018). Furthermore, exploratory pursuits 
propose that the introduction of tryptophan metabolic derivatives 
like indole or bacterial tryptophanase could potentially choreograph 
regulatory mechanisms governing astrocytic function. This, in turn, 
holds the promise of mitigating inflammation within the central 

FIGURE 1

Ramifications of gut microbiota dysbiosis on cerebral pathways. A pictorial representation elucidating the manifold established conduits of 
communication within the gastrointestinal-neuronal axis in relation to the gut microbiota associated with AD, encompassing: (i) microbial metabolic 
pathways; (ii) immune regulatory pathways; (iii) vagus nerve’s neurologic circuits; (iv) signaling cascades governing neuroendocrine interplay; and (v) 
provocation of blood–brain barrier compromise. BA, bile acids; HPA, hypothalamic–pituitary–adrenal; Kyn, kynurenine; LPS, lipopolysaccharide; 
SCFAs, short-chain fatty acids; TMAO, trimethylamine-N-oxide; Trp, tryptophan; VN, vagus nerve.

https://doi.org/10.3389/fnins.2023.1242254
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liang et al. 10.3389/fnins.2023.1242254

Frontiers in Neuroscience 07 frontiersin.org

nervous system among cohorts of murine subjects (Rothhammer 
et al., 2016).

The gut microbiota exhibits a distinctive capability for the 
bioconversion of dietary moieties containing methylamine, giving 
rise to trimethylamine, subsequently subject to hepatic flavin 
monooxygenase-mediated transformation into trimethylamine 
N-oxide (TMAO; Tang et  al., 2013; Wang et  al., 2014). Recent 
investigations have brought to light an inverse correlation between 
levels of TMAO and cognitive acuity, potentially linked to 
hippocampal inflammation and the genesis of reactive oxygen 
species. Experiments involving the administration of TMAO to 
aged mice have evidenced heightened microglial activation and 
escalated inflammatory mediators (Meng et  al., 2019; Brunt 
et al., 2021).

In a parallel vein, specific bacterial strains, typified by 
cyanobacteria, lay claim to the ability to synthesize neurotoxic agents, 
inadvertently integrated into peptide sequences within the cerebral 
domain, thus setting the stage for protein misfolding and the ensuing 
genesis of amyloid plaques that epitomize the AD phenotype. This 
intricate interplay ultimately lends itself to the disruption of 
neurological homeostasis and functions (Szablewski, 2018).

4.2.2. Immune pathways
The intricate and meticulously organized nature of both the 

immune system and the central nervous system is evident as they 
choreograph and oversee a myriad of physiological functions. Their 
operative frameworks and developmental paths showcase shared 
characteristics that may be intricately interwoven with the genesis of 
neuropsychiatric ailments (Capuron and Miller, 2011; Miller and 
Raison, 2016). Within the cohort afflicted by AD, the deposition of 
cerebral Aβ could potentially incite immune-inflammatory retorts by 
engaging Toll-like receptors (TLRs) and effectuating CD14 
activation—primarily orchestrated by microglial cells (Erny and Prinz, 
2020; Sorboni et al., 2022). This symphony culminates in the exudation 
of a spectrum of cytokines and the induction of a diverse repertoire of 
antigenic markers, thereby kindling neuroinflammatory responses. 
This acute, self-limited inflammatory reaction performs the dual role 
of expediting Aβ clearance and reinforcing neuronal fortification. The 
potential disruption of pro-inflammatory gut microbiota in AD 
patients might conceivably act as a catalyst, fostering the aggregation 
and configuration of Aβ proteins driven by inflammation (Sorboni 
et al., 2022). Currently, the gastrointestinal microbiome’s substantial 
capacity to influence the maturation of immune cells has been 
elucidated, positioning it as a pivotal participant in the developmental 
trajectory of cerebral immunity.

The potential dysbiosis of pro-inflammatory gut microbiota in 
individuals with AD has the potential to trigger inflammation, thus 
fostering the genesis and amalgamation of Aβ proteins. Evidentiary 
groundwork has firmly established that the gastrointestinal microbiota 
can influence the development of immune cells and play a central role 
in the immunomodulation of the brain (Cattaneo et  al., 2017). 
Alterations in the composition of the gut microbiota and the metabolites 
it produces can regulate immune responses in various cell types, 
depending on the immune environment. Microbiota-derived 
metabolites such as taurine, histamine, indole, and spermine collectively 
modulate the secretion of NLRP6 inflammasome, IL-10, and IL-18, 
thereby impacting downstream bioactive peptides and correlating with 
the levels of inflammatory factors and the severity of AD (Elinav et al., 

2011; Levy et  al., 2015; Alexeev et  al., 2018). Furthermore, the gut 
microbiota has the ability to dispatch signals to the brain through its 
influence on peripheral immune cells. Within this purview, SCFAs 
emerge as linchpins, adroitly choreographing immune modulations 
across diverse cellular phyla inclusive of colonocytes, neutrophils, and 
T lymphocytes. An aptitude to foment and modulate T-cell 
differentiation pathways — steering them along the trajectories of T 
helper 1 (Th1) and Th17 archetypes, alongside interleukin-10-equipped 
regulatory T cells — is among the repertory of SCFA effects unveiled. 
These effects of SCFAs contribute to the promotion of immune 
responses or immune tolerance, contingent upon the contextual setting 
(Furusawa et al., 2013; Park et al., 2015; Liu et al., 2020).

Serum amyloid A (SAA) emerges as a prominent acute-phase 
protein intricately associated with the intricate interplay between gut 
microbial ecology and inflammation. In the context of murine models 
manifesting AD pathology, astute observation reveals the focal 
instantiation of SAA, existing in harmonious concert with senile 
plaques. By inciting the differentiation of Th17 cells, SAA orchestrates 
the amplification of pro-inflammatory cytokines, exemplified by IL-17 
(a potent instigator of cytokines such as IL-1β, IL-6, TNF-α), along 
with the augmentation of IL-22 (Zhang et al., 2013; Lee J. Y. et al., 
2020). Thus, it functions as a conduit facilitating neuroinflammation 
and activation of glial cells, collectively exerting their sway upon the 
panorama of AD. The systemic inflammation borne from the 
dysregulation of the intestinal milieu culminates in undue 
hyperactivation of microglia and derangement of hippocampal 
plasticity, thereby further fueling the inception and progression of AD 
(Saiyasit et al., 2020).

4.2.3. The vagus nerve pathway
The vagus nerve (VN), encompassing a composition of 80% 

afferent fibers and 20% efferent fibers, exercises authoritative 
dominion over virtually the entirety of the gastrointestinal tract. It 
presents itself as a neural entity of intricate complexity and pivotal 
significance, wielding an expansive scope of influence that encompass 
diverse dimensions of organismal physiology, spanning sensory, 
motor, and autonomic functions (Han et al., 2022). As a principal 
constituent within the autonomic nervous system, the VN mastermind 
bidirectional conduits of communication with visceral organs, thus 
superintending organ functionality and preserving organismal 
internal homeostasis (Bonaz et  al., 2017). Despite the indirect 
engagement of the VN’s afferent pathways with the gastrointestinal 
microbiota or luminal contents, these pathways nonetheless possess 
the intrinsic capability to discern luminal cues via a process of 
diffusion across the gastrointestinal barrier, a phenomenon facilitated 
by bioactive bacterial compounds or metabolites, such as serotonin 
and enteric gut hormones (Li et al., 2000; Chaudhri et al., 2006). By 
eliciting electrical stimulation of the afferent fibers comprising the 
VN, a potential for modulation of neurotransmitter levels within the 
cerebral realm emerges (Ressler and Mayberg, 2007). Moreover, select 
bacterial strains and byproducts, exemplified by LPS (Hosoi et al., 
2005), similarly harbor the latent capacity to indirectly incite afferent 
fibers within the VN, thereby effectuating a discernible impact upon 
cerebral functionality.

Enteroendocrine cells nestled within the intricate confines of the 
intestinal tract establish intimate connections with the afferent fibers 
of the VN, thereby engendering a direct line of neural dialogue (Han 
et al., 2022). This sensory conduit, in its turn, assumes the mantle of 
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an information emissary, transmitting its cargo to the central 
autonomic network for intricate analysis and seamless integration. 
This intricate lattice of interconnected nodes encompasses structures 
of discernable import, including but not limited to, the parabrachial 
nucleus, the locus coeruleus, the hypothalamus, and the limbic system, 
wherein the thalamus, amygdala, and hippocampus find their 
residence (Schroeder and Backhed, 2016; Han et al., 2022). Empirical 
inquiry has laid bare a noteworthy revelation: administering chronic 
VN stimulation to AD rodents exerts a discernibly positive influence 
upon their cognitive faculties. Plausible attribution for this cognitive 
amelioration may be accorded to the modulation of glutamatergic 
receptor quantities by the agency of the VN (Yesiltepe et al., 2022). 
Notably, the act of vagal stimulation serves as the catalyst for the 
activation of specific neuronal enclaves, colloquially denominated as 
“blue spots.” This activation, in a cascading fashion, precipitates the 
liberation of catecholamines within strategic redoubts like the 
hippocampus and neocortex, thereby engendering a milieu conducive 
to the potentiation of synaptic plasticity while concurrently reining in 
the surges of inflammatory signaling (Vargas-Caballero et al., 2022).

Beyond its hitherto expounded role as an intermediary governing 
the exchange of neural missives betwixt the enteric expanse and the 
central nervous system, the VN emerges as a conduit of unexpected 
import, affording direct bacterial signaling an unforeseen passage to 
the inner sanctum of the brain. Lee K. E. et al. (2020) successfully 
isolated Paenalcaligenes hominis from fecal samples obtained from 
both elderly humans and aged mice. The subsequent transplantation 
of this microorganism into juvenile mice yielded intriguing results. 
Specifically, their investigations revealed the profound impact of 
P. homanis on hippocampal functionality, consequently leading to a 
notable decline in cognitive capabilities. This deleterious effect was 
attributed to the actions of extracellular vesicles. Notably, the 
implementation of vagal denervation surgery exhibited a remarkable 
efficacy in ameliorating the cognitive deficits induced by P. homanis. 
Moreover, this surgical intervention demonstrated an additional 
benefit by preventing the infiltration of extracellular vesicles into the 
hippocampal region (Lee K. E. et al., 2020). Furthermore, emerging 
evidence underscores the capacity of vagal nerve (VN) fibers to 
intrinsically synthesize and release acetylcholine (ACh), thereby 
eliciting a discernible impact upon cholinergic neurons, a 
phenomenon that has not escaped scholarly attention. Particularly 
noteworthy is the conspicuous reduction in cholinergic neuronal 
contingent observed among those afflicted by the scourge of 
AD. Through assiduous inquiry, it has been ascertained that the ACh 
liberated consequent to the excitation of VN efferent fibers assumes a 
quelling role in the orchestration of TNF-α secretion. This regulatory 
effect unfolds through a complex interplay wherein the α-7 nicotinic 
ACh receptor, resident on macrophagic substrates, engenders 
interaction with the aforementioned ACh, culminating in a cascade 
yielding a discernibly anti-inflammatory demeanor (Wang 
H. et al., 2003).

While the salient involvement of the VN within the milieu of the 
gastrointestinal domain stands as an unequivocal tenet, the intricate 
conduit governing its functional purview, replete with its labyrinthine 
nuances, is progressively unfurling its enigma. As we navigate this 
scientific terrain, the import of the VN assumes reverberating 
significance vis-à-vis the intricate tapestry of the gut microbiota, 
behavioral dynamics, and the inexorable progression of 
neurodegenerative afflictions. Yet, in the midst of this irrefutable 

import, it becomes incumbent upon the academic community to 
underscore the imperative for sustained scholarly forays, wherein 
validation and elucidation of its cardinal role in orchestrating the 
interplay and paradigmatic shifts underpinning the realm of intestinal 
microflora and the onset of neurodegenerative pathologies are 
pursued with unwavering vigor.

4.2.4. The neuroendocrine system
Certain microorganisms manifest the capability to biosynthesize 

neurotransmitters, such as γ-aminobutyric acid (GABA), taurine, and 
5-hydroxytryptamine (5-HT). These bioactive compounds possess the 
inherent potential to exert modulatory effects on neural transmission 
within the confines of the central nervous system. The metabolic 
perturbations orchestrated by these microorganisms carry the capacity 
to give rise to profound ramifications for individuals grappling with 
the complexities of AD.

Empirical investigations have revealed that disturbances within 
the compositional fabric of the microbial consortium precipitate the 
accrual of peripheral phenylalanine and isoleucine, as delineated in 
references (Griffin and Bradshaw, 2017; Fujii et  al., 2019; Wang 
X. et al., 2019). These molecular perturbations, in a cascade fashion, 
function as pivotal agents in fomenting the inception of 
neuroinflammatory cascades, displaying a salient correlation with the 
etiology of AD. Gastrointestinal microorganisms prevalent in 
Bifidobacteria and Lactobacilli demonstrate the capability for 
glutamate metabolism, resulting in the synthesis of GABA, a pivotal 
inhibitory neurotransmitter within the central nervous system. This 
neurotransmitter assumes a cardinal nexus within the complexities of 
the central nervous system. The dysregulation encompassing 
glutamatergic neurotransmission, encapsulating impediments in 
GABAergic signaling, diminished concentrations of glutamate, and 
the transcriptional downregulation of pivotal glutamate transporters, 
remains poised with the potential to act as a harbinger, precipitating 
cognitive debilitations intrinsic to the realm of AD (Mitew et al., 2013; 
Paula-Lima et al., 2013).

The hypothalamic–pituitary–adrenal (HPA) axis emerges as a 
pivotal non-neuronal conduit, facilitating the intricate transmission 
of information along the microbiota-gut-brain axis. Effectively, the gut 
microbiota establishes a reciprocal avenue of communication with the 
brain, mediated by an array of neurotransmitters, including dopamine, 
GABA, 5-HT, neuropeptides, hormones (such as corticotropin-
releasing hormone secreted by the HPA axis), and SCFAs (Sorboni 
et  al., 2022). This orchestration fosters a multifaceted interplay 
between the cerebral and intestinal microbial domains. The 
mechanistic influence of gut microbiota, hinging upon the agency of 
GLP-1 receptors, exerts its dominion over hypothalamic inflammatory 
processes. This incited inflammation begets an elevated expression 
profile of inflammatory mediators, neuronal compromise, and reactive 
gliosis characterized by the enlistment, proliferation, and activation of 
microglia and astrocytes. This complex interplay potentially acts as a 
harbinger for the trajectory of AD (Thaler et al., 2012; Heiss et al., 
2021; Milligan Armstrong et al., 2021).

Amidst the realm of AD, perturbations and maladjustments 
within the HPA axis materialize as escalated basal cortisol levels, 
heightened corticosteroid concentrations, and aberrant modulation of 
glucocorticoid feedback mechanisms (mediated by glucocorticoid 
receptors within the hippocampus, along with atypical hypothalamic 
and anterior pituitary feedback loops). In murine models, there is also 
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evidence of augmented corticosterone levels. Moreover, heightened 
glucocorticoid concentrations perpetuate persistent activation of 
glucocorticoid receptors, accompanied by stress-induced compromise 
of hippocampal neurons, ultimately culminating in sequences of 
neurodegeneration (Hebda-Bauer et al., 2013; Morgese et al., 2017; 
Justice, 2018). This elevation of glucocorticoids precipitates the 
protracted activation of GR, thereby imparting considerable stress-
induced damage upon hippocampal neurons, and subsequently 
paving the path for ensuing neurodegenerative alterations (Zhang 
et  al., 2017). Notably, select cellular factors released by the gut 
microbiota, exemplified by LPS and peptidoglycans, emerge as potent 
instigators, skillfully inciting the functional impairment of the HPA 
axis. This orchestrated impairment bears a notable contribution to the 
complex landscape of AD pathology. In contrast, probiotics of the 
Lactobacillus and Bifidobacterium lineages exhibit the potential to 
ameliorate HPA axis dysfunctions prompted by stress. This 
amelioration consequently augments the domains of learning, 
cognition, and manifestations of psychopathology (Vakharia and 
Hinson, 2005; Richards et  al., 2006; Desbonnet et  al., 2010). 
Furthermore, in concert with their engagement with receptors situated 
on colonic epithelial cells, SCFAs prompt a consequential retort by 
provoking enteroendocrine L cells to discharge GLP-1 and peptide YY, 
alongside sundry other gastrointestinal hormones. This orchestrated 
sequence expedites the conveyance of indirect cues to the cerebral 
sphere via the systemic circulatory route or the vagal nerve conduit. 
Thereafter, these bioactive compounds, operating in a mutually 
influential fashion, exert a conspicuous influence on cognitive 
capacities, memory retention, and affective tendencies (Tolhurst et al., 
2012; Psichas et  al., 2015; Larraufie et  al., 2018). Such metabolic 
byproducts effectively partake in the synthesis of enzymes, modulation 
of host metabolism, and transmission of bioactive signals. Remarkably, 
their influence even extends to cognitive function and behavioral 
manifestations within the brain, facilitated by means such as vagus 
nerve stimulation or modulation of the enteric nervous system (Fan 
and Pedersen, 2021).

4.2.5. Blood–brain barrier
The intricate interplay of the gut microbiome extends its 

regulatory reach to encompass cerebral substrate exchange and the 
orchestration of inflammatory cascades within the central nervous 
system. This regulatory prowess finds its nexus in the nuanced 
modulation of the blood–brain barrier’s permeability. The luminal 
domain of the gastrointestinal milieu becomes host to a cohort of 
molecules of intricate nature, among which lipopolysaccharides (LPS), 
colloquially known as endotoxins, reign preeminent. These moieties, 
architecturally embellishing the extracellular matrices of bacterial 
phyla, find their favored abode within the enclave of select Gram-
negative taxa that colonize the intestinal fiefdom. Exhibiting an affinity 
for prodigious LPS production, these bacterial constituents engage in 
the synthesis of amyloid-like proteins, concomitantly generating 
signaling moieties germane to LPS/amyloid-associated cascades. 
Plausibly implicated in the modulation of signal transduction 
pathways and the instigation of pro-inflammatory cytokine milieu 
germane to the pathogenic trajectory of AD, these molecular parleys 
assume a pivotal role. The physiological function of LPS within the 
gastrointestinal tract primarily assumes the role of an 
immunomodulatory stimulus, eliciting inflammatory responses aimed 
at countering the threat posed by exogenous microbial colonies. 

However, meticulous investigations have unveiled the presence of 
bacterial LPS within cerebral lysates of the hippocampal and 
neocortical regions in brains afflicted by AD (Zhao et al., 2017c). This 
phenomenon is postulated to originate from processes associated with 
aging, vascular irregularities, or neurodegenerative pathologies, 
culminating in the plausible “leakage” of neurotoxic constituents into 
the systemic circulation and the cerebral vascular milieu. This intricate 
sequence culminates in the accumulation of these entities at both 
systemic and cerebral strata. This sequence of events may trigger the 
amplification of reactive oxygen species, concurrently activating the 
NF-κB signal transduction pathway. Consequently, there is an 
induction in the upregulation of the pro-inflammatory miRNA-34a, 
instigating a reduction in TREM2 expression. This reduction 
subsequently hampers the phagocytic efficacy of microglial cells, 
thereby fostering the buildup of Aβ aggregates. Furthermore, the 
presence of bacterial-derived LPS and amyloidogenic proteins serves 
to exacerbate the permeability of the intestinal barrier. This 
exacerbation further augments the quantities of cytokines and other 
smaller pro-inflammatory moieties, including but not limited to 
IL-17A and IL-22. These entities have been intimately linked with the 
pathogenesis of AD. Additionally, it is noteworthy that LPS exhibits a 
specific propensity to engage with TLR4, consequently giving rise to 
the production of multifaceted cytokines and chemokines. These 
molecules, in turn, intricately coordinate processes of inflammation, 
as well as innate and subsequent adaptive immune responses (Rhee, 
2014; Zhao and Lukiw, 2015; Zhao et al., 2017a,b).

Dysbiosis within the gut microbiota, characterized by a decline in 
both the diversity and abundance of microbial species, inflammation, 
and the presence of toxic substances, has the potential to disrupt the 
delicate equilibrium of the IB. The repercussions of such disruption 
are twofold: inflammation either originates at the interface of the IB 
or gains momentum subsequent to its compromise, ultimately 
disseminating along its trajectory and significantly contributing to the 
development of a spectrum of prevalent chronic diseases (Desai et al., 
2016; Mou et al., 2022). Unsurprisingly, this state of sustained systemic 
inflammation engenders structural alterations within the 
BBB. Preceding the decline in integrity observed within the IB and 
BBB, certain minuscule molecules, derived from the metabolic 
activities of pathogenic gut symbionts, traverse their way into the 
brain. The infiltration of these molecules serves as the impetus for the 
initiation of central nervous system inflammation, thus perpetuating 
a vicious cycle of neuroinflammatory responses (Kurita et al., 2020).

5. Therapeutic strategies targeting the 
intestinal microbiota

Given the intricate interrelation between the gut microbiota and 
AD, delving into the prospects of manipulating the gut microbiota as 
a therapeutic approach for AD treatment represents a promising 
trajectory for pioneering insights (Table 1). In contrast to conventional 
pharmacotherapies that predominantly focus on brain-centric targets, 
interventions centered on the gut microbiota proffer discernible 
advantages: (i) Precision: therapeutic modalities targeting the gut 
microbiota offer a means to exert direct influence over the intricate 
structure and operational dynamics of intestinal microorganisms, 
obviating the need to surmount the formidable BBB. By directly 
intervening in the interplay between the gut microbiota and the host, 
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TABLE 1 Therapeutic intervention of Alzheimer’s disease through gut microbiota manipulation.

Category Drug Effect References

Traditional Chinese 

medicine and extracts

Quercetin Mitigating filamentous bacterial populations; mitigating neuroinflammatory responses 

induced by Aβ plaques; enhancing BDNF levels.

Lv et al. (2018) and 

Yang et al. (2020)

Xanthoceraside Modulating the Firmicutes/Bacteroidetes ratio; exerting an influence over the metabolic 

processes implicated in AD.

Zhou et al. (2019)

Ginseng Restoring gut microbiota dysbiosis in AD; eliciting effects conducive to attenuating the aging 

process; augmenting cognitive capacities via TLR Pathways.

Zhao et al. (2014) and 

Wang et al. (2020)

Curcumin Modulating the relative abundance of the gastrointestinal microbiota; mitigating hippocampal 

amyloid-beta deposition; enhancing spatial learning and memory capabilities.

Sun Z. Z. et al. (2020)

Jatrorrhizine Mitigating gut dysbiosis; alleviating memory deficits. Wang S. et al. (2019)

Rhodiola glycoside Improving intestinal barrier functionality; modulating gut microbiota population; regulating 

inflammation within the peripheral and CNS.

Xu et al. (2019) and Xie 

et al. (2020)

Scutellaria baicalensis Modulation of lipid and glucose metabolism; altering gut microbiota composition and 

activity, along with subsequent shifts in their ensuing metabolomic profiles; enhancing 

cognitive faculties pertaining to AD.

Shi et al. (2023)

Prepared Rehmannia 

root

Reversing gut dysbiosis in AD mice; mitigation of cognitive decline. Meng et al. (2017)

Tetragonia 

tetragonioides Kuntze

Modulating the gut microbiota; enhancing insulin resistance; attenuating Aβ deposition in 

AD.

Choi et al. (2016) and 

Kim et al. (2020)

Morinda officinalis Sustaining gut microbiota diversity and stability in AD mice; improving neuronal function, 

oxidative stress, and inflammatory disruptions associated with cognitive impairment.

Chen et al. (2017) and 

Xin et al. (2019)

Traditional Chinese 

medicine formulations

Huanglian-Jiedu 

decoction

Restoring BA equilibrium; augmenting of SCFAs concentrations; suppressing aberrations in lipid 

metabolism; modulating NMDAR-mediated glutamatergic transmission alongside pathways 

implicated in adenosine-associated signaling; reducing of Aβ deposition; enhancing cognitive 

faculties.

Liu et al. (2019), Fan 

et al. (2021), and Wang 

L. et al. (2022)

Liuwei-Dihuang 

Decoction

Modulating the gut microbiota composition; improves cognitive impairment. Wang et al. (2016) and 

Wang J. et al. (2019)

Foshou San Modulation of alkaline phosphatase and the gut microbiota via the intricate gut-liver-brain 

axis; ameliorating of systemic inflammation and oxidative stress orchestrated by LPS.

Lu et al. (2019)

Yizhi-Anshen Granules Balancing microbial richness and diversity within individuals afflicted by MCI; mitigating 

cognitive decline.

Yue et al. (2019)

Chaihu-Shugan-San Modulating intestinal inflammation and the microbiota, the induction of NF-κB-mediated BDNF 

expression is achieved; improving neuronal damage, synaptic impairment, and Aβ deposition.

Han et al. (2021) and Li 

et al. (2023a)

Dietary ways Mediterranean diet Enhancing microbiota dysbiosis AD and attenuating the risk of AD onset. Nagpal et al. (2019) and 

Solch et al. (2022)

Ketogenic diet Minimizing Bifidobacteria abundance; reducing pro-inflammatory cell levels; improving 

cerebral vasculature and BBB functionality.

Gasior et al. (2006), Ang 

et al. (2020), and Xu 

et al. (2022)

Fermented food 

products

Amplifying the relative abundance of microflora; Alleviating inflammatory mediators. Wastyk et al. (2021)

Dietary inulin Elevating gastrointestinal microbiota metabolites, including SCFAs, tryptophan-derived 

metabolites, and BA; reducing hippocampal inflammation gene expression.

Hoffman et al. (2019)

Probiotic Probiotic formulation 

(SLAB51)

Diminishing Aβ aggregation and partially restore compromised neuronal proteins. Bonfili et al. (2017)

Bifidobacterium breve 

strain A1

Diminishing the expression of inflammation and immune response genes in the 

hippocampus.

Kobayashi et al. (2017)

Probiotic 

supplementation 

(BGN4 and BORI)

Heighten the serum levels of BDNF. Kim et al. (2021)

Wide-spectrum courses 

of antibiotic treatment

Antibiotic cocktail Altering the gut microbiome to mitigate Aβ deposition. Minter et al. (2016) and 

Dodiya et al. (2020)

Fecal microbiota 

transplantation

Transplanting healthful 

gut microbiota

Mitigating burden of Aβ plaques; diminishing levels of soluble Aβ40 and Aβ42; changing 

cognitive deficits.

Sun et al. (2019)

AD, Alzheimer’s disease; Aβ, amyloid beta; BA, bile acids; BBB, blood–brain barrier; BDNF, blood–brain-derived neurotrophic factor; CNS, central nervous systems; LPS, lipopolysaccharides; 
MCI, mild cognitive impairment; SCFAs, short-chain fatty acids; TLR, toll-like receptors.
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concerns pertaining to the drug’s capacity to traverse the BBB are 
nullified, thereby facilitating meticulous modulation of the 
microbiota-brain axis. (ii) Safety: targeting the cerebral domain 
through pharmacological interventions presents inherent safety 
concerns and confronts obstacles pertaining to drug metabolism. In 
stark contrast, strategies that govern the composition of the intestinal 
microbiota are widely acknowledged for their comparatively benign 
nature. By manipulating dietary patterns and employing modalities 
encompassing probiotics, prebiotics, or analogous agents for gut 
microbiota modulation, the attainment of microbiota regulation can 
be  realized devoid of appreciable induction of deleterious 
repercussions. (iii) Versatility: the impact of the gut microbiota 
extends far beyond neurological disorders, exerting its influence on a 
multitude of dimensions pertaining to human health. Through 
targeted modulation of the gut microbiota, notable enhancements can 
be  observed in the regulation of the immune system, human 
metabolism, and the holistic state of well-being. Therefore, therapeutic 
interventions targeting the gut microbiota have the potential not only 
to address AD itself but also to alleviate associated complications such 
as insulin resistance and abnormalities in lipid metabolism.

5.1. Traditional Chinese medicine and 
extracts

In recent investigations, the pragmatic application of traditional 
Chinese medicine (TCM) formulations has unveiled notable 
advantages in comparison to other pharmaceutical agents. These 
advantages encompass their intricate compound composition, 
facilitating the concurrent modulation of multiple targets, while 
showcasing minimal adverse effects and augmented biocompatibility. 
By intervening through diverse pathways, TCM interventions 
demonstrate efficacy in effectively regulating the composition of the 
gut microbiota, thereby ameliorating the microecological milieu of the 
intestines. Consequently, this alleviates the pathological conditions 
associated with central nervous system disorders, ultimately 
augmenting therapeutic outcomes (Karageorgis et al., 2014; Gu and 
Lai, 2020; Atanasov et al., 2021; Dai et al., 2022; Li et al., 2023b). A 
plethora of research findings corroborate the efficacy of specific TCM 
monomers, extracts, TCM formulae, and TCM combinations in 
modulating the gut microbiota, including its composition, diversity, 
and abundance. These interventions have demonstrated a significant 
preventive and therapeutic impact on AD.

Currently, extensive research has revealed that specific 
components and combinations of TCM possess the capacity to 
modulate the gut microbiota, thereby directly or indirectly enhancing 
AD. Quercetin, a flavonoid abundant in various plant-based foods, 
primarily enhances gut microbiota diversity, reduces filamentous 
bacteria, mitigates neuroinflammation induced by Aβ plaques, and 
upregulates brain-derived neurotrophic factors. Collectively, these 
mechanisms ameliorate cognitive impairment in AD (Lv et al., 2018; 
Yang et  al., 2020). Fecal microbiota transplantation studies have 
documented the potent anti-AD activity of Xanthoceraside, a naturally 
occurring compound extracted from the husk of Xanthoceras 
sorbifolia. Xanthoceraside adjusts the Firmicutes/Bacteroidetes ratio, 
influencing metabolic processes implicated in AD and other 
neurological disorders (Zhou et  al., 2019). Ginseng, a renowned 
herbal remedy for neurodegenerative diseases, contains ginsenoside 
Rg1 as its primary active constituent (Yu et al., 2007). Apart from 

rectifying gut microbiota dysbiosis in AD, ginsenoside Rg1 exerts 
anti-aging and cognitive-enhancing effects through TLR pathways 
(Zhao et  al., 2014; Wang et  al., 2020). Curcumin, a polyphenolic 
compound derived from turmeric, represents a promising natural 
compound with anti-AD properties. It modulates the relative 
abundance of gut microbiota, alleviates hippocampal Aβ deposition, 
and improves spatial learning and memory in AD mice (Sun 
Z. Z. et al., 2020). Jatrorrhizine, an isoquinoline alkaloid extracted 
from the Chinese herb Coptis chinensis, addresses gut dysbiosis in AD 
mice, ameliorating memory deficits. Furthermore, berberine exhibits 
antimicrobial properties and is commonly employed for detoxification 
and anti-hyperglycemic purposes (Wang S. et al., 2019). Rhodiola 
glycoside, a major bioactive component extracted from Rhodiola 
rosea, exerts a preventive effect on cognitive changes in mice by 
enhancing gut barrier function, modulating gut microbiota 
abundance, and regulating peripheral and central nervous system 
inflammation (Xu et al., 2019; Xie et al., 2020). Baicalein, an active 
compound derived from Scutellaria baicalensis root, potentially 
influences lipid and glucose metabolism through its impact on gut 
microbiota and their metabolites, leading to improvements in AD 
cognition (Shi et al., 2023). Prepared Rehmannia root, derived from 
the dried roots of Rehmannia glutinosa, undergoes alcohol steaming 
to enhance its medicinal properties (Su et al., 2023). The primary 
components of prepared Rehmannia root may synergistically reverse 
gut dysbiosis in AD mice, thereby ameliorating cognitive impairment 
(Meng et al., 2017). Tetragonia tetragonioides Kuntze, also known as 
New Zealand spinach, contains phospholipids, a complex of vitamin 
A and B, and pectin polysaccharides. It improves insulin resistance 
and reduces Aβ deposition in AD by modulating the gut microbiota 
(Choi et al., 2016; Kim et al., 2020). Morinda officinalis, a traditional 
Chinese herb commonly known as “Ba Ji Tian,” encompasses multiple 
active constituents. Among them, oligosaccharides maintain gut 
microbiota diversity and stability in AD mice, improving neuronal 
function, oxidative stress, and inflammatory disruptions associated 
with cognitive impairment (Chen et al., 2017; Xin et al., 2019). Besides 
the aforementioned TCM interventions, it is plausible that numerous 
undisclosed or yet-to-be-discovered natural compounds with even 
greater therapeutic efficacy and minimal side effects exist.

5.2. Traditional Chinese medicine 
formulations

In addition to isolated constituents and chemical entities, TCM 
formulations exemplify remarkable regulatory impacts on the gut 
microbiota while concurrently targeting precise complexities. 
Illustratively, the Huanglian-Jiedu Decoction, administered within a 
context of AD murine models induced by a high-fat regimen, not only 
effects the restoration of BA equilibrium and augmentation of SCFAs 
concentrations, but also exerts suppression upon aberrations in lipid 
metabolism and counteracts inflammation stemming from the 
high-fat dietary milieu (Fan et  al., 2021; Wang L. et  al., 2022). 
Moreover, it orchestrates modulation of NMDAR-mediated 
glutamatergic transmission alongside pathways implicated in 
adenosine-associated signaling. As a result, attenuation of 
Aβdeposition is achieved, concomitant with observable enhancements 
in murine cognitive faculties (Liu et al., 2019). The active compound 
group of Liuwei-Dihuang Decoction, LW-AFC, or its extracted 
oligosaccharide component (CA-30), improves cognitive impairment 
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in AD mice by modulating the gut microbiota composition (Wang 
et al., 2016; Wang J. et al., 2019). The time-honored TCM formulation, 
Foshou San, which has been employed in China for countless 
centuries, exhibits remarkable efficacy in the modulation of alkaline 
phosphatase and the gut microbiota via the intricate gut-liver-brain 
axis. Through its discernible amelioration of systemic inflammation 
and oxidative stress orchestrated by LPS, Foshou San substantiates a 
discerning mitigation of the concomitant pathology observed within 
a murine model of AD (Lu et al., 2019). The effects of Yizhi-Anshen 
Granules, a TCM formulation renowned for its efficacy in mitigating 
cognitive decline and sleep disturbances, are plausibly mediated 
through the orchestration of microbial richness and diversity within 
individuals afflicted by MCI (Yue et al., 2019). Chaihu-Shugan San 
(CSS), a well-known traditional herbal formula with liver-soothing 
and depression-relieving properties, demonstrates potential in 
preventing and treating AD. CSS is believed to modulate intestinal 
inflammation, gut microbiota composition, induce NF-κB-mediated 
BDNF expression, and improve neuronal damage, synaptic 
impairment, and Aβ deposition in the mouse brain, contributing to 
its therapeutic mechanisms (Han et al., 2021; Li et al., 2023a).

5.3. Dietary influence

The pivotal determinant in the orchestration of gut microbiota 
assembly and genetic constitution resides within the dietary milieu. 
Distinctive edibles or dietary paradigms harbor the potential to exert 
a discernible impact upon the assortment and prevalence of a myriad 
of bacterial taxa inhabiting the gastrointestinal milieu. In doing so, 
they concurrently uphold the equilibrium of the host’s internal milieu.

The adherence to the Mediterranean dietary regimen, 
characterized by its robust incorporation of legumes, cereals, fruits, 
and vegetables, moderated consumption of fish and dairy, and 
controlled intake of meat products, demonstrates a notable capacity 
for modulating the aggregation of Aβ (Roman et al., 2019; Solch 
et  al., 2022). Simultaneously, it exerts regulatory effects on the 
progression of AD through the augmentation of commensal gut 
microflora. Through meticulous investigation, it has come to light 
that maintaining a strict adherence to the tenets of the Mediterranean 
dietary paradigm yields a remarkable 41% reduction in the 
susceptibility to the onset of AD (Solch et al., 2022). This intriguing 
phenomenon can potentially be  attributed to the diet’s inherent 
propensity for nurturing bacterial strains that typically experience 
diminishment in the context of AD. Exemplars of such strains 
include Ruminococcus, Akkermansia muciniphila, and selective 
cohorts of butyrate-producing bacteria (Nagpal et al., 2019). Recent 
inquiries have unveiled that the ketogenic dietary paradigm (marked 
by significantly reduced carbohydrate consumption and heightened 
lipid utilization) harbors the potential to alleviate symptomatic 
presentations across an array of neurodegenerative conditions, 
spanning ailments like AD and Parkinson’s disease (Gasior et al., 
2006). Ang et al. (2020), in their observations, have discerned that 
the ketogenic dietary framework preferentially diminishes the 
population of bifidobacteria within the intestinal microbiota and 
curtails the quantities of pro-inflammatory Th17 cells. Meanwhile, 
Xu et al. (2022), having subjected AD-affected murine models to a 
four-month regimen of ketogenic dietary intervention, have 
unearthed that the ketogenic diet induces mitigation of cerebral 

cognitive impairment by attenuating the deposition of amyloid-beta, 
activation of glial cells, and neuroinflammatory responses. 
Additionally, the study conducted by Wastyk et al. (2021), entailing 
a 10-week regimen of high-fermentation/high-fiber nourishment, 
has observed that a diet rich in fiber amplifies the relative abundance 
of microflora while dampening inflammatory markers, 
encompassing IL-6, IL-10, and other pro-inflammatory cytokines, 
during the course of heightened-fermentation dietary intervention. 
Such modifications potentially ameliorate the diminished abundance 
of intestinal microbes and the surplus of inflammatory mediators 
emblematic of AD, thereby mitigating cognitive impairment. Beyond 
the preceding dietary framework, there are specific alimentary 
constituents and gastronomic traditions evincing prophylactic 
efficaciousness against AD (Hoffman et al., 2019). While the body of 
research underscores the diverse effects of disparate dietary 
paradigms on cerebral afflictions, it remains imperative for further 
investigations to expound the precise mechanisms through which 
diets and their constituents exert influence on the microbiota-gut-
brain axis. This exploration is vital to ascertain whether dietary 
interventions targeting the microbiota genuinely incite 
transformative changes in overall cerebral functionality.

5.4. Probiotic

Probiotic agents, residing microorganisms bestowing health 
advantages upon their host, have garnered mounting attention due to 
their aptitude for modulating cerebral wellness through the 
manipulation of the gut microbiota milieu. A convergence of analytical 
scrutiny underscores the potential of probiotics to enhance cognitive 
aptitudes among individuals contending with AD or MCI, a feat 
accomplished by mitigating inflammatory and oxidative biomarkers 
(Den et al., 2020). Significant within this context resides the inquiry 
conducted by Bonfili et  al., wherein the utilization of the SLB51 
probiotic formulation exhibited the capacity to choreograph the 
composition of the gut microbiome and concentrations of plasma 
metabolites (Bonfili et al., 2017). This orchestration, in turn, led to the 
mitigation of Aβ aggregate accumulation. This phenomenon, 
concomitant with the partial restoration of the neuronal protein 
autophagy pathway, garnered particular prominence within the milieu 
of early-stage murine models of AD. In a similar vein, the 
investigations by Kobayashi et  al. illuminated the remedial 
characteristics inherent in the Bifidobacterium breve A1 strain, a 
distinct probiotic variant specialized in assuaging hippocampal 
inflammation in AD-affected mice (Kobayashi et al., 2017). Moreover, 
this intervention elicited a noticeable attenuation in the expression of 
genes governing immune responses. Parallel to these discernments, 
the undertaking by Kim et al. encompassed the dispensation of BGN4 
and BORI probiotics to a geriatric cohort, thereby unveiling a marked 
elevation in the serum concentrations of cerebral-origin neurotrophic 
factors (Kim et al., 2021). This augmentation in neurotrophic factors 
fostered a safeguarding milieu that bolstered and nurtured neuronal 
viability, consequently retarding the pathological advancement 
emblematic of AD. Notwithstanding, it is manifest that a call for 
heightened precision, sensitivity, and dependability in detection 
methodologies is palpable, mandating a surge in experimental 
investigations to definitively authenticate the therapeutic potential 
that underlies probiotics in the domain of interventions for AD.
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5.5. Other therapeutic approaches

In concert with the aforementioned therapeutic modalities, 
given the evident correlation linking the consortium of 
microbiota to the pathogenesis of AD, scholarly endeavors have 
diligently expanded towards harnessing the manipulation of 
gastrointestinal microbial milieu as an ancillary strategy for 
intervening in AD. These interventions encompass extended, 
wide-spectrum courses of antibiotic treatment, fecal microbiota 
transplantation (FMT), prebiotic agents, physical exertion, and 
active involvement in sports activities. The overarching objective 
of these interventions resides in the amelioration of cognitive 
functionality coupled with the attenuation of the progression of 
the ailment.

Significantly, the enduring perturbations observed in the 
composition and diversity of the intestinal microbial landscape 
following sustained administration of broad-spectrum antibiotic 
regimens have demonstrably exhibited an inherent capacity to 
mitigate the accrual of Aβ. Meticulous observations by 
investigators have brought to light the transformative impact of 
a concoction of antibiotic cocktail-mediated perturbations of the 
gut microbiome in male murine models, precipitating a 
discernible reduction in Aβ deposition across two discrete 
transgenic strains (APPSWE/PS1dE9 and APPPS1-21) (Minter et al., 
2016; Dodiya et  al., 2020). This underscores, in no uncertain 
terms, the pivotal role played by dysbiosis in the gut microbiota 
milieu in the orchestration of Aβ genesis and subsequent 
sedimentation. These findings accentuate the latent promise 
harbored within the judicious maintenance of intestinal 
microbiota equilibrium and the discerning deployment of 
antibiotic interventions as plausible avenues for heightening the 
prospects in the realm of AD enhancement.

Fecal microbiota transplantation (FMT), an increasingly 
prevalent technique for modifying microbial composition, 
presents an avenue of profound interest. This therapeutic 
modality entails the transfer of gut microbiota from a donor of 
“healthful” constitution to an individual harboring a deranged 
gut microbiota, with the principal objective of rectifying the 
recipient’s ecological disequilibrium (Matheson and Holsinger, 
2023). This strategy has garnered substantial traction as a 
captivating therapeutic avenue within the domain of neurological 
ailments. In their investigation, Sun et al. (2019) meticulously 
probed the ramifications of FMT on murine models possessing 
the APP/PS1 genetic configuration. In comparison to their 
untreated counterparts, murine recipients of FMT sourced from 
wild-type (WT) contributors showcased marked enhancements 
in cognitive function. These improvements were concomitant 
with a mitigation in the burden of Aβ plaques, as well as 
diminished levels of soluble Aβ40 and Aβ42. Notably, a 
concurrent elevation in the expression of proteins linked to 
synaptic plasticity was observed, paralleled by a noteworthy 
amplification in the presence of propitious SCFAs, most notably 
butyrate, within the intestinal milieu (Sun et  al., 2019). In 
analogous vein, Fujii et al. reported analogous findings; WT mice 
subjected to FMT from human donors afflicted with AD, 
particularly at an earlier age, displayed discernible cognitive 
deficits relative to those subjected to FMT from donors evincing 
sound health (Fujii et al., 2019).

6. Conclusions and future 
perspectives

After a protracted span of assiduous inquiry spanning numerous 
decades, the intricate interplay linking the gut microbiota with the 
formidable malaise of AD has borne forth a plenitude of noteworthy 
headway. The arc of research, having transitioned from its nascent 
stages of clinical observations, has progressively unfurled to unveil a 
more intricate and nuanced expedition into the substratal mechanisms 
that underlie this affliction. Presently, this scholarly odyssey finds itself 
embarked upon an inexorable trajectory, wherein the elucidation of 
causal nexuses stands as an imperious goal. The present subject 
expounds comprehensively upon the intimate intertwinement existing 
between the dysbiosis inherent to the gut microbiota and the 
distinctive physiological perturbations that hallmark AD. The gut 
microbiota, much like a central protagonist bestowed with significant 
eminence, assumes a twofold role—both direct and indirect—exerting 
its sway across the evolving narrative of AD distressing trajectory. 
Beyond this role, it bestows upon us the tantalizing potentiality of 
harnessing its agency as a propitious vector in the pursuit of 
prospective therapeutic interventions for AD. Notwithstanding these 
revelations, the labyrinthine etiological landscape characterizing AD, 
by its very nature, compels the relentless quest for more robust and 
discerning biological markers, as well as the development of pragmatic 
modalities for treatment, both of which ascend to a zenith of 
paramount import.

A profound grasp of the underlying pathogenic substratum 
inherent to AD serves to not only enhance our ability to navigate 
intricate therapeutic challenges but also to usher in unprecedented 
perspectives for comprehending the multifaceted interplay between 
the gut microbiota and AD pathology. While a definitive explication 
elucidating the precise mechanistic underpinnings of the symbiotic 
axis that connects the gut microbiota with the cerebral aggregation 
of pathological Aβproteins still evades us, a spectrum of hypotheses 
and nascent investigative forays present enlightening trajectories. 
Within this spectrum, considerations encompass inflammatory 
cascades, perturbations in metabolism, immunomodulatory 
interchanges, neurotransmitter transmission, and the dynamic 
contributions of the BBB. Nonetheless, the trajectory toward more 
decisive substantiation necessitates a profound expedition into 
myriad enigmatic factors and labyrinthine biological pathways. 
Chief among these is the imperious imperative to delve further into 
discerning the plausible direct correlations between particular 
microbial strains or consortia and the cerebral accrual of Aβ, 
alongside the explication of their impact upon Aβ metabolism via 
intermediary metabolites, immune modulatory influences, or 
alternative mechanisms. Moreover, the unveiling of signaling 
cascades within the gut-brain axis, encompassing neuroactive 
compounds, peptides, and metabolites, portends an amplification of 
our sagacity regarding the sway wielded by the gut microbiota upon 
cerebral homeostasis and the trajectory of morbid progression. Yet, 
circumspection remains warranted, given that this specific realm of 
inquiry abides within its nascence, replete with extant constraints. 
Moreover, while instances of solitary-case exploration might 
germinate prospective inquiry, animal model experiments conduce 
to the profundity of our apprehension; notwithstanding, formidable 
encumbrances endure within the sphere of clinical trials, 
intermittently materializing as absolute dearth.
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Moreover, delineating a definitive profile of a healthy microflora 
at this juncture poses significant challenges, owing to interindividual 
variations in both the abundance and species diversity of gut 
microbiota. Future investigations ought to delve into the structural 
patterns and strain-level regularities of gut microbiota in individuals 
afflicted with AD, employing metagenomic analysis and integrating 
multiple omics approaches, including proteomics, genomics, and 
metabolomics. This approach surpasses the sole reliance on 16S 
rRNA gene sequencing. In the context of microbial intervention for 
high-risk populations susceptible to AD, such as children, 
immunocompromised patients, and the elderly, it becomes 
imperative to incorporate additional studies that probe into the 
effects of microbial therapeutic interventions. Attention should 
be  given to potential interactions with concurrent treatments, 
appropriate sample sizes, and extended follow-up studies. 
Furthermore, it is crucial to consider the impact of medications on 
other microbial interventions during administration.

It is noteworthy that while therapeutic approaches targeting the 
gut microbiota offer certain advantages, the current strategies for 
modulating the gut microbiota in AD are still in the realm of research. 
Although preliminary research findings suggest the potential benefits 
of gut microbiota modulation in the context of AD, a more 
comprehensive array of studies is indispensable to ascertain the most 
efficacious intervention methods and their long-term effects. Such 
endeavors will pave the way for the meticulous design of interventions 
based on gut microbiota modulation or the utilization of specific 
active components, thereby facilitating a deeper comprehension of the 
underlying mechanisms and the development of effective and safe 
approaches for both the prevention and treatment of AD.
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