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Neuromorphic image sensors draw inspiration from the biological retina

to implement visual computations in electronic hardware. Gain control in

phototransduction and temporal di�erentiation at the first retinal synapse inspired

the first generation of neuromorphic sensors, but processing in downstream

retinal circuits, much of which has been discovered in the past decade, has

not been implemented in image sensor technology. We present a technology-

circuit co-design solution that implements two motion computations—object

motion sensitivity and looming detection—at the retina’s output that could have

wide applications for vision-based decision-making in dynamic environments.

Our simulations on Globalfoundries 22 nm technology node show that the

proposed retina-inspired circuits can be fabricated on image sensing platforms in

existing semiconductor foundries by taking advantage of the recent advances in

semiconductor chip stacking technology. Integrated Retinal Functionality in Image

Sensors (IRIS) technology could drive advances in machine vision applications that

demand energy-e�cient and low-bandwidth real-time decision-making.

KEYWORDS

retina inspired sensor, neuromorphic sensor, image sensor, object motion sensitivity,

Looming Detection, circuit design

1. Introduction

Animal eyes are extremely diverse and specialized for the environment and behavioral

niche of each species (Land, 2005). Specialization is particularly robust in the retina, a part

of the central nervous system containing parallel circuits for representing different visual

features. In contrast, the engineered “eyes,” i.e., image sensor technology used in machine

vision, are highly stereotyped. Even though cameras can have different optics on the front

end, the image sensor chip, which represents the electronic analog of the biological retina,

is essentially a two-dimensional array of pixels, each transmitting a luminance signal at a

fixed frame rate (El Gamal, 2002). A motivating hypothesis for the present work is that 3D

integration technology can be leveraged to embed retina-inspired computations onto image

sensors—nicknamed IRIS (Integrated Retinal Functionality in Image Sensors) cameras—to

generate highly specific feature-selective computational spikes similar to their biological

retinal counterparts.

Rod and cone photoreceptors form the input layer of the vertebrate retina, where they

transduce light into an analog voltage signal that is then transmitted via bipolar cells to

the inner retina. Signals diverge at this first synapse from each cone photoreceptor onto

approximately 15 different bipolar cell types (Eggers and Lukasiewicz, 2011). Functional

divergence and the sophistication of visual processing then increase dramatically in the

inner retina where more than 60 amacrine cell types (Yan et al., 2020) shape the signals
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to implement various computations. Finally, signals from bipolar

and amacrine cells are collected by over 40 types of retinal ganglion

cells (RGCs), the output cells of the retina whose axons form the

optic nerve (Goetz et al., 2022).

RGCs transmit spike trains containing information about

specific visual features like object movement, direction, orientation,

and color contrast (Sernagor et al., 2001). Each RGC type

provides a full representation of visual space. Thus, while the

input layer of the retina is analogous to an analog pixel array

(albeit one with built-in filtering and gain control), once the

photoreceptor signals have been processed by the dozens of cell

types comprising retinal circuits, the output representation is very

different, representing specific visual features. Binary RGC spike

trains convey information about more than 40 different visual

features to the brain. Each point in the visual space is represented

in parallel in all the feature-selective RGC outputs.

Solid-state circuits that mimic detailed electrochemical

behavior of retinal cells and associated circuits date back to

the advent of neuromorphic computing in the 1980s (Mead

and Mahowald, 1988). More recent works have shown how

complex interacting retinal cells can lead to known retinal circuit

functionalities, including the detection of differential motion

(Tseng and Parker, 2012). Note these works aimed to mimic

detailed electrochemical processes of retinal cells using analog

electronic circuits and were not focused on image sensor or camera

technology. Interestingly, efforts to bring biologically-inspired

functionality to electronic image sensors gained widespread

attention with the advent of neuromorphic sensors (reviewed in

Liu and Delbruck, 2010; Zhu et al., 2020). Two related aspects

of visual computation, which were already well characterized

in retinal neurobiology by the late 1980s, have dominated the

field of neuromorphic vision sensors. The first idea was to mimic

luminance adaptation, the computation used by the retina to adjust

the dynamic range of its biological components to that of the

visual scene. Humans use vision over 10 orders of magnitude of

luminance (Rodieck, 1998), and even single natural images vary

in brightness by more than a factor of 105 (Frazor and Geisler,

2006). Linear photodiodes and digitization to 8 or even 12 bits

represent these high dynamic ranges. High dynamic range (HDR)

cameras use multiple exposures to reconstruct an image, trading

bit depth for frame rate (Schanz et al., 2000), while logarithmic

detectors use range compression to avoid saturation (Bae et al.,

2016). The second aspect of retinal computation to take hold in

neuromorphic image sensors is change detection, the propensity

of retinal neurons to adapt to the mean luminance over time

and only transmit information about its change. Event-based

cameras, or Dynamic Vision Sensors (DVS), implement temporal

differentiation at each pixel and asynchronously transmit binary

‘spike’ events when the luminance change exceeds a threshold. The

asynchronous transmission of DVS cameras has critical advantages

for high-speed operation since it is not limited by frame rate and

for efficiency, since pixels that do not change do not transmit data

(reviewed in Etienne-Cummings and Van der Spiegel, 1996; Liao

et al., 2021).

This work presents a new class of neuromorphic sensors

called Integrated Retinal Functionality in Image Sensors (IRIS). By

leveraging recent advances in understanding inner retinal circuits,

IRIS technology goes beyond luminance adaptation and change

detection features mostly confined to phototransduction and the

first retinal synapse to implement computations that occur in the

circuits of the inner retina, mimicking the feature-selective spike

trains of RGCs. Here we present IRIS circuits implementing two

retinal motion computations: Object Motion Sensitivity (OMS) and

Looming Detection (LD). The present work aims not to implement

the detailed electrochemical dynamics of retinal cell types but to

functionally mimic the computational behavior of retinal circuits

on state-of-the-art image-sensing platforms.

OMS is a computation that enables the visual system to

discriminate the motion of objects in the world (object motion)

from motion due to one’s eye, head, and body movements (self-

motion) (reviewed in Baccus et al., 2008). A subset of RGCs

responds to either local motion in the receptive field ‘center’ or

differential motion of the receptive field ‘center’ and ‘surround’

regions but remains silent for global motion (Yu et al., 2019).

OMS RGCs are thought to be important in detecting movements of

predators and prey amidst a background of self-motion (Schwartz,

2021). For machine vision applications, a fast sensor with built-in

OMS could detect moving objects even if the camera was moving,

for example, on an autonomous vehicle.

LD is a computation that likely evolved to warn animals of

approaching threats, especially those from overhead (reviewed in

Temizer et al., 2015). Loom-sensitive RGCs respond selectively to

expanding (approaching) dark objects with much weaker responses

to translational motion across the visual field (Münch et al., 2009).

Experiments in flies (Card, 2012), zebrafish (Temizer et al., 2015),

frogs (Ishikane et al., 2005), and mice (Yilmaz and Meister, 2013;

Wang et al., 2021) have established a causal role for LD RGCs in

eliciting stereotyped escape responses. In machine vision, an LD-

equipped sensor could be used on an autonomous vehicle to avoid

collisions by enabling fast detection of approaching objects.

We show OMS and LD circuits built on standard

Complementary Metal Oxide Semiconductor (CMOS) technology

based on active pixel sensors (APS) and DVS pixels. We

exploit advances in semiconductor chip stacking technology

and highly scaled, dense CMOS transistors to embed retina-

inspired circuits in a hierarchical manner analogous to the

processing layers of the biological retina. Our simulations

demonstrate the prevalence of OMS and LD triggering

stimuli in natural scenes from moving vehicles, and they

show circuit designs that implement both the OMS and

LD computations and are compatible with existing image

sensor fabrication technology. This work forms the necessary

foundation to build IRIS-equipped cameras for machine

vision.

2. Materials and methods

Hardware circuit simulations were performed using the process

design kit (PDK) from Globalfoundries for fully-depleted Silicon-

on-insulator (FD-SOI) technology at 22nm technology node

(Shilov, 2015). The 22nm FD-SOI node is well-suitable for the

mixed signal circuits used in this work (Gorss and McGill, 2015).

The simulations were run on industry-standard EDA (Electronic

Design Automation) tools from Cadence (Cadence Newsroom,

2022).
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3. Result

3.1. Algorithmic implementation of retinal
computations

Feature selective circuits in the vertebrate retina, like OMS and

LD, are built from 5 classes of neurons (Figure 1). Photoreceptors

construct the input layer (like the pixels in a camera), and retinal

ganglion cells (RGCs) represent the output. The computations that

transform the pixel-like representation of the photoreceptors to the

feature-selective representation of RGCs are carried out by the 3

interneuron classes: horizontal cells, bipolar cells, and amacrine

cells. Horizontal cells are mainly involved in lateral inhibition and

color processing, but they do not play a major role in OMS and

LD circuits (Schwartz, 2021). Thus, we designed the components

of IRIS circuits to match the functionality of bipolar, amacrine, and

ganglion cells in these computations.

Both computations begin with bipolar cells that act like

differentiators; they adapt (rapidly) to steady illumination and

signal-only changes in luminance. In the biological retina, separate

bipolar cells carry signals for positive (ON), and negative (OFF)

changes in illumination. The OMS retinal circuit (Figure 2A)

combines this functionality at the level of ON-OFF bipolar-like

units; on the other hand, the LD circuit Figure 2B has separate ON

and OFF bipolar sub-circuits.

Amacrine cells are the most diverse class of neurons in the

retina, comprising more than 60 cell types (Yan et al., 2020).

While many of the cellular and synaptic details of amacrine cells

remain incompletely understood, their algorithmic role in the OMS

and LD circuits has been well characterized (Baccus et al., 2008;

Zhang et al., 2012), reviewed in Schwartz (2021). In the OMS

circuit, amacrine cells collect the bipolar cells’ contrast responses

from a wide spatial extent, the receptive field “surround”, and

relay this summed signal with an opposite sign to the output

of bipolar cells from the receptive field “center”, implementing

a spatial filter with a subtraction operation, thereby detecting

differential motion between the “center” and the “surround”

regions. In the LD circuit, amacrine cells also invert the sign

of signals from bipolar cells but on a smaller spatial scale.

OFF signals from the leading edge of a dark moving object

are relayed directly by OFF bipolar cells to RGCs, while ON

signals from the trailing edge of the object are relayed with the

opposite signs to the RGC via intermediary amacrine cells. Thus,

moving objects with both leading and trailing edges elicit opposing

responses that cancel at the level of the RGC, while expanding

dark objects with only leading edges elicit an RGC response. A

more detailed description of the functioning of OMS and LD

circuits can be found in Schwartz (2021) and Gollisch and Meister

(2010).

Before designing the electronics for IRIS sensor hardware,

we confirmed our algorithmic understanding of the OMS and

LD computations by implementing them in software and testing

them on dashboard video segments from the Berkeley DeepDrive

database (Chen et al., 2015). The OMS algorithm elicited simulated

RGC spikes for the expected features of the videos, like runners

crossing the street in front of the moving car (Figures 3A, B).

Likewise, the LD circuit signaled the approach of negative contrast

(dark) objects (Figures 3C, D). Based on these results, we sought

to design hardware IRIS circuits using the mixed-signal design that

implemented the same OMS and LD computations as our software.

3.2. Embedding OMS functionality in image
sensors

As described above, the OMS computation in the retina starts

with detecting changes in the temporal contrast of input light by

the bipolar cells. In other words, for OMS behavior, functionally,

the bipolar cells generate an electrical signal for a change in light

intensity above a certain threshold. Figures 4A, B show solid-

state circuits that can mimic the bipolar cell’s contrast-sensitive

behavior using conventional CMOS Active Pixel Sensor (APS)

(Chi et al., 2007) and Dynamic Vision Sensor (DVS) (Son et al.,

2017), respectively. Note, APS pixels are of specific importance

since they form the backbone of state-of-the-art camera technology

(Park et al., 2021) and a wide class of computer vision applications

(Voulodimos et al., 2018).

3.2.1. Proposed contrast-change detection circuit
For APS-based implementation, the focal plane array is formed

by a 2-dimensional array of APS pixels with the additional circuit

to enable temporal light contrast-change detection. The array of

such contrast-change sensitive APS pixels sample the input light

intensity for each frame in parallel and compare it to the light

intensity of the next frame. If the light intensity sensed by each APS

pixel increases (decreases), the contrast-sensitive APS pixels would

generate an ON (OFF) bipolar-signal.

Consider the APS-based contrast-change detection circuit of

Figure 4A. For the APS pixels, the output voltage of the well-known

3 transistor pixel circuit is inversely linear proportional to the

incident light intensity (Kleinfelder et al., 2001).

The SAMPLER block samples the pixel output in parallel for

each frame and performs analog subtraction operation between

two consecutive samples (or frames) for each pixel simultaneously.

The subtraction operation starts by sampling the 3T APS pixel

voltage (VPX) of the first frame on the top plate and a constant

0.5VDD on the bottom plate of the sampling capacitor (CSAMP).

In the next frame, the bottom plate of the sampling capacitor is

left floating, whereas the top-plate samples the consecutive frame’s

pixel voltage. As a result, the floating bottom plate of the capacitor

(node VC) follows the top plate of the capacitor and stores the

difference voltage of the two consecutive frames offset by a constant

voltage of 0.5VDD. Finally, the difference voltage (corresponding

to the intensity or contrast change for a given pixel between

two consecutive frames) on the bottom plate of the sampling

capacitor is compared to a threshold using the THRESHOLDING

circuit [implemented using two transistor static inverter-based

comparators (Son et al., 2017)]. The THRESHOLDING circuit

generates a spike through the ON (OFF) channel if the light

intensity has increased (decreased) between two consecutive

frames. Note, the array of contrast-sensitive APS pixels operate

synchronously (when the VCOMP is HIGH) generating a bipolar-

signal for changes in light intensity between two consecutive

frames.
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FIGURE 1

(Left) Representational view of the biological retina. (Right) Proposed IRIS camera implementing retinal computations on a back-side illuminated

active pixel sensor (Okada et al., 2021) camera with Bayer pattern color filters (Catrysse and Wandell, 2005). Two retina-inspired functionalities in

existing works are HDR (High Dynamic Range) and DVS (Dynamic Vision Sensor), confined to phototransduction and the first retinal synapse. In

contrast, the proposed IRIS camera aims to implement computations that occur in the circuits of the inner retina, mimicking the feature-spikes of

Retinal Ganglion Cells (RGC).

FIGURE 2

(A) Retinal Object Motion Sensitive circuit, and (B) Retinal Looming Detection circuit.

In the DVS-based contrast-sensitive pixel circuit (Figure 4B),

a logarithmic photoreceptor transduces the incident light into

a logarithmic output voltage (Pardo et al., 2015). A source

follower buffer (X1) isolates the sensitive pixel node (VLOG) and

the following difference amplifier. The difference amplifier is

implemented as a capacitive feedback amplifier that can calculate

the voltage gradient corresponding to incident light intensity

change in an asynchronous manner (Lichtsteiner et al., 2006).

Finally, the output voltage (VC) from the difference amplifier is

compared in the THRESHOLDING circuit that is similar to the

APS-based circuit and generates the ON/OFF bipolar-signal.

Figure 4C exhibits a representative timing waveform of the

APS pixel-based bipolar-signal generation circuit. IPD represents

the photodetector current corresponding to the incident light, and

PIXELOUT refers to the ON/OFF bipolar-signal from the pixel

circuit. VCOMP enables the comparison between two consecutive

frames with a period of T (depending on the video frame rate).

It can be observed from the figure that when the photodetector

current (corresponding light intensity) difference in both directions

is higher (lower) than the threshold (ITH), PIXELOUT generates a

high (low) signal output and that is updated according to the frame

rate. Only the waveform of the APS pixel-based circuit has been

shown, as most of today’s commercial cameras are using the APS

pixel. However, the timing waveform of the DVS pixel-based circuit

is similar to the APS pixel-based circuit, except that DVS pixels

generate asynchronous spikes and are not based on the timing of

signal VCOMP.

To validate our circuit’s bipolar signal functionality, we have

simulated the APS and DVS-based contrast change detection

circuits considering the local mismatch and global supply

voltage variation on the GF 22nm FD-SOI node. Figure 5

exhibits the monte-carlo simulation results for 1000 samples

of our implemented circuits considering positive contrast

change only.IPD1 andIPD2 represent the photodetector current

(illuminance) of two consecutive frames (IPD2>IPD1) with 30%

contrast sensitivity (contrast sensitivity can be defined as the ratio

of minimum luminance change to absolute luminance between two

consecutive frames at which the contrast-change detection circuit

generates the ON/OFF bipolar signals depending on the direction

of contrast change). In addition to local mismatch, we have utilized
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FIGURE 3

Example frames showing the software implementation of the OMS and LD algorithms. (A, C) are frames from the Berkeley DeepDrive database Yu

et al. (2020). Frames in (B, D) show the corresponding sparse representation at the output of the OMS and LD circuits, respectively. White pixels

indicate spike events. Spikes can be seen in frame (B) indicating the identification of di�erential motion (runners in front of a moving car) in

accordance with the expected OMS behavior. Similarly, frame (D) shows spikes indicating a looming (approaching) car in the receptive field.

a 10 mV standard deviation to the nominal supply voltage to

incorporate the supply voltage variation in our test simulations.

Figure 5A shows the results for the APS-based system, where, at the

top subplot, the photoreceptor voltage distribution for two different

luminance levels has been demonstrated. For a co nventional 3T

APS circuit, the output pixel voltage is inversely linear proportional

to the incident light; hence, the mean pixel output voltage forIPD1
andIPD2 are 720 mV and 548 mV, respectively. The pixel output

voltage differences (VC in Figure 4A) between the two consecutive

frames exceed the threshold voltage, generating ON bipolar signals

for all test samples, which can be observed from the bottom

subplot of Figure 5A. The photoreceptor (logarithmic) voltage

distribution and ON bipolar signals for the DVS-based circuit can

be observed in Figure 5B. The minimum difference (worst-case

scenario among the 1,000 samples) between the photoreceptor

voltages of two consecutive frames is 18.4 mV (considering 30%

contrast sensitivity); however, each photoreceptor output voltage

exhibits a standard deviation of 43.2 mV in our exhaustive test

setup; hence, the output voltage (VLOG) distributions forIPD1
andIPD2 overlap with each other for different test samples.

The difference voltage is amplified in the capacitive feedback

amplifier stage, hence, crosses the threshold voltage, generating

ON bipolar signals for all test samples that can be observed from

the bottom subplot of Figure 5B. Note that the DVS-based system

is asynchronous; as a result, the ON bipolar signals are generated

across different time instants depending on the local variation and

supply voltage.

3.2.2. Proposed OMS-feature-spike generation
circuit

The bipolar-signals generated from each pixel (either APS-

based or DVS-based) are further processed by the circuit shown

in Figure 6A, which implements the functionality of amacrine and

ganglion cells for generation of OMS-feature-spikes. The circuit of

Figure 6A consists of two groups of transistors, those belonging

to the “center” region (transistors MCis) and those belonging to

the “surround” region (transistors MSis) in the receptive field. The

gate of the “center” (“surround”) region transistors MCis (MSis) are

driven by bipolar-signals generated from pixels belonging to the

“center” (“surround”) region. Further, the upper terminals (source)

of the “center” region transistors (pFET) are connected to supply
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FIGURE 4

(A) CMOS implementation of the APS pixel circuit diagram, (B) DVS pixel circuit diagram, and (C) the timing waveform of the retinal bipolar

functionality using APS and DVS pixel.

FIGURE 5

(A) Photoreceptor output voltage distribution for two di�erent illuminances and ON bipolar signals in (A) APS-based and (B) DVS-based circuits

considering local mismatch and global supply voltage variation on GF 22 nm FD-SOI node.

voltage VDD, while the upper terminals (source) of the “surround”

region transistors (nFET) are connected to the ground. This ensures

when a particular “center” transistor MCi receives a bipolar-signal,

it is switched ON (active low), and integrates charges on capacitor

Cint. Higher the number of bipolar-signals generated from the

center region, the higher would be the resultant voltage on the

capacitor Cint. Conversely, when a specific transistor MSi receives

a bipolar-signal from the “surround” region, it turns ON, and it

attempts to drain the charge stored on the capacitor Cint through

the ground terminal. Higher the number of bipolar-signals received
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by the “surround” transistors, the lower the resultant voltage on the

capacitor Cint. Essentially, the group of transistors MCis and MSis

form a voltage divider that dictates the resultant voltage (VINT)

on Cint. The voltage on Cint drives a high-skewed CMOS buffer,

which generates a spike (OMSOUT) if the voltage on Cint exceeds

the threshold voltage (or the trip-point) of the CMOS buffer.

In summary, when the pixels in the “center” region generate

bipolar-signals, and at the same time, pixels in the “surround”

region also generate bipolar-signals, it indicates that the receptive

field comprising of the “center” and the “surround” region is

experiencing global or background motion without any object

motion. In such a case, the voltage accumulated on the capacitor

Cint from transistors MCis in the ‘center’ region is offset by the

discharge effect of transistors MSis in the “surround” region, and

the buffer output remains low. However, if the “center” transistor

MCis receive bipolar-signals, without significant corresponding

bipolar-signals received by the ‘surround’ transistors MSis, the

voltage accumulated on the capacitor Cint does not experience a

significant discharging path through the ‘surround’ pixels, resulting

in higher voltage that pulls the output of the buffer high. The

generated spike from the buffer, thus, represents the output OMS-

feature-spike, indicating an object motion detected in the “center”

region concerning the “surround” region.

Timing waveforms obtained by simulation of the proposed

OMS circuit based on APS pixels on GF 22nm FD-SOI node

are shown in Figures 6B, C. For illustration purposes, Figure 6B

assumes there is no contrast change initially (before t = 8

µ s). At t = 8 µ s, 50% of the “center” transistors MCi have

received a bipolar-signal and hence are ON; as a result, VINT

steps up from VDD/2 depending on the number of activations

in the center region. The ‘surround’ transistors MSis are made

ON such that 10% of ‘surround’ transistors are ON at t =

10 µ s, and then the number of ON “surround” transistors

increases by 10% with 2 µ s time-step until all the ‘surround’

transistors are ON. The resulting voltage at the node Cint is

shown in the bottom subplot of Figure 6B. As expected, node Cint

voltage decreases as a higher percentage of “surround” transistors

are switched ON. Only when sufficient ‘surround’ transistors

are ON, the voltage at the node Cint is pulled low enough

(below the VTH) to result in a low voltage at the buffer output

(OMSOUT).

Similarly, Figure 6C represents the test scenario where 30%

of the “surround” transistors are ON (at t = 8 µ s), and then

the number of ON “center” transistors increase by 12.5% with 2

µ s time-step until 75% of the “center” transistors are ON. As a

result, VINT increases gradually and exceeds the VTH, consequently,

generating the OMS-feature spikes (OMSOUT).

We will now highlight the key design aspects of the circuit

proposed in Figure 6A and its connection with the corresponding

retinal OMS circuit of Figure 2A. The amacrine cells pool over

a larger “surround” area as compared to the ‘center’ area; this

corresponds to a higher number of “surround” transistors MSi

compared to the ‘center’ transistors MCi. Pooling spikes from

multiple pixels in the “surround” region is ensured in the circuit

of Figure 6A, since all the “surround” pixels when activated, drive

the same capacitance Cint. Further, since the “surround” region is

significantly larger than the “center” region, the signal generated

from the “surround” region must be appropriately weighted by

the synaptic connections to ensure proper OMS functionality. In

the circuit of Figure 6A, this is ensured by designing “surround”

transistors MSi with lower transistor widths as compared to the

center transistors MCi. Finally, as shown in Figure 2A, the synaptic

connections between amacrine cells from the ‘surround’ region

and the RGC are inhibitory; in contrast, the synaptic connections

between bipolar cells in the ‘center’ region and the RGC are

excitatory. We ensure such inhibitory and excitatory connections

by connecting the source of “center” pixels to VDD and the source

of ‘surround’ pixels to the ground.

3.2.3. Results: OMS feature-extraction circuit
simulations and variation analysis

To verify the robustness of our OMS circuit’s functionality,

we have performed the monte-carlo simulations of 1,000 samples

considering global (background) and local (object) motion.

Figure 7 represents the test scenes, corresponding bipolar signals,

center (red dashed) and surround (blue dashed) receptive field,

voltage distribution on the Cint node, and OMS feature-spike

(OMSOUT) considering global motion only (Figures 7A, C) and

both global and local motion (Figures 7B, D) cases. Global motion

in the visual scene will activate the bipolar signals (ON and OFF)

in the center and surrounding region based on the texture of

the scene and object. In contrast, the object will also generate

bipolar signals based on its motion trajectory. When the object

remains fixed, there will be no bipolar activations due to the

object (shown in Figure 7A); in contrast, when the object is

moving in a specific direction, pixels inside the center receptive

field will activate bipolar signals (shown in Figure 7B). Since the

surrounding region is typically larger than the center region if

the number of bipolar activations in the surrounding receptive

field is sufficiently larger than the center receptive field, the voltage

on the Cint node will be suppressed. Hence, VINT remains lower

than the trip-point (VTH) for the fixed object scenario; as a

result, no OMS spike will be generated that can be observed

from Figure 7C. On the other hand, when there is a sufficient

number of bipolar activations in the center receptive field due to

the object motion, VINT will be pulled up, consequently exceeding

the threshold (VTH) and generating the OMS spikes (shown in

Figure 7D). Note that the surrounding receptive field transistors

are weighted; hence, though the absolute number of surround

bipolar signals is higher than the center bipolar signals during the

object motion cases, the effective pull-up strength of the circuit

(Figure 6A) is higher than the pull-down network. Moreover, the

variation of the timing instants of the bipolar signal activations

due to local variation as well as asynchronous nature in the DVS-

based system is also considered in our simulations, and that can

be observed in the top-left subplots of Figures 7C, D. As seen,

the final node voltages (VINT) are always lower (higher) than the

threshold (VTH) during the global motion only (both global and

local motion) case, ascertaining the functionality of the proposed

circuit.

Finally, the center-surround receptive field necessary for OMS

functionality can be implemented in image sensors, as shown

in Figure 8. Figure 8 shows a two-dimensional array of pixels.

It is important to note that state-of-the-art cameras comprise

millions of pixels constituting the focal plane array. We propose
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FIGURE 6

(A) CMOS implementation of the OMS circuit, (B) The voltage on node Cint (VINT) as a function of the number of ON ‘surround’ transistors while

keeping 50% of ‘center’ transistors ON. VTH represents the trip point of the bu�er whose output (OMSOUT) represents the OMS feature spike, and (C)

The voltage on node Cint (VINT) as a function of the number of ON ‘center’ transistors while keeping 30% of ‘surround’ transistors ON. VTH represents

the trip point of the bu�er whose output (OMSOUT) represents the OMS feature spike.

to divide the pixel array into multiple regions. Each region

would act as a “center” region. For example, Figure 8 shows the

pixel array of 9 center regions labeled A through I. Consider

a specific “center” region, say region E. The “surround” region

corresponding to the “center” region E is implemented as pixels

interleaved in the neighboring “center” regions. Specifically, the

pixels corresponding to the “center” region E are represented in

blue. The “surround” pixels corresponding to the ‘center’ region

E are depicted as blue pixels embedded in the regions A through

I except E. Thus, for the entire array of pixels, each “center”

region will consist of most pixels constituting its own ‘center’

region and fewer interleaved pixels corresponding to the ‘surround’

region of neighboring “center” regions. Note, the “surround”

pixel interleaving is shown explicitly for all the pixels in the

“center” region E; in contrast, it is only shown partially for the

“center” region A through I except E, for visual clarity. It is

worth mentioning that the proposed method of Figure 8 to mimic

the center-surround receptive field is amenable to state-of-the-

art high-resolution cameras that inherently consist of numerous

high-density pixels. Furthermore, the metal wires and transistors

needed for routing signals between “center” and corresponding

“surround” regions can be implemented using the back-end-of-line

metal layers and front-end-of-line transistors from the sensor and

processing die, respectively, as represented in Figure 1. Essentially,

the backside illuminated CMOS sensor and the heterogeneously

integrated processing chip allows transistors and photodiodes to

be integrated on top of the sensor chip (which receives incident

light) and another set of transistors that can be fabricated toward

the bottom of the processing chip, with several layers of metals

between them. Such a structure is naturally amenable to complex

routing of signals as needed by center-surround receptive field for

OMS functionality.
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FIGURE 7

Test scenes and corresponding bipolar signals of two consecutive frames where the background is moving horizontally (global motion) while (A) the

object is fixed, (B) the object is moving diagonally, VINT (the voltage on the intrinsic capacitor Cint in Figure 6A) distribution for (C) test-(a), and (D)

test-(b).

3.3. Embedding LD functionality in image
sensors

3.3.1. LD circuit implementation
A solid-state implementation of the retinal LD circuit from

Figure 2B is shown in Figure 9A. The figure consists of multiple

pairs of transistors connected to a common capacitor Cint . Each

pair consists of a transistor shown in red and another in blue. The

upper terminal (source) of the red transistors (pFET) is connected

to VDD, while the upper terminal (source) of the transistors (nFET)

in blue is connected to the ground. Further, the gates of the

red transistors are driven by ON bipolar-signals, and the gates of

the blue transistors are driven by OFF bipolar-signals. Consider

a dark object laterally moving in the receptive field. No bipolar-

signals would be generated from those pixels in the receptive

field corresponding to the dark object’s internal region. This is

because bipolar-signals are only generated in response to change

in light contrast. The dark object’s internal region (or body) would

continuously present low light intensity and hence would not excite

any bipolar-signals. In contrast, pixels at the object’s boundary

would experience contrast change as the object moves laterally.

Specifically, if the dark object is moving to the right, considering
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FIGURE 8

Implementation of center-surround receptive field in a 2D array of

pixels.

Figure 9A, the pair of red and blue transistors at the left boundary

of the object would experience a change in light contrast. As the

dark object moves to the right, the corresponding pixel pair would

experience an increase in light intensity, and an ON bipolar-signal

would thus be generated. The ON bipolar-signal would activate the

red transistor among the pair of transistors at the left boundary of

the object. Similarly, on the right boundary of the object, an OFF

bipolar-signalwould be generated as the pixels at the right boundary

would experience a decrease in light intensity as the object moves to

the right. Consequently, an OFF bipolar-signal would be generated.

The red transistor connected to the ON bipolar-signal at the left

boundary of the object would try to pull up the voltage on the

capacitor Cint , while the blue transistor receiving the OFF bipolar-

signal on the right would try pulling down the voltage on the

capacitor. This would result in voltage on capacitor Cint close to

VDD/2. The logic circuit connected to the capacitor Cint is designed

to generate a low output when the voltage on Cint is within a range

of VDD/2. The output of the logic circuit is high only when the

voltage on Cint deviates significantly from VDD/2 (i.e., either is

closer to VDD or closer to ground). In accordance with its behavior,

the logic circuit would generate a low output in response to a

voltage of VDD/2 on node Cint as the object moves to the right. A

similar argument holds when an object in the receptive field moves

to the left, resulting in a low response from the logic circuit.

Now, consider the dark object within the receptive field is

approaching (or looming). In such a case, the pair of transistors

on the object’s left and right boundary would simultaneously

experience a decrease in light intensity, thereby generating OFF

bipolar-signals. The blue transistors at the left and the right

boundary would be activated by the OFF bipolar-signals, while all

the other transistors would remain OFF. As such, the boundary

blue transistors would pull the voltage across Cint low. In response

to a low voltage on Cint , the logic circuit would generate a high

output voltage (or an LD feature-spike) indicating an approaching

or looming object in the receptive field. Note, instead of a dark

object, the LD circuit would also generate an LD feature-spike if a

bright object is approaching inside the receptive field. In this case,

the red transistors at the left and right boundary of the object would

be active, the node voltage on Cint would increase closer to VDD,

and the logic circuit would respond by generating a high output.

In accordance with the above description, Figure 9B depicts

three scenarios; in the first scenario, the object is moving to the

right. This leads to the generation of ON bipolar-signals from

the lagging edge or left boundary of the object from the pair

of transistors corresponding to the receptive filed at the left

boundary (Pair 1 in Figure 9B). Additionally, OFF bipolar signals

are generated from the leading edge or right boundary of the object

from the pair of transistors corresponding to the receptive field at

the right boundary (Pair N in Figure 9B). The LD circuit output

stays low in this scenario. A similar argument holds when the object

is moving to the left. However, for an approaching object (in the

case of Figure 9B, an approaching dark object) OFF bipolar-signals

are generated from both the left and right boundary of the object,

leading to a high voltage at the output (LDOUT) of the LD circuit.

3.3.2. Results: LD feature-extraction circuit
simulations and variation analysis

Figure 10 exhibits the monte-carlo simulation results of 1,000

samples of our implemented LD circuit considering approaching

and laterally moving objects, respectively. Figure 10A shows the

consecutive frames and bipolar signal activations of an approaching

bright object in the dark background. Depending on the object’s

distance, the number of bipolar activations will increase (the closer

the object, the higher the number of bipolar activations). Due to

the sufficient number of ON bipolar signal activations, the voltage

VINT will exceed the threshold of the skewed buffer (VTH,UP ≃ 600

mV), hence, generating the LD spikes (LDOUT). From the bottom

subplot of Figure 10C, it can be observed that during frame-6, the

VINT is higher than the VTH,UP for all test samples. Figure 10B

represents a horizontally moving object in the scene along with

bipolar signal (ON/OFF) activations for consecutive frames. Due to

the same number of ON bipolar activations at the leading edge and

OFF bipolar activations at the lagging edge of the moving object in

the receptive field, the node voltage VINT remains closer to VDD/2

for all test samples in all the frames (shown in Figure 10D).

4. Discussions: future work and
broader impact

IRIS sensors aim to embed retinal feature extraction behavior

using retina-inspired circuits within image sensors. While

the current manuscript presents two key retinal functionality

embedded within image sensors—Object Motion Sensitivity and

Looming Detection, similar circuit-technology design techniques

can embed a rich class of retinal functionality, including color,

object orientation, object shape, and more. Embedding multiple

features in the IRIS camera is of special importance given the

fact that individual retinal features can generate false-positive
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FIGURE 9

(A) CMOS implementation of Looming Detection Circuit diagram and (B) Timing waveform of the retinal Looming functionality showing the output

voltage for three di�erent scenarios.

and false-negative feature spikes. By ensuring the final decision

made by a computer vision algorithm (using IRIS feature-spikes)

is based on multiple features as opposed to one specific feature,

the overall robustness of the end application can potentially be

improved. Some specific design considerations for IRIS sensors are

as follows. IRIS sensors can be implemented based on underlying

APS or DVS pixels. Specifically, for APS pixels to achieve high

dynamic range, a coarse-grained (at pixel-array-level) or fine-

grained (at individual pixel level) exposure timing control would

be required (Sasaki et al., 2007; Zhang et al., 2020). For cameras

with high-density APS pixels, pixels corresponding to IRIS circuits

can be scattered within typical RGB (red, green, blue) pixels. At

the same time, a 3D integrated chip can house the transistors

and routing metal layers for implementing corresponding IRIS

circuits. This would ensure the resulting IRIS camera can capture

high-resolution images while simultaneously performing IRIS

computations on the visual scene being captured by the camera.

Further, the photodiodes associated with IRIS sensors could

span a wide range of wavelengths, including visible light (Xu

et al., 2005), near infra-red light (Kaufmann et al., 2011), and

infra-red (Peizerat et al., 2012). IRIS cameras generate feature

spikes (e.g., OMS, LD, etc.) in an asynchronous manner. In

addition, depending on the number of receptive fields in the

pixel array, the number of spikes will be even lower than the

DVS sensor. Hence, IRIS cameras can operate similarly to DVS

cameras yielding a few µs latency. For the APS version of the IRIS

cameras, the frame rate will be limited by the integration time

of the APS pixel array. In short, IRIS cameras can operate at a

high frame rate (low latency) similar to conventional high-speed

cameras. Finally, there are inherent non-linearity associated

with transistor based implementation of the IRIS circuit. For

example, in Figures 6B, C, the resultant voltage on the capacitor

(Vint) changes the drain to source voltage of the PMOSes and

NMOSes connected to the Vint node, which in turn changes

the current driving strength of the transistors. This makes

Vint non-linear and dependent on the number of center and

surrounding pixels that are ON. The effect of such non-linearity

can be mitigated through circuit-algorithm co-design for a

specific target end application and is an interesting avenue for

future research.
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FIGURE 10

Test scenes and corresponding bipolar signals of consecutive frames where a bright square object is (A) approaching, (B) horizontally moving in the

dark background, VINT (the voltage on the intrinsic capacitor Cint in Figure 9A) distribution for (C) test-(a), and (D) test-(b).

A key technology enabler for IRIS sensors is the advances

in the 3D integration of semiconductor chips. 3D integration

allows the integration of routing metal layers and transistor-based

circuits required for implementing spatio-temporal computations

directly above (or under) the pixel array, similar to the biological

retinal circuit. Such 3D integrated IRIS sensors can use various

3D packaging technologies like metal-to-metal fusion bonding

(Raymundo et al., 2013), TSVs (Coudrain et al., 2013), etc. Further,

heterogeneous sensors operating at different wavelengths can be co-

integrated to extract retina-like feature vectors over the different

light spectrums. Additionally, emerging non-volatile technologies

like Resistive Random Access Memories (RRAMs) (Zahoor et al.,

2020), Magnetic Random Access Memories (MRAMs) (Apalkov

et al., 2013), Phase ChangeMemories (PCM) (Lacaita andWouters,

2008), Ferro-electric Field Effect Transistors (Fe-FET) (Lue et al.,

2002), etc. can be used for IRIS circuits, for example, to implement

programmable weights for ‘center’ and ‘surround’ regions. The

circuit complexity of the IRIS cameras depends on different

parameters (e.g., spike thresholds, center receptive field size,

surround receptive field size, etc.), which can be optimized and

reconfigured by considering a computer vision algorithm in the

loop. Specifically, parameters like threshold for OMS and LD

spikes are mainly a function of the target application. For example,

underwater and on-land camera would have different thresholds.

They also weakly depend on the specific feature like OMS or LD.

We envision such parameters can be reconfigured, wherein an

intelligent computer vision algorithm utilizing output from IRIS

camera can provide feedback to IRIS hardware to reconfigure itself

according to task at hand.

Lastly, IRIS sensors could significantly impact computer vision

in general. Today’s computer vision exclusively relies on light

intensity-based (APS) or light change-detection-based (DVS) pixels

data collected through state-of-the-art CMOS image sensors.

However, in almost all cases, the appropriate context for the pixels is

missing (or is extremely vague) concerning the ‘real-world events’

being captured by the sensor. Thus, the onus of processing is put

on intelligent machine learning algorithms to pre-process, extract

appropriate context, and make intelligent decisions based on pixel

data. Unfortunately, such a vision pipeline leads to (1) complex

machine learning algorithms designed to cater to image/video data

without appropriate context, (2) increases in the time to decision

associated with machine learning algorithms requiring to process
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millions of pixels per frame, (3) energy-hungry and slow access

to pixel data being captured and generated by the CMOS image

sensor. IRIS sensors could usher in new frontiers in vision-based

decision-making by generating highly specific motion and shape-

based features, providing valuable context to pixels captured by the

camera. The underlying algorithms processing data generated from

IRIS sensors could be based on traditional deep learning models or

emerging sets of spiking neural networks that could process feature-

spikes generated from IRIS sensors. Finally, since IRIS cameras can

generally use APS pixels, they can generate feature spikes and light

intensity maps as computer vision algorithms require.

5. Conclusion

We propose a novel family of retina-inspired cameras based on

recent (past decade) discoveries in retinal neuroscience, nicknamed

IRIS (Integrated Retinal Functionality in Image Sensors). IRIS

cameras represent the next generation of retina-inspired visual

sensors that integrate the computations corresponding to both

outer and inner retinal layers, as recently discovered in retinal

neuroscience. Specifically, we propose embedding two key

motion computations—Object Motion Sensitivity and Looming

Detection—into camera-compatible hardware by leveraging 3D

chip integration technology. Our proposal forms the necessary

foundation to build the next generation of retinal computation-

inspired cameras for machine vision applications in dynamic

environments.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

AJai conceptualized the idea. AJai and GS designed the overall

approach for IRIS sensors. ZY, MK, and MC performed circuit

simulations. GS and LC implemented software code for retinal

computations. AJac helped in creating a chip manufacturing

roadmap for IRIS sensors. MP helped in providing a vision for

algorithmic implications of IRIS sensors. All authors contributed

in writing and reviewing the paper.

Funding

The work was partly supported by the Keston Foundation

Exploratory Research Award and Center for Undergraduate

Research at Viterbi (CURVE), University of Southern California,

Los Angeles, USA.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Apalkov, D., Khvalkovskiy, A., Watts, S., Nikitin, V., Tang, X., Lottis, D., et al.
(2013). Spin-transfer torque magnetic random access memory (stt-mram). ACM J.
Emerg. Technol. Comput. Syst. 9, 1–35. doi: 10.1145/2463585.2463589

Baccus, S. A., Ölveczky, B. P., Manu, M., and Meister, M. (2008). A
retinal circuit that computes object motion. J. Neurosci. 28, 6807–6817.
doi: 10.1523/JNEUROSCI.4206-07.2008

Bae, M., Choi, B.-S., Jo, S.-H., Lee, H.-H., Choi, P., and Shin, J.-K. (2016). A
linear-logarithmic cmos image sensor with adjustable dynamic range. IEEE Sens. J. 16,
5222–5226. doi: 10.1109/JSEN.2016.2562638

Cadence Newsroom (2022). Cadence Library Characterization Solution Accelerates
Delivery and Enhances Quality of Arm Memory Products. Available online at:
https://www.cadence.com/en_US/home/company/newsroom/press-releases/pr/2022/
cadence-library-characterization-solution-accelerates-delivery.html (accessed 11
August, 2022).

Card, G. M. (2012). Escape behaviors in insects. Curr. Opin. Neurobiol. 22, 180–186.
doi: 10.1016/j.conb.2011.12.009

Catrysse, P. B., andWandell, B. A. (2005). Roadmap for cmos image sensors: moore
meets planck and sommerfeld. Digital Photog. 5678, 1–13. doi: 10.1117/12.592483

Chen, C., Seff, A., Kornhauser, A., and Xiao, J. (2015). “Deep driving:
Learning affordance for direct perception in autonomous driving,” in 2015
IEEE International Conference on Computer Vision (ICCV) (IEEE), 2722–2730.
doi: 10.1109/ICCV.2015.312

Chi, Y. M., Mallik, U., Clapp, M. A., Choi, E., Cauwenberghs, G., and Etienne-
Cummings, R. (2007). Cmos camera with in-pixel temporal change detection and adc.
IEEE J. Solid-State Circuits 42, 2187–2196. doi: 10.1109/JSSC.2007.905295

Coudrain, P., Henry, D., Berthelot, A., Charbonnier, J., Verrun, S., Franiatte, R., et
al. (2013). “3d integration of cmos image sensor with coprocessor using tsv last and
micro-bumps technologies,” in 2013 IEEE 63rd Electronic Components and Technology
Conference. Las Vegas: IEEE, 674–682.

Eggers, E. D., and Lukasiewicz, P. D. (2011). Multiple pathways of
inhibition shape bipolar cell responses in the retina. Vis. Neurosci. 28, 95–108.
doi: 10.1017/S0952523810000209

El Gamel, A. (2002). “Trends in CMOS image sensor technology
and design,” in Digest. International Electron Devices Meeting. 805–808.
doi: 10.1109/IEDM.2002.1175960

Etienne-Cummings, R., and Van der Spiegel, J. (1996). Neuromorphic vision
sensors. Sens. Actuators A: Phys. 56, 19–29. doi: 10.1016/0924-4247(96)01277-0

Frazor, R. A., and Geisler, W. S. (2006). Local luminance and contrast
in natural images. Vision Res. 46, 1585–1598. doi: 10.1016/j.visres.2005.
06.038

Goetz, J., Jessen, Z. F., Jacobi, A., Mani, A., Cooler, S., Greer, D., et al. (2022). Unified
classification of mouse retinal ganglion cells using function, morphology, and gene
expression. Cell Rep. 40, 111040. doi: 10.1016/j.celrep.2022.111040

Gollisch, T., and Meister, M. (2010). Eye smarter than scientists
believed: neural computations in circuits of the retina. Neuron 65, 150–164.
doi: 10.1016/j.neuron.2009.12.009

Gorss, J., and McGill, E. (2015). Globalfoundries Launches Industry’s First 22nm
fd-soi Technology Platform: Globalfoundries. Available online at: https://gf.com/gf-
press-release/globalfoundries-launches-industrys-first-22nm-fd-soi-technology-
platform/ (accessed 11 August, 2022).

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1241691
https://doi.org/10.1145/2463585.2463589
https://doi.org/10.1523/JNEUROSCI.4206-07.2008
https://doi.org/10.1109/JSEN.2016.2562638
https://www.cadence.com/en_US/home/company/newsroom/press-releases/pr/2022/cadence-library-characterization-solution-accelerates-delivery.html
https://www.cadence.com/en_US/home/company/newsroom/press-releases/pr/2022/cadence-library-characterization-solution-accelerates-delivery.html
https://doi.org/10.1016/j.conb.2011.12.009
https://doi.org/10.1117/12.592483
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/JSSC.2007.905295
https://doi.org/10.1017/S0952523810000209
https://doi.org/10.1109/IEDM.2002.1175960
https://doi.org/10.1016/0924-4247(96)01277-0
https://doi.org/10.1016/j.visres.2005.06.038
https://doi.org/10.1016/j.celrep.2022.111040
https://doi.org/10.1016/j.neuron.2009.12.009
https://gf.com/gf-press-release/globalfoundries-launches-industrys-first-22nm-fd-soi-technology-platform/
https://gf.com/gf-press-release/globalfoundries-launches-industrys-first-22nm-fd-soi-technology-platform/
https://gf.com/gf-press-release/globalfoundries-launches-industrys-first-22nm-fd-soi-technology-platform/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yin et al. 10.3389/fnins.2023.1241691

Ishikane, H., Gangi, M., Honda, S., and Tachibana, M. (2005). Synchronized retinal
oscillations encode essential information for escape behavior in frogs. Nat. Neurosci. 8,
1087–1095. doi: 10.1038/nn1497

Kaufmann, R., Isella, G., Sanchez-Amores, A., Neukom, S., Neels, A., Neumann, L.,
et al. (2011). Near infrared image sensor with integrated germanium photodiodes. J.
Appl. Phys. 110, 023107. doi: 10.1063/1.3608245

Kleinfelder, S., Lim, S., Liu, X., and El Gamal, A. (2001). A 10000 frames/s cmos
digital pixel sensor. IEEE J. Solid-State Circuits 36, 2049–2059. doi: 10.1109/4.972156

Lacaita, A. L., and Wouters, D. J. (2008). Phase-change memories. Physica Status
Solidi 205, 2281–2297. doi: 10.1002/pssa.200723561

Land, M. F. (2005). The optical structures of animal eyes. Curr. Biol. 15, R319–R323.
doi: 10.1016/j.cub.2005.04.041

Liao, F., Zhou, F., and Chai, Y. (2021). Neuromorphic vision
sensors: Principle, progress and perspectives. J. Semicond. 42, 013105.
doi: 10.1088/1674-4926/42/1/013105

Lichtsteiner, P., Posch, C., and Delbruck, T. (2006). “A 128 x 128 120db 30mw
asynchronous vision sensor that responds to relative intensity change,” in 2006 IEEE
International Solid State Circuits Conference-Digest of Technical Papers. San Francisco:
IEEE, 2060-2069.

Liu, S.-C., and Delbruck, T. (2010). Neuromorphic sensory systems. Curr. Opin.
Neurobiol. 20, 288–295. doi: 10.1016/j.conb.2010.03.007

Lue, H.-T., Wu, C.-J., and Tseng, T.-Y. (2002). Device modeling of ferroelectric
memory field-effect transistor (femfet). IEEE Trans. Electron Devices 49, 1790–1798.
doi: 10.1109/TED.2002.803626

Mead, C. A., and Mahowald, M. A. (1988). A silicon model of early visual
processing. Neural Netw. 1, 91–97. doi: 10.1016/0893-6080(88)90024-X

Münch, T. A., da Silveira, R. A., Siegert, S., Viney, T. J., Awatramani, G. B., and
Roska, B. (2009). Approach sensitivity in the retina processed by a multifunctional
neural circuit. Nat. Neurosci. 12, 1308–1316. doi: 10.1038/nn.2389

Okada, C., Uemura, K., Hung, L., Matsuura, K., Moue, T., Yamazaki, D.,
et al. (2021). “7.6 A high-speed back-illuminated stacked CMOS image sensor
with column-parallel kT/C-cancelling S&H and delta-sigma ADC,” in 2021 IEEE
International Solid- State Circuits Conference (ISSCC), Vol. 64 (IEEE), 116–118.
doi: 10.1109/ISSCC42613.2021.9366024

Pardo, F., Boluda, J. A., and Vegara, F. (2015). Selective change driven vision sensor
with continuous-time logarithmic photoreceptor and winner-take-all circuit for pixel
selection. IEEE J. Solid-State Circ. 50, 786–798. doi: 10.1109/JSSC.2014.2386899

Park, J., Park, S., Cho, K., Lee, T., Lee, C., Kim, D., et al. (2021). “7.9 1/2.74-
inch 32Mpixel-Prototype CMOS image sensor with 0.64µm unit pixels separated
by full-depth deep-trench isolation,” in 2021 IEEE International Solid- State Circuits
Conference (ISSCC), Vol. 64 (IEEE), 122–124. doi: 10.1109/ISSCC42613.2021.9365751

Peizerat, A., Rostaing, J.-P., Zitouni, N., Baier, N., Guellec, F., Jalby, R., et al.
(2012). “An 88dB SNR, 30µm pixel pitch Infra-Red image sensor with a 2-step
16 bit A/D conversion,” in 2012 Symposium on VLSI Circuits (VLSIC). 128–129.
doi: 10.1109/VLSIC.2012.6243823

Raymundo, F., Martin-Gonthier, P., Molina, R., Rolando, S., andMagnan, P. (2013).
“Exploring the 3d integration technology for cmos image sensors,” in 2013 IEEE
11th International Workshop of Electronics, Control, Measurement, Signals and their
application to Mechatronics. Toulouse: IEEE, 1–5.

Rodieck, R. (1998). The First Steps in Seeing. Sunderland: Sinauer.

Sasaki, M., Mase, M., Kawahito, S., and Tadokoro, Y. (2007). A wide-
dynamic-range cmos image sensor based on multiple short exposure-time
readout with multiple-resolution column-parallel adc. IEEE Sens. J. 7, 151–158.
doi: 10.1109/JSEN.2006.888058

Schanz, M., Nitta, C., Bußmann, A., Hosticka, B. J., and Wertheimer, R. K. (2000).
A high-dynamic-range cmos image sensor for automotive applications. IEEE J. Solid-
State Circuits 35, 932–938. doi: 10.1109/4.848200

Schwartz, G. (2021). Retinal Computation. Cambridge: Academic Press.

Sernagor, E., Eglen, S. J., and Wong, R. O. (2001). Development of retinal
ganglion cell structure and function. Prog. Retin. Eye Res. 20, 139–174.
doi: 10.1016/S1350-9462(00)00024-0

Shilov, A. (2015). Globalfoundries Introduces 22nm fd-soi Process Technologies.
Available online at: https://www.kitguru.net/components/anton-shilov/
globalfoundries-introduces-22nm-fd-soi-process-technologies/ (accessed 11 August,
2022).

Son, B., Suh, Y., Kim, S., Jung, H., Kim, J.-S., Shin, C., et al. (2017). “640x48 dynamic
vision sensor with a 9 um pixel and 300 meps address-event representation,” in 2017
IEEE International Solid-State Circuits Conference (ISSCC), 66–67.

Temizer, I., Donovan, J. C., Baier, H., and Semmelhack, J. L. (2015). A visual
pathway for looming-evoked escape in larval zebrafish. Curr. Biol. 25, 1823–1834.
doi: 10.1016/j.cub.2015.06.002

Tseng, K.-C., and Parker, A. C. (2012). “A neuromorphic circuit that computes
differential motion,” in 2012 IEEE 55th International Midwest Symposium on Circuits
and Systems (MWSCAS). Boise, ID: IEEE, 89–92.

Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E. (2018). Deep
learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 7068349.
doi: 10.1155/2018/7068349

Wang, F., Li, E., De, L., Wu, Q., and Zhang, Y. (2021). Off-transient alpha
rgcs mediate looming triggered innate defensive response. Curr. Biol. 31:2263–2273.
doi: 10.1016/j.cub.2021.03.025

Xu, C., Shen, C., Wu, W., and Chan, M. (2005). Backside-illuminated lateral pin
photodiode for cmos image sensor on sos substrate. IEEE Trans. Electron Devices
52:1110–1115. doi: 10.1109/TED.2005.848106

Yan, W., Laboulaye, M. A., Tran, N. M., Whitney, I. E., Benhar, I., and Sanes, J.
R. (2020). Mouse retinal cell atlas: Molecular identification of over sixty amacrine cell
types. J. Neurosci. 40:5177–5195. doi: 10.1523/JNEUROSCI.0471-20.2020

Yilmaz, M., and Meister, M. (2013). Rapid innate defensive responses of mice to
looming visual stimuli. Curr. Biol. 23, 2011–2015. doi: 10.1016/j.cub.2013.08.015

Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., et al. (2020). “Bdd100k: A
diverse driving dataset for heterogeneous multitask learning,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Yu, Y., Kurnianggoro, L., and Jo, K.-H. (2019). Moving object detection for a
moving camera based on global motion compensation and adaptive background
model. Int. J. Cont. Automat. Syst. 17, 1866–1874. doi: 10.1007/s12555-018-0234-3

Zahoor, F., Azni Zulkifli, T. Z., and Khanday, F. A. (2020). Resistive random
access memory (rram): an overview of materials, switching mechanism, performance,
multilevel cell (mlc) storage, modeling, and applications. Nanoscale Res. Lett. 15, 1–26.
doi: 10.1186/s11671-020-03299-9

Zhang, J., Newman, J. P., Wang, X., Thakur, C. S., Rattray, J., Etienne-Cummings,
R., et al. (2020). A closed-loop, all-electronic pixel-wise adaptive imaging system for
high dynamic range videography. IEEE Trans. Circuits Syst. I: Regu Pap. 67, 1803–1814.
doi: 10.1109/TCSI.2020.2973396

Zhang, Y., Kim, I.-J., Sanes, J. R., and Meister, M. (2012). The most numerous
ganglion cell type of the mouse retina is a selective feature detector. Proc. Natl. Acad.
Sci. USA. 109, E2391–E2398. doi: 10.1073/pnas.1211547109

Zhu, M., He, T., and Lee, C. (2020). Technologies toward next generation human
machine interfaces: From machine learning enhanced tactile sensing to neuromorphic
sensory systems. Appl. Phys. Rev. 7, 031305. doi: 10.1063/5.0016485

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1241691
https://doi.org/10.1038/nn1497
https://doi.org/10.1063/1.3608245
https://doi.org/10.1109/4.972156
https://doi.org/10.1002/pssa.200723561
https://doi.org/10.1016/j.cub.2005.04.041
https://doi.org/10.1088/1674-4926/42/1/013105
https://doi.org/10.1016/j.conb.2010.03.007
https://doi.org/10.1109/TED.2002.803626
https://doi.org/10.1016/0893-6080(88)90024-X
https://doi.org/10.1038/nn.2389
https://doi.org/10.1109/ISSCC42613.2021.9366024
https://doi.org/10.1109/JSSC.2014.2386899
https://doi.org/10.1109/ISSCC42613.2021.9365751
https://doi.org/10.1109/VLSIC.2012.6243823
https://doi.org/10.1109/JSEN.2006.888058
https://doi.org/10.1109/4.848200
https://doi.org/10.1016/S1350-9462(00)00024-0
https://www.kitguru.net/components/anton-shilov/globalfoundries-introduces-22nm-fd-soi-process-technologies/
https://www.kitguru.net/components/anton-shilov/globalfoundries-introduces-22nm-fd-soi-process-technologies/
https://doi.org/10.1016/j.cub.2015.06.002
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1016/j.cub.2021.03.025
https://doi.org/10.1109/TED.2005.848106
https://doi.org/10.1523/JNEUROSCI.0471-20.2020
https://doi.org/10.1016/j.cub.2013.08.015
https://doi.org/10.1007/s12555-018-0234-3
https://doi.org/10.1186/s11671-020-03299-9
https://doi.org/10.1109/TCSI.2020.2973396
https://doi.org/10.1073/pnas.1211547109
https://doi.org/10.1063/5.0016485
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	IRIS: Integrated Retinal Functionality in Image Sensors
	1. Introduction
	2. Materials and methods
	3. Result
	3.1. Algorithmic implementation of retinal computations
	3.2. Embedding OMS functionality in image sensors
	3.2.1. Proposed contrast-change detection circuit
	3.2.2. Proposed OMS-feature-spike generation circuit
	3.2.3. Results: OMS feature-extraction circuit simulations and variation analysis

	3.3. Embedding LD functionality in image sensors 
	3.3.1. LD circuit implementation
	3.3.2. Results: LD feature-extraction circuit simulations and variation analysis


	4. Discussions: future work and broader impact
	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


