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Parkinson’s disease (PD) is a clinically heterogeneous disorder, which mainly 
affects patients’ motor and non-motor function. Functional connectivity was 
preliminary explored and studied through resting state functional magnetic 
resonance imaging (rsfMRI). Through the topological analysis of 54 PD scans and 
31 age-matched normal controls (NC) in the Neurocon dataset, leveraging on 
rsfMRI data, the brain functional connection and the Vietoris-Rips (VR) complex 
were constructed. The barcodes of the complex were calculated to reflect the 
changes of functional connectivity neural circuits (FCNC) in brain network. The 
0-dimensional Betti number β0 means the number of connected branches in VR 
complex. The average number of connected branches in PD group was greater 
than that in NC group when the threshold δ  ≤  0.7. Two-sample Mann–Whitney U 
test and false discovery rate (FDR) correction were used for statistical analysis to 
investigate the FCNC changes between PD and NC groups. In PD group, under 
threshold of 0.7, the number of FCNC involved was significantly differences and 
these brain regions include the Cuneus_R, Lingual_R, Fusiform_R and Heschl_R. 
There are also significant differences in brain regions in the Frontal_Inf_Orb_R 
and Pallidum_R, when the threshold increased to 0.8 and 0.9 (p  <  0.05). In 
addition, when the length of FCNC was medium, there was a significant statistical 
difference between the PD group and the NC group in the Neurocon dataset and 
the Parkinson’s Progression Markers Initiative (PPMI) dataset. Topological analysis 
based on rsfMRI data may provide comprehensive information about the changes 
of FCNC and may provide an alternative for clinical differential diagnosis.
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1. Introduction

Parkinson’s disease (PD) is a clinically degenerative disorder disease of the nervous system 
with motor and non-motor symptoms. The disease mainly affects people’s motor function, such 
as bradykinesia, tremor, muscle stiffness or rigidity, abnormal walking gait, etc. In addition, it 
will also affect non-motor function, such as cognitive impairment, insomnia, depression, 
autonomic nerve dysfunction, and so on. The cause of PD is unclear. In the early premotor 
stages, the diagnosis of this disease is still difficult (Aarsland et al., 2017). Anatomical magnetic 
resonance imaging could not detect the loss of dopamine neurons. With the development of 
molecular biology, neural structure, and functional imaging technology, more and more 
biomarkers of PD can be  discovered, providing the possibility for early diagnosis, disease 
monitoring, and differential diagnosis, thus achieving accurate early intervention and efficacy 
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evaluation of the disease. Dopamine transporter single photon 
emission computed tomography (DAT-SPECT) and resting state 
functional magnetic resonance imaging (rsfMRI) are potential 
techniques for detecting the survival status of neurons in PD (Wang 
et  al., 2012). Among them, DAT-SPECT can provide quantitative 
information about dopamine neurons, which is very useful for 
assessing disease severity and monitoring treatment effectiveness. 
However, it is expensive and carries the risk of radioactive tracer. On 
the other hand, rsfMRI is a non-invasive imaging technique that is 
relatively inexpensive and can avoid ionizing radiation. It can provide 
information about brain activity, which is very useful for studying the 
neural mechanisms of PD and evaluating treatment effectiveness.

Therefore, the study of functional connectivity (FC) based on 
rsfMRI is a promising method. Based on the correlation of time series, 
FC was preliminary explored and studied through rsfMRI (Aarsland 
et  al., 2017). With rsfMRI, FC can be  used to detect a variety of 
diseases such as Alzheimer’s disease, PD, schizophrenia, and so on 
(Lee et al., 2013). Some studies have shown that motor and cognitive 
impairment in PD are related to abnormal functional connections 
(Putcha et  al., 2015; Zhang et  al., 2015). Graph theory-based 
approaches used in PD research have shown that topological 
properties of brain networks are disrupted, which can help identify 
this type of disease (Luo et al., 2015). Specifically, abnormal local and 
global network efficiency changes suggest clinical phenomena in 
PD. The above methods assume that the functional network is stable 
and does not change over time. A dynamic FC based method was used 
in recent research. For example, previous studies used rsfMRI and 
sliding windows to assess differences in dynamic connectivity between 
normal control (NC) and PD (Kim et al., 2017). Huang et al. (2020) 
proposed a regression method to model the dynamic correlation 
matrices as a linear combination of symmetric positive definite matrix 
to smooth the image acquisition and physiological noise. Pang et al. 
(2021) distinguished different motor subtypes of PD based on 
multilevel indices of rsfMRI and Support Vector Machine (SVM).

However, the graph theory analysis method can not describe the 
characteristics of higher-level complex brain networks. To study the 
topological characteristics of complex brain networks on a larger scale, 
researchers began to study Vietoris-Rips (VR) complex filtration 
based on persistent homology in brain networks. In topological data 
analysis (TDA), persistent homology is an effective tool to explore the 
nonlinear structure of the data. Compared with the common methods 
such as principal component analysis (PCA), cluster analysis, and 
graph theory (Li et  al., 2009), TDA can effectively capture the 
topological information of high-dimensional data space. This kind of 
algorithm adopts a free threshold and solves the problem of threshold 
selection. It measures the topological characteristics of brain network 
under all possible thresholds (Choi et al., 2014; Chung et al., 2015; Lee 
et al., 2017). These approaches mainly associate the 0-dimensional 
Betti numbers β0 with current varying thresholds. A connected 
component-based aggregation cost model called Integrated 
Persistence Features (IPF) was proposed in previous research (Kuang 
et al., 2019). Different from the above persistent homology feature 
which based on 0-dimensional Betti numbers, this paper proposes a 
persistent homology feature based on the 1-dimensional Betti number 
β1. To our knowledge, there is little literature investigating the 
1-dimensional Betti number β1 in PD. Our main contributions of this 
paper are as follows: (1) The VR complex filtering model was 
established based on the relationship matrix of the human brain 
network. The persistent homology method was used to calculate VR 

filtered barcodes. And then the functional connectivity neural circuits 
(FCNC) at different thresholds are calculated from the barcodes. (2) 
Two-sample Mann–Whitney U test and FDR correction are used for 
statistical analysis to investigate the FCNC changes between PD and 
NC groups. (3) Through the statistical tests on the number of FCNC 
in PD and NC groups, our results show that there is a significant 
statistical difference between the PD group and the NC group.

2. Method

2.1. Basic concepts about persistent 
homology

The common method to reduce the dimension of data is PCA, but 
this method will lose some potentially valuable data more or less. 
Persistent homology provides us a method to find a complete data 
ship without dimensional reduction.

Persistent homology is an effective tool to analyze high-
dimensional data and explore the nonlinear structure of data. It can 
calculate topological features at different spatial resolutions. By 
identifying persistent topological features over changing scales, 
persistent homology provides clues for effective analysis of multi-scale 
networks. Its core idea is to analyze the birth and death of holes in 
various dimensions in a multi-scale range. To extract persistent 
homology features, we first need to construct VR complex. Let d(·, ·) 
denote the distance between two points in the metric space Z. The 
value of δ denotes the threshold. When we change the threshold, 
we obtain a sequence of complexes. The VR(Z, δ) complex is defined 
as follows (Silva and Carlsson, 2004):

 1. For vertices a and b, edge [ab] is included in VR(Z, δ) if 
d(a,b) ≤ δ.

 2. A higher dimensional simplex is included in VR(Z, δ) if all of 
its edges are included in it.

Note that VR(Z, δ0) ⊆ VR(Z, δ1) ⊆ · · · ⊆ VR(Z, δn), for δ0 ≤ δ1 ≤ · · · 
≤ δn. Therefore, the VR complex VR(X, δi) (i = 0, 1, · · ·, n) is a filtered 
simplicial complex.

Betti intervals help describe how the homology of VR(Z, δ) 
changes with δ. A k-dimensional Betti interval, with endpoints (δstart, 
δend), corresponds roughly to a k-dimensional hole that appears at the 
threshold δstart, remains open for δstart ≤ δ < δend, and closes at δend.

The rank of the homology group is called Betti number (Woo 
et al., 2014), which is a set of important topological invariants. It uses 
the connectivity based on k-dimensional simplex complex to 
distinguish the topological space, which can well reflect the topological 
structure of an object. The k-dimensional Betti number is the rank of 
the k-th homology group and represents the number of “holes” in the 
k-th dimension. For example, the 0-dimensional Betti number β0 
refers to the number of connected branches (Lee et  al., 2012). 
Similarly, the one-dimensional Betti number β1 intuitively represents 
the number of one-dimensional “holes.”

2.2. An example of persistent homology

Figure 1 gives an example of Betti number changes with δ = 1.4, 
5.2, 6.3, and 8.5, respectively. Take 10 points randomly and draw a 
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circle centered on these points and radius of the threshold δ/2. In 
the process of increasing the threshold δ from 0 to the maximum, 
the 0-dimensional and 1-dimensional Betti numbers change 
constantly. When δ = 1.4, the number of connected branches is 10, 
that means β0 = 10 and the number of 1-dimensional “holes” β1 = 0 
(Figure 1A). In Figure 1B, when δ = 5.2, β0 = 1 and β1 = 0. As the 
threshold δ increase, when δ = 6.3 (Figure 1C), β0 = 1 and β1 = 1. 
When δ = 8.5, some holes are “filled.” At this time, there is only one 
connected branches (β0 = 1) and one 1-dimensional “holes” (β1 = 0) 
(Figure 1D).

With the change of the threshold δ, the topological 
characteristics of VR complex change. This process can 
be represented by a barcode and a persistence diagram (Figure 2). 
As shown in Figure 2A, a barcode is a set of finite intervals. Each 
interval represents the birth and death of holes in the corresponding 
dimension, and these intervals are parallel to each other. 
K-dimensional barcodes (k = 0, 1 in Figure 2A) show us the duration 
of k-dimensional topological features. Generally, we  regard the 
features with very short duration as noise, and the features with long 
duration as real signal features. In Figure 2B, the persistence diagram 
provides a multi-scale feature description. The abscissa of each point 
in the diagram represents the birth of the topological feature, while 

the ordinate represents its demise. Points away from the diagonal 
represent features with a long life cycle, while points close to the 
diagonal represent features with a short life cycle. Among them, the 
feature that can be  maintained for a longer time is a useful 
persistence feature with stronger robustness. The feature with short 
life is more likely to be noise or detail. The red vertical line on the 
ordinate axis is regarded as a point at infinity, representing a 
topological feature that will never die.

3. Results

3.1. Dataset and preprocessing

The datasets used in this article are the Neurocon dataset (Badea 
et al., 2017) and Parkinson’s Progression Markers Initiative (PPMI) 
dataset (Marek et al., 2011). The Neurocon dataset includes rsfMRI 
data from 27 PD patients and 16 age matched NC patients, with each 
subject undergoing 2 repeated scans. One NC scan was subsequently 
excluded owing to data corruption. Finally, 54 PD scans and 31 NC 
scans were included in the final analyses. The Neurocon study has 
been approved by the Ethics Committee of the Emergency Hospital of 

FIGURE 1

An example of VR complex. Betti number changes with (A–D): δ  =  1.4, 5.2, 6.3, and 8.5, respectively.
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the University of Bucharest and is in line with the Helsinki Declaration 
1964 and its later revised ethical standards (Badea et al., 2017). The 
scanner is Siemens AVanto 1.5 T, Scan time = 8.05 min, TR = 3.48 s, 
Voxel = 3.8 × 3.8 × 5 mm3, volume = 137. Each rsfMRI consists of 2 mm 
isotropic voxels and 1,200 time points over a 14 min, 33 s scanning 
session. The details of the Neurocon dataset are shown in Table 1. 
Retrieve rsfMRI data from the PPMI dataset for 154 PD patients and 
24 age matched NC patients. Each study in the PPMI dataset was 
approved by the Human Experimental Ethics Standards Committee 
before registration, and each subject signed a written informed 
consent form. This study obtained the right to use the PPMI 
database data.

The Neurocon dataset is preprocessed using DPABI (DPABI 
Software Library v5.1) (Yan et al., 2016) as follows:

 1. Removing the first 10 time points of rsfMRI data to obtain a 
stable signal;

 2. Time correction is performed on each slice to ensure that the 
data on each slice corresponds to the same time;

 3. Realign: eliminate the data with the maximum value of 
translation greater than 3 mm and the maximum value of 
rotation greater than 3°;

 4. Registration of structural image to functional image space. Use 
anatomical T1 images to register to the standard Montreal 
Institute of Neurology MNI152 template;

 5. Check the coverage of function image by Automask;
 6. Bandpass filtering with a frequency of 0.01 ~ 0.1 Hz is set;
 7. Normalize using EPI templates;
 8. Extract region of interest (ROI) time courses using Anatomical 

Automatic Labeling (AAL) atlas.

The brain parcellation used in this paper is the AAL brain 
template (Tzourio-Mazoyer et al., 2002). There are 116 regions in the 
AAL template, 90 belonging to the brain, and the remaining 26 
belong to the cerebellar structure. There are few studies on the 
cerebellum. In this paper, the classical AAL template of 90 brain 
regions is used to construct VR complex.

3.2. Constructing VR complex

Firstly, we preprocess the rsfMRI image as described above, and 
then calculate the FC between the 90 brain regions in the AAL template. 
Pearson correlation is probably the most commonly used scheme for 
calculating functional connections (Valdes-Sosa et al., 2011). We also 
use the Pearson correlation coefficient between vertices to construct the 
FC matrix in this work. FC is defined as the temporal correlation of 
brain region. For convenience, we defined P(j) = {P1(j), P2(j), · · ·, Pn(j)} 
(j = 1, 2, · · ·, 90) as the average time signal sequence of the j-th brain 
regions, and n is the total number of time series. The FC matrix M = (mij) 
(i, j = 1, 2, · · ·, 90) is calculated using equation (1):
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To construct VR complex, we defined the distance between each 
two vertices using equation (2):

TABLE 1 The details of the Neurocon dataset.

Dataset PD 
subjects

NC 
subjects

PD 
scans

NC 
scans

Age PD 
(mean  ±  SD)

Age NC 
(mean  ±  SD)

P (age 
NC-
PD)

H&Y 
(mean  ±  SD)

Disease 
duration 

(mean  ±  SD)

Neurocon 27 (16 M) 16 (5 M) 54 31 68.7 ± 10.6 67.6 ± 11.9 0.76 1.92 ± 0.33 4.6 ± 6.5

SD, standard deviation; H&Y, Hoehn and Yahr; PD, Parkinson’s disease; NC, normal controls.

FIGURE 2

Barcodes and persistence graph. (A) Barcodes. (B) Persistence diagram.
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(2)

For each value, the nested complex 
VR Z VR Z VR Z n, , ,δ δ δ0 1( ) ⊆ ( ) ⊆ ⊆ ( )  is constructed. Thus, a VR 
complex was further established for each subject. The VR complex 
take three inputs: the maximum dimension dmax of any included 
simplex, the maximum filtration value tmax, and the number of 
divisions. In our experiments, the maximum dimension dmax = 2, 
which means we construct 0-dimensional simplex and 1-dimensional 
simplex. The maximum filtration value tmax = 0.9 and the number of 
division is set to 450.

4. Discussion

The VR complex is established under multiple scales. The 
0-dimensional Betti number β0 and the 1-dimensional Betti number 
β1 under each scale are calculated using Javaplex software. Figure 3 
plots show the 0-dimensional and 1-dimensional Betti number curves 
between PD and NC. As depicted from the 0-dimensional Betti 
number diagram (Figure 3A), with the increase of threshold δ, the 
number of connected branches of PD and NC gradually decrease from 
the initial 90. Until the threshold δ = 0.7, they tend to be consistent and 
gradually decreased to 1. But β0 in PD is always greater than that in 

NC when δ ≤ 0.7. In the 1-dimensional Betti number curves 
(Figure  3B), the topological features was significantly different 
between the PD brain network and the NC brain network under 
different thresholds.

In Table 2, two sample Kolmogorov Smirnov (K-S) tests were also 
conducted from Figures 3A,B to compare whether there is a significant 
difference in distribution between the PD group and the NC group. 
From Table 2, it can be seen that the maximum absolute differences in 
the cumulative probability of Betti numbers in 0-dimension and 
1-dimension are 0.049 and 0.082, respectively. Assuming a significance 
level of 0.05, as the probability p-values (both 0.000) are less than the 
significance level, it can be  concluded that there is a significant 
difference in the Betti number curve between the PD group and the 
NC group, regardless of whether it is 0-dimensional or 1-dimensional. 
Therefore, by comparing the Betti numbers at all scales, the differences 
between these two groups can be detected.

To more intuitively show the difference between PD and NC 
groups, comparison of the 1-dimention FCNC in the PD group and 
the NC group with δ = 0.4  in the Neurocon dataset are shown in 
Figure 4. Among them, the coronal and sagittal views are shown in 
Figure  4A and Figure  4B respectively, and their corresponding 
relationship matrices are given in Figure 4C. Note that, the different 
colors in Figure 4 only represent different FCNC.

The number of FCNC in 90 brain regions was analyzed and a 
histogram was drawn in Figure 5. It can be seen intuitively, the average 

FIGURE 3

Betti number curves of PD and NC groups in 0 and 1 dimensions. (A) The 0-dimensional Betti number diagram. (B) The 1-dimensional Betti number 
diagram.

TABLE 2 Two-sample K-S tests.

0-dimension 1-dimension

Extreme difference Absolute 0.049 0.082

Positive 0.049 0.082

Negative −0.038 −0.058

Kolmogorov Sminov Z 3.451 5.819

Asymptotic significance (double tailed) 0.000 0.000

0-dimension and 1-dimension represents PD and NC samples of different dimensions separately.
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number of FCNC in PD and NC groups is significantly different in 
some brain regions. To further analyze these differences, the mean and 
standard deviation of the number of FCNC in each brain region were 
calculated for the PD and NC groups under thresholds of 0.7, 0.8, and 
0.9  in Neurocon dataset, respectively. Then, two sample Mann 
Whitney U test and false discovery rate (FDR) correction were 
performed to detect differences between the two groups. The brain 

regions with statistical differences are shown in Table 3. In PD group, 
under threshold of 0.7, the number of FCNC involved was significantly 
differences and these brain regions include the Cuneus_R, Lingual_R, 
Fusiform_R and Heschl_R. In addition to the aforementioned brain 
regions, there are also significant differences in brain regions in the 
Frontal_Inf_Orb_R and Pallidum_R, when the threshold increases to 
0.8 and 0.9 (p < 0.05 and FDR correction).

FIGURE 4

Comparison of the FCNC in the PD group and the NC group with δ  =  0.4 in the Neurocon dataset. (A) Coronal view. (B) Sagittal view. (C) The relation 
matrix. The first row: the FCNC in the PD group. The second row: the FCNC in the NC group. Different colors are just for the purpose of easy 
observation.
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FIGURE 5

Comparison of the average number of FCNC between PD and NC groups in AAL 90 brain regions.
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We also analyzed the statistical differences in the number of 
FCNC with medium lengths in the Neurocon and PPMI datasets 
(Table  4). From Table  4, it can be  seen that there is a significant 
difference between the PD group and the NC group for medium 
length of FCNC. Specifically, at thresholds of 0.8 and 0.9, there was a 
significant difference between the two groups in the Neurocon 
dataset (length = 8). When the thresholds are 0.7, 0.8, and 0.9, there 

was a significant difference between the two groups in the PPMI 
dataset (length = 9). All results were corrected through FDR 
correction. In these two datasets, at different thresholds, the mean of 
the PD group is always greater than that of the NC group.

At different thresholds, we can also visually see the significant 
differences between the two groups through the box-plot in the 
Neurocon dataset. From the box-plot Figure 6, it can be seen that 

TABLE 3 Statistically significant differences in the numbers of FCNC in the involved brain regions.

Brain regions Threshold
PD (n  =  54) 
mean  ±  SD

NC (n  =  31) 
mean  ±  SD

P-value
q-value (FDR-

corrected)

Precentral_L 0.7 4.43 ± 3.611 3.03 ± 3.125 0.046*↓ 0.0520

0.8 6.07 ± 4.138 4.45 ± 3.075 0.039*↓ 0.0520

0.9 6.07 ± 4.138 4.52 ± 3.086 0.052 0.0520

Frontal_Inf_Orb_R 0.7 2.96 ± 2.747 3.97 ± 3.516 0.192 0.1920

0.8 4.07 ± 3.392 5.74 ± 3.235 0.014*↓ 0.0210*↓

0.9 4.09 ± 3.388 5.81 ± 3.301 0.013*↓ 0.0210*↓

Olfactory_R 0.7 0.63 ± 0.938 0.74 ± 0.999 0.672 0.6720

0.8 1.81 ± 1.802 1.06 ± 1.181 0.059 0.0885

0.9 1.91 ± 1.896 1.06 ± 1.181 0.043*↓ 0.0885

Cuneus_R 0.7 2.15 ± 2.184 3.68 ± 2.774 0.008*↓ 0.0210*↓

0.8 2.91 ± 2.742 4.65 ± 3.431 0.018*↓ 0.0210*↓

0.9 2.93 ± 2.739 4.65 ± 3.431 0.021*↓ 0.0210*↓

Lingual_R 0.7 1.81 ± 2.019 3.35 ± 3.251 0.035*↓ 0.0350*↓

0.8 2.33 ± 2.181 4.06 ± 3.255 0.010*↓ 0.0150*↓

0.9 2.35 ± 2.173 4.13 ± 3.274 0.008*↓ 0.0150*↓

Occipital_Inf_R 0.7 0.98 ± 1.173 1.42 ± 1.205 0.041*↓ 0.1230

0.8 1.56 ± 1.690 1.77 ± 1.499 0.293 0.2930

0.9 1.56 ± 1.690 1.77 ± 1.499 0.293 0.2930

Fusiform_R 0.7 2.35 ± 2.147 3.90 ± 2.508 0.003*↓ 0.006*↓

0.8 2.85 ± 2.227 4.68 ± 3.113 0.006*↓ 0.006*↓

0.9 2.85 ± 2.227 4.71 ± 3.090 0.005*↓ 0.006*↓

Pallidum_R 0.7 0.43 ± 0.792 0.84 ± 1.293 0.085 0.0850

0.8 0.81 ± 1.065 1.52 ± 1.480 0.007*↓ 0.0150*↓

0.9 0.83 ± 1.077 1.52 ± 1.480 0.010*↓ 0.0150*↓

Heschl_R 0.7 1.19 ± 1.543 0.45 ± 0.675 0.013*↓ 0.027*↓

0.8 1.72 ± 1.857 1.06 ± 1.825 0.027*↓ 0.027*↓

0.9 1.72 ± 1.857 1.06 ± 1.825 0.027*↓ 0.027*↓

SD, standard deviation; FDR, false discovery rate; ∗↓ denotes (p < 0.05).

TABLE 4 Statistically significant difference between the two groups in the number of medium length of FCNCs.

Datasets Threshold value PD (mean  ±  SD) NC (mean  ±  SD) P-value
q-value (FDR-

corrected)

Neurocon 0.7 1.69 ± 1.286 1.30 ± 1.317 0.091 0.091

0.8 2.33 ± 1.454 1.63 ± 1.377 0.017 0.043*↓

0.9 2.330 ± 1.454 1.63 ± 1.377 0.029 0.043*↓

PPMI 0.7 1.14 ± 1.105 0.54 ± 0.977 0.004 0.008*↓

0.8 1.36 ± 1.159 0.75 ± 1.113 0.008 0.008*↓

0.9 1.38 ± 1.161 0.75 ± 1.113 0.007 0.008*↓

SD, standard deviation; FDR, false discovery rate; ∗↓ denotes (p < 0.05).
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when the threshold is 0.7, there is no significant difference in the 
median between the two groups. However, when the thresholds are 
increased to 0.8 and 0.9, the median of the PD group are significantly 
higher than that of the NC group. The above results show that there 
are significant differences in the characteristics of FCNC in some 
brain regions, and the medium length of FCNC in PD patients show 
significant changes.

According to the functional classification of the brain, Woo et al. 
(2014) divided the AAL brain regions into 7 sub networks. That is 
dorsal attention network (DAN), default mode network (DMN), the 
visual network (VSN), ventral attention network (VAN), limbic 
network (LBN), fronto parietal network (FPN) and somatomotor 
network (SMN) (Esposito et al., 2013; Baum et al., 2017).

By analyzing the FCNC, we found significant statistical difference 
in the Frontal_Inf_Orb, Cuneus, Lingual gyrus, Fusiform, Pallidum 
and Heschl areas. A similar result was obtained in previous studies 
regarding the function connectivity strength of the SMN and VAN 
(Caspers et al., 2021; Tsuboi et al., 2021) and our findings provide 
guidance for further studies on the pathogenesis of early 
PD. Interestingly, increases in FC within SMN (Pang et al., 2021) have 
been observed upon a dopaminergic challenge in PD patients. Both 
anterior central gyrus and transverse Nie gyrus belong to SMN. Caspers 
et  al. (2021) pointed out that PD is accompanied by the loss of 
functional connection of SMN, whether within the network or in the 
interaction with other networks. The lesions of globus pallidus can have 
symptoms such as increased muscle tension, decreased movement and 
static tremor (such as Parkinson’s syndrome). Globus pallidus plays an 
important role in the regulation of motor function. It is not only the 
relay nucleus between the caudate putamen (CPU) and subthalamic 
nucleus (STN), but also integrates the inhibitory afferent from CPU 
and the excitatory afferent from STN, neocortex and thalamus, thus 
affecting the efferent signal of basal ganglia (Esposito et al., 2013). 
Globus pallidus stimulation can be  used to improve the brain 
connectivity in order to treat advanced PD (Tsuboi et al., 2021).

5. Conclusion

This study applies persistent homology to the brain functional 
networks of PD. This work provides some new insights into the evolution 
of functional network in the progression of PD and may provide 
evidence for the study of preclinical biomarkers of PD. We observed that 

there are significant differences in the characteristics of FCNC in some 
brain regions, and the medium length of FCNC in PD patients show 
significant changes. Topological analysis based on rsfMRI data may 
provide comprehensive information about the changes of FCNC and 
may provide an alternative for clinical differential diagnosis.
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FIGURE 6

Box-plot comparison of the numbers of FCNC with length  =  8. The numbers of FCNC with length  =  8 when threshold  =  0.7 (A), 0.8 (B), and 0.9 (C), 
respectively.
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