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A brief exposure to toluene vapor 
alters the intrinsic excitability of 
D2 medium spiny neurons in the 
rat ventral striatum
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Although volatile organic solvents such as toluene are used for commercial 
and industrial uses, they are often voluntarily inhaled for their intoxicating and 
euphoric effects. Research into the effects of inhalants such as toluene on brain 
function have revealed actions on a variety of ligand-gated and voltage-activated 
ion channels involved in regulating neuronal excitability. Previous work from this 
laboratory has also shown that brief exposures to toluene vapor induce changes 
in the intrinsic excitability and synaptic transmission of neurons within the medial 
prefrontal cortex and ventral tegmental area that vary depending on projection 
target. In the present study, we recorded current-evoked spiking of medium spiny 
neurons (MSNs) in the nucleus accumbens (NAc) core and shell in adolescent 
rats exposed to an intoxicating concentration of toluene vapor. Compared to air 
controls, firing of NAc core MSNs in Sprague–Dawley rats was not altered 24  h 
after exposure to 10,500  ppm toluene vapor while spiking of NAc shell MSNs was 
enhanced at low current steps but reduced at higher current steps. When the 
rheobase current was used to putatively identify MSN subtypes, both “D1-like” 
and “D2-like” MSNs within the NAc shell but not core showed toluene-induced 
changes in firing. As toluene may itself have altered the rheobase resulting in 
misclassification of neuron subtype, we  conducted additional studies using 
adolescent D2-Cre rats infused with a Cre-dependent mCherry reporter virus. 
Following toluene vapor exposure, spiking of NAc shell D2+ MSNs was enhanced 
at low current steps but inhibited at higher currents as compared to air controls 
while there were no differences in the firing of NAc shell D2- MSNs. The toluene-
induced change in NAc D2+ shell MSN firing was accompanied by alterations 
in membrane resistance, rheobase, action potential rise time and height with 
no changes noted in D2- MSNs. Overall, these data add to a growing literature 
showing that brief exposures to intoxicating concentrations of toluene vapor 
causes selective alterations in the excitability of neurons within the addiction 
neurocircuitry that vary depending on sub-region, cell-type and projection target.
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Introduction

Volatile organic solvents such as toluene (methylbenzene) are 
found in a wide variety of industrial and household products such as 
paint thinners, adhesives and degreasers. In addition to these 
commercial uses, volatile organic solvents are often voluntarily 
inhaled to produce intoxication and feelings of euphoria (Balster, 
2019). Inhalant use is relatively common with over 26 million 
Americans reporting having used inhalants at least once over their 
lifetime with the highest prevalence among children and adolescents 
12–17 years old (SAMHSA, 2021). Inhalant use is also common 
worldwide with higher rates of use reported for street children 
(Praveen et al., 2012), native populations (Kaufman, 1973; Beauvais 
et al., 2002; Cairney et al., 2002; Vazan et al., 2011) and those living in 
rural, poor or isolated areas (Kann et al., 2016). While the use of 
inhalants usually declines with age (SAMHSA, 2021), exposure during 
childhood or adolescence increases the risk of developing a substance 
use disorder later in life (Wu and Ringwalt, 2006).

The mechanisms that drive the intoxicating and rewarding effects 
of toluene are not completely understood but likely reflect alterations 
in brain activity in areas involved in goal-directed behavior (reviewed 
by Cruz and Bowen, 2021; Woodward and Braunscheidel, 2023). For 
example, a brief exposure of adolescent rats to toluene vapor induced 
an increase in the AMPA/NMDA ratio of dopamine neurons in the 
ventral tegmental area (VTA) that project to the nucleus accumbens 
(NAc) but no change in those projecting to the medial prefrontal cortex 
(mPFC) similar to that reported for other abused drugs (Lammel et al., 
2011; Beckley et  al., 2013). Repeated exposures to toluene vapor 
induces a conditioned place preference (CPP) in rodents (Funada et al., 
2002; Wayman and Woodward, 2018a) while rats, mice and monkeys 
can learn to self-administer toluene vapor (Wood et al., 1977; Blokhina 
et al., 2004; Braunscheidel et al., 2020). In the CPP study from our 
laboratory, toluene exposure produced selective effects on the 
excitability of mPFC neurons projecting to different areas of the NAc 
and the expression of conditioned place preference was blocked by 
chemogenetic excitation of mPFC neurons that project to the NAc shell 
(Wayman and Woodward, 2018a). An important unanswered question 
is whether exposure to toluene vapor also alters the excitability of NAc 
neurons and whether this shows a similar degree of selectivity.

Over 95% of the neurons in the NAc are GABAergic medium 
spiny neurons (MSN) and these are equally divided between those 
that primarily express the D1 or the D2 dopamine receptor 
(Matamales et al., 2009). Both D1 and D2 MSNs are located in the 
core and shell of the nucleus accumbens and are thought to 
be critically involved in the control of motivated behavior including 
seeking and taking of rewarding substances (Allichon et al., 2021). In 
the present study, we  exposed adolescent rats to an intoxicating 
concentration of toluene vapor that mimics human solvent inhalation 
and measured the intrinsic excitability of NAc MSNs. As discussed 
below, toluene induced changes in the excitability of NAc shell but 
not core neurons and this was restricted to D2 MSNs.

Materials and methods

Animals

Two different strains of rats were used in the experiments 
described below. In the first study, we used male Sprague–Dawley rats 

purchased from Envigo RMS (Indianapolis, IN) that arrived at MUSC 
at post-natal day (PND) 21. The second study used male transgenic 
rats derived from a breeding colony established with hemizygous male 
and female D2-Cre rats generated on a Long-Evans background 
(RRRC #00768; Columbia, MO). Offspring were genotyped using tail 
snips obtained at PND 21 with primers for the Drd2 promoter 
(forward primer; 5’-TCA GGG AAC CCT CTT TGA GA-3′) and Cre 
recombinase (reverse primer; 5’-CAC AGT CAG CAG GTT GGA 
GA-3′). In both studies, rats were housed in pairs with free access to 
food and water in a temperature and humidity-controlled animal 
facility operated under a reverse 12 h light/dark cycle (Off 9:00 AM; 
On 9:00 PM). All studies were performed in accordance with protocols 
approved by the MUSC Institutional Animal Care and Use Committee.

Rat viral surgery

D2-Cre rats underwent stereotactic surgery at PND 28–30 to label 
D2 MSNs. Rats were initially anesthetized with 3% isoflurane and this 
was reduced to 1–2% isoflurane throughout the surgery. Body 
temperature was maintained with a heating pad. After mounting in a 
stereotaxic rig, rats were given an injection of carprofen (2.5 mg/kg, 
i.p.) and the Cre-dependent virus AAV1-hSyn-DIO-mCherry 
(Addgene #50459, Watertown, MA) was bilaterally infused (300 nL 
per side, 60 nL/min) into the ventral striatum (in mm from bregma: 
A/P + 2.0; M/L 0.8–1.4; D/V -6.0). Following the infusion, the injector 
was left in place for an additional 5 min to allow for diffusion of the 
virus. After surgery, the rat was returned to the housing facility and 
monitored until further use.

Toluene vapor exposure

Adolescent (PND 40–43) rats were exposed to air or toluene vapor 
in a dark gray anesthesia chamber (30x30x30 cm; Plas Labs, Lansing, 
MI) containing an inlet and outlet and a raised floor mounted 
approximately 2 cm above the bottom of the chamber. The chamber 
was located inside a chemical fume hood equipped with a light 
blocking curtain and an air flow of 100 cf. On day 1, rats were placed 
in the chamber for 1 hour with air supplied at a flow rate of 4 L/min 
and then returned to the housing facility. On day 2, rats received either 
a 1 h exposure to air (controls) or toluene (methlybenzene, Sigma-
Aldrich, St Louis, MO) and then were returned to the housing facility. 
For the toluene exposure, air was delivered to the chamber for the first 
10 min followed by two 10 min exposures to toluene vapor (10,500 ppm 
each) separated by a 10 min air purge and a final 20 min air washout. 
Toluene vapor was delivered to the chamber via a sevoflurane 
vaporizer and vapor concentrations within the chamber were verified 
using a portable toluene vapor detector (DOD Technologies, Cary, IL) 
as previously described (Wayman and Woodward, 2018b).

Slice electrophysiology

Twenty-four hours after the air or toluene vapor exposure, rats 
were anesthetized with urethane (3 mg/kg, i.p.). Coronal sections (260 
um) of the brain containing the ventral striatum were prepared with 
a Leica VT1200S vibratome (Leica Biosystems, Buffalo Grove, IL) 
using ice-cold, oxygenated (95% O2, 5% CO2) sucrose-substituted 
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cutting solution containing (in mm): 200 sucrose, 1.9 KCl, 6 MgSO4, 
1.4 NaH2PO4, 25 NaHCO3, 0.5 CaCl2, 10 glucose, and 0.4 ascorbic 
acid; pH 7.35–7.45 with 310–320 mOsm. Slices were then transferred 
to a holding chamber filled with oxygenated artificial cerebrospinal 
fluid (aCSF) containing (in mM): 125 NaCl, 2.5 KCl, 25 NaHCO3, 1.4 
NaH2PO4, 1.3 MgCl2, 2 CaCl2, and 10 glucose; pH 7.35–7.45, with 
310–320 mOsm (Beckley et al., 2013). Brain slices were incubated at 
34°C for 30 min and then held at room temperature until use.

For recordings, slices were transferred to a recording chamber and 
perfused with oxygenated and heated (~34°C) aCSF at a flow rate of 
3 mL/min using inline and bath heaters (Warner Instruments, 
Holliston, MA). Neurons within the ventral striatum were visualized 
using a Zeiss FS2 microscope (Zeiss, Thorndale, NY) equipped with 
fluorescent optics, infrared Dodt-gradient contrast illumination 
(Luigs and Neuman, Ratingen, Germany) and an infrared camera 
(IR-1000; Dage-MTI, Michigan City, IN). Pipettes were prepared from 
thin-wall borosilicate glass (OD = 1.5 mm, ID = 1.1 mm) on a Sutter 
P97 micropipette puller (Novato, CA) with tip resistances between 
2.5–5 megaohms. They were filled with recording solution consisting 
of (in mM): 120 K-gluconate, 10 HEPES, 10 KCl, 2 MgCl2, 2 Na2ATP, 
0.3 NaGTP, 1 EGTA and 0.2% biocytin; pH 7.35–7.45, and 
285–295 mOsm. A gigaohm seal was obtained under voltage-clamp 
mode followed by suction to achieve breakthrough and whole-cell 
access. Neurons were held at −80 mV and test pulses were given to 
determine membrane and series resistance. Neurons were not used if 
series resistance was initially greater than 20 mOhm or if it changed 
by more than 25% during the recording. The amplifier was switched 
to I = 0 mode to record resting membrane potential and then to 
current-clamp mode with current adjusted to bring the membrane 
potential to −80 mV. Resting membrane potentials were not corrected 
for the liquid junction potential error (~12.2 mV). Spike firing was 
induced by a series of current injections (0–440 pA; 750 msec each) 
delivered through the patch pipette. All recordings were performed 
using an Axon MultiClamp  700A amplifier (Molecular Devices, 
Union City, CA) and Instrutech ITC-18 analog-digital converter 
(HEKA Instruments, Bellmore, NY) controlled by AxographX 
software (Axograph, Sydney, Australia) running on a Macintosh G4 
computer (Apple, Cupertino, CA). Data were filtered at 4 kHz and 
acquired at a sampling rate of 10 kHz.

Data analysis

Recordings were analyzed for spike number and action potential 
(AP) parameters using AxographX software and included action 
potential height, rise-time, half-width, spike threshold and after-
hyperpolarization (AHP). AHP was measured as the difference 
between the spike threshold and the most negative potential during 
the hyperpolarization. All data are presented as mean ± SEM and were 
analyzed by Prism software (GraphPad, San Diego, CA) using two-way 
Anova and unpaired t-tests where indicated. Values were considered 
significantly different when p < 0.05.

Results

In the first study, adolescent (PND 41–44; Figure 1A timeline) 
male Sprague–Dawley rats were exposed to air or toluene vapor using 
a protocol that mimics human voluntary solvent inhalation. This 

consisted of two 10 min exposures to 10,500 ppm toluene vapor 
separated by a 10 min air exposure and a final 20 min air washout. 
Twenty-four hours later, animals were sacrificed and current-evoked 
action potentials (AP) were generated in medium spiny neurons 
located in the core and shell of the nucleus accumbens. As shown in 
Figure 1B, AP firing of NAc core neurons was similar between air and 
toluene exposed animals (RM two-way Anova F(1,53) = 0.052, p = 0.82) 
with AP number increasing as a function of the injected current. In 
contrast, there was a main effect of toluene exposure on NAc shell 
neuron firing (RM two-way Anova F(1,27) = 11.65, p = 0.002) with a 
leftward shift in the current-firing relationship of NAc shell neurons 
from toluene treated animals with reduced firing at higher current 
injections as neurons went into depolarization block (Figure 1C). 
When summed over all current injections, the total number of spikes 
generated by NAc shell MSNs from control animals was significantly 
greater than that from the toluene treated animals (mean ± sem; Air 
135.3 ± 18.7; Toluene 61.8 ± 10.58; t = 3.43, df = 26, p = 0.002, unpaired 

FIGURE 1

Exposure to toluene vapor alters the excitability of NAc neurons in 
adolescent Sprague–Dawley rats. (A) Schematic shows timeline of 
study and age of rats at toluene exposure and electrophysiology 
recordings. Inset shows approximate location of recordings for NAc 
core (blue dot) and shell (red dot) MSNs. Traces show examples of 
current evoked spiking of NAc core MSNs from air or toluene 
exposed rats. Scale bars: X-axis 0.1  s; Y-axis 10  mV. (B) Current 
evoked spiking of NAc core MSNs was not different between air and 
toluene exposed rats. (C) Toluene exposure enhanced current-
evoked spiking of NAc shell MSNs at low current steps and reduced 
spiking at higher current amplitudes as compared to air controls (RM 
two-way Anova F(1,27)  =  11.65, p  =  0.002). Data are presented as 
mean  ±  sem.
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t-test). NAc medium spiny neurons are classified into two major 
subtypes based on their expression of D1 or D2 dopamine receptors 
(Matamales et  al., 2009). In a previous study, we  showed that the 
subtype of an MSN in the adolescent rat NAc could be putatively 
assigned based on electrophysiology parameters with D1 MSNs 
requiring less current to begin firing (measured as the rheobase) than 
D2 MSNs (Beckley et  al., 2016). Using this method, we  classified 
MSNs as “D1-like” when firing was induced at currents less than 180 
pA (NAc core) or 200 pA (NAc shell) while those having a rheobase 
higher than these values were classified as “D2-like.” We then replotted 
the air and toluene current-spiking curves for “D1-like” and “D2-like” 
MSNs for NAc core and NAc shell. As shown in Figure 2A, toluene 
had no effect on AP firing in NAc core “D1-like” MSNs (RM two-way 
Anova F(1,26) = 0.002, p = 0.96) and produced a small but statistically 
insignificant increase in firing of NAc core “D2-like” neurons (RM 
two-way Anova F(1,21) = 3.11, p = 0.09; Figure 2B). In the NAc shell, this 
classification scheme showed that “D1-like” MSNs from toluene 
exposed rats had a reduced rheobase but less overall spiking than 
controls (RM two-way Anova F(1,14) = 8.22, p = 0.012; Figure 2C) while 
“D2-like” MSNs showed a significant reduction in spiking with no 
change in rheobase (RM two-way Anova F(1,15) = 9.76, p = 0.007; 
Figure 2D).

A limitation to this classification scheme is the possibility that 
toluene exposure may itself produce a change in the rheobase that 
would result in mislabeling of MSNs as D1 or D2. To address this 
issue, we  conducted additional studies using rats that express 
Cre-recombinase under control of the D2 dopamine receptor 
promoter. To visually identify MSN subtypes in these animals during 
recordings, we infused an AAV virus containing a floxed mCherry 
reporter and targeted the NAc shell based on findings obtained with 
the Sprague–Dawley rats. After recovery, rats were exposed to air or 
toluene vapor at PND 40–43 and recordings were performed as 
described above (Figure 3A timeline). Recordings targeted mCherry 
positive (termed D2+ MSNs) and negative (termed D2- MSNs) 
neurons located adjacent to one another and were interleaved during 
daily recording sessions to ensure that experimental conditions were 
similar for both cell types. Current evoked firing of MSNs in air 
treated animals showed the expected difference in rheobase with D2+ 
MSNs requiring approximately twice as much current to begin firing 
than D2- MSNs. In NAc shell D2+ neurons, there was a main effect of 
toluene vapor exposure on current-induced firing (RM two-way 
Anova F(1,17) = 10.55, p = 0.0047) with a leftward shift in current-
evoked firing that was accompanied by reduced spiking at higher 
current injections as compared to the air controls (Figure  3B). 
Summing over all current injections, the total number of spikes 
generated by NAc shell D2+ MSNs from control animals was 
significantly greater than that from the toluene treated animals 
(mean ± sem; Air 136.4 ± 18.1; Toluene 71.1 ± 16.4; t = 2.63, df = 15, 
p = 0.019, unpaired t-test). Spike firing of NAc shell D2- MSNs from 
air treated rats displayed a prominent biphasic current-spiking 
relationship with enhanced firing during initial current steps followed 
by reduced firing at higher current injections as neurons went into 
depolarization block (Figure 3C). A similar pattern was observed for 
D2- MSNs from toluene exposed animals and this was not different 
from the air controls.

To assess whether toluene exposure induced any changes in basic 
neuronal properties and action potential characteristics, we measured 
a variety of electrophysiological parameters using recordings with 

current steps that generated 4–5 spikes. As shown in Figure 4, toluene 
exposure increased the input resistance (unpaired t-test; t = 2.35, 
df = 22, p = 0.028) and decreased the rheobase (unpaired t-test; t = 2.30, 
df = 17, p = 0.035) of NAc shell D2+ MSNs as compared to air controls 
with no change in resting membrane potential or AP threshold. 
Toluene exposure also increased the AP rise time (unpaired t-test; 
t = 2.83, df = 16, p = 0.012) and reduced total AP height (unpaired 
t-test; t = 2.62, df = 17, p = 0.018) in NAc shell D2+ MSNs but had no 
effect on AP width after-hyperpolarization (AHP). Figure 5 shows the 

FIGURE 2

Effects of toluene vapor exposure on “D1-like” and “D2-like” MSNs in 
the NAc core and shell of adolescent Sprague–Dawley rats. MSNs 
were classified as “D1-like” or “D2-like” based on their rheobase (see 
Results section for details). Toluene exposure had no significant 
effect on spiking of NAc core “D1-like” (A) or “D2-like” (B) MSNs. 
(C) Compared to air controls, exposure to toluene vapor enhanced 
spiking of NAc shell “D1-like” MSNs at low current steps and reduced 
spiking at higher current steps (RM two-way Anova F(1,14)  =  8.22, 
p  =  0.012). (D) Toluene vapor reduced spiking of NAc shell “D2-like” 
MSNs (RM two-way Anova F(1,15)  =  9.76, p  =  0.007). Data are 
presented as mean  ±  sem.
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neuronal properties and AP characteristics of NAc shell D2- MSNs 
from air or toluene treated rats. Consistent with the findings from the 
current-evoked firing recordings, there were no significant differences 
in electrophysiological parameters of NAc shell D2- MSNs between 
air and toluene treated animals.

Discussion

The major finding of this study is that a brief exposure to a 
binge-like concentration of toluene vapor that mimics voluntary 

inhalant use in humans alters the excitability of NAc medium spiny 
neurons in a sub-region and cell-type dependent manner. In 
Sprague–Dawley rats, toluene vapor had no effect on the excitability 
of MSNs in the NAc core but produced a leftward and downward 
shift in the intrinsic excitability of MSNs in the NAc shell. Using 
D2-Cre reporter rats, this effect was found to be restricted to NAc 
shell D2+ MSNs and was accompanied by changes in 
electrophysiological parameters recorded from these neurons. 
These findings are consistent with and add to findings from previous 
studies reporting selective effects of toluene on neurons within the 
addiction neurocircuitry that vary based on brain region, neuronal 

FIGURE 3

Exposure to toluene vapor alters the excitability of NAc shell D2+ MSNs in adolescent D2-Cre Long-Evans rats. (A) Schematic shows timeline of study 
and age of rats at viral surgery, toluene exposure and electrophysiology recordings. Inset shows approximate location of recordings for NAc shell MSNs 
(red dot). Traces show examples of current evoked spiking of NAc shell D2+ MSNs from air or toluene exposed rats. (B) Compared to air controls, 
toluene exposure increased firing of D2+ MSNs at low current steps and reduced spiking at higher current steps (RM two-way Anova F(1,17)  =  10.55, 
p  =  0.0047). (C) Toluene vapor had no effect on current-evoked spiking of NAc shell D2- MSNs. Data are presented as mean  ±  sem.
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cell-type and projection target (Beckley et al., 2016; Wayman and 
Woodward, 2018b).

The mechanism underlying the selective effect of toluene on D2+ 
MSN intrinsic excitability observed in this study is currently 
unknown. In a previous study, a brief bath application of 0.3 or 3 mM 
toluene had minimal effects on current-evoked firing of NAc MSNs 
although those recordings primarily targeted neurons located in the 
NAc core (Beckley et al., 2016). Toluene, at 3 mM, did slightly reduce 
the fast after-hyperpolarization of these neurons and results using 

pharmacological antagonists showed that these currents are likely 
generated by members of the BK family of potassium channels 
(Beckley et al., 2016). In contrast to the lack of effect of toluene on 
current-evoked spike firing reported in that study, toluene produced 
a long-term depression (LTD) of AMPA-mediated synaptic currents 
in approximately 50% of the MSNs. These neurons were identified as 
D2 MSNs via immunocytochemistry and the toluene-induced LTD 
was prevented when recordings were done in the presence of the 
cannabinoid type 1 receptor antagonist AM-281 suggesting a role of 
endocannabinoids (eCB). A similar EC-mediated LTD of AMPA 

FIGURE 4

Toluene vapor alters the electrophysiological parameters of NAc 
shell D2+ MSNs. Exposure of D2-Cre rats to toluene vapor produced 
significant effects on input resistance (unpaired t-test; t  =  2.35, 
df  =  22, p  =  0.028), rheobase (unpaired t-test; t  =  2.30, df  =  17, 
p  =  0.035), AP rise time (unpaired t-test; t  =  2.83, df  =  16, p  =  0.012) 
and AP height (unpaired t-test; t  =  2.62, df  =  17, p  =  0.018) but no 
effect on resting membrane potential, AP threshold, AP width or 
after-hyperpolarization (AHP) of D2+ MSNs. Data are presented as 
mean  ±  sem. Symbol: (*) value significantly different from air control 
group p  <  0.05.

FIGURE 5

Exposure to toluene vapor had no effect on electrophysiological 
parameters of NAc shell D2- MSNs. Data are presented as 
mean  ±  sem.
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synaptic signaling was observed in glutamatergic pyramidal neurons 
in the mPFC and basolateral amygdala following bath application of 
toluene (Beckley and Woodward, 2011; Woodward, 2023). D2 MSNs 
in the NAc have been shown to undergo eCB-mediated LTD (Grueter 
et al., 2010) as well as depolarization-induced suppression of excitation 
(DSE) that also involves endocannabinoid signaling (Kreitzer and 
Regehr, 2001; Beckley et  al., 2016). Whether in vivo exposure to 
toluene vapor induces LTD or DSE in NAc D2 MSNs is not known but 
these events could trigger compensatory changes that underlie the 
increase in intrinsic excitability of D2 NAc shell MSNs observed 
during injections of low to moderate amounts of current. Consistent 
with this change in excitability was the increase in membrane 
resistance observed in D2+ NAc shell MSNs from toluene treated rats 
and the corresponding reduction in the rheobase. Despite the leftward 
shift in the current-spiking relationship in NAc shell D2+ MSNs in 
toluene treated animals, these neurons went into depolarization block 
and were unable to increase their firing as larger currents were 
injected. This may have resulted from toluene-induced alterations in 
expression or function of the voltage-gated sodium and potassium 
channels that generate the action potential (Bianchi et  al., 2012; 
Knowlton et al., 2021). Analysis of the action potential parameters 
revealed a significant decrease in action potential height and a slower 
rise time in NAc shell D2+ MSNs from toluene treated rats with no 
changes in these parameters in NAc shell D2- MSNs. Although NAc 
shell D2+ MSNs from toluene treated rats began firing at lower current 
steps than the air controls, their inability to increase spiking at higher 
current injections could have important consequences in control of 
motivated behavior as these neurons receive dense inputs from 
various structures including prelimbic and infralimbic regions of the 
mPFC that have been shown to regulate drug seeking and 
reinstatement of drug seeking following extinction (Peters et al., 2008; 
Bossert et al., 2012; Allichon et al., 2021).

Previous studies using in vivo toluene exposure protocols have 
reported changes in current-evoked firing of pyramidal neurons 
within the mPFC including those that project to different areas of 
the NAc. For example, repeated exposures of adolescent Wistar rats 
to toluene vapor (1,000–8,000 ppm, 30 min twice per day for 
10 days) that induces CPP enhanced the excitability of deep-layer 
pyramidal neurons in the prelimbic area of the mPFC (Cruz et al., 
2020). In another study, retrobeads were used to identify inputs to 
the NAc core and shell from the mPFC in adolescent Sprague–
Dawley rats. One day following exposure to 10,500 ppm toluene 
vapor, current-evoked firing of deep layer prelimbic mPFC neurons 
that project to the NAc core was reduced while firing was enhanced 
in NAc core projecting deep layer infralimbic mPFC neurons 
(Wayman and Woodward, 2018b). In contrast, there was no effect 
of toluene exposure on NAc shell projecting prelimbic mPFC 
neurons but firing was reduced in NAc shell projecting infralimbic 
mPFC neurons. These findings suggest that in addition to changes 
in local mechanisms that control the intrinsic excitability of NAc 
MSNs, toluene-induced alterations in inputs to the NAc from the 
mPFC and other areas could contribute to the changes in the 
excitability of NAc MSNs noted in the present study. The ultimate 
behavioral consequences of these changes are not fully known but 
may contribute to the development of reward-related memories 
following repeated exposures to drugs of abuse including inhalants. 
For example, adolescent rats given repeated exposures to air or 

toluene vapor in different compartments displayed a conditioned 
place preference (CPP) that persisted for at least 7 days following 
the last pairing (Wayman and Woodward, 2018a). The toluene-
induced CPP was associated with opposing changes in the firing of 
infralimbic mPFC neurons projecting to the NAc core (increased) 
or shell (decreased) and was blocked by chemogenetic excitation of 
infralimbic NAc shell projecting neurons (Wayman and Woodward, 
2018a). Together with the findings of the present study, these results 
suggest that reduced activity of the infralimbic mPFC-NAc shell D2 
pathway may be  especially important in driving the rewarding 
aspects of toluene vapor. It is important to note that most preclinical 
studies of toluene action including the present one have used male 
rats (reviewed by Crossin and Arunogiri, 2020). As human 
adolescent females also engage in inhalant misuse (SAMHSA, 
2021), future preclinical studies should include both males and 
females to investigate possible sex-dependent differences in the 
effects of toluene vapor on neural signaling in addiction related 
brain areas.
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