
Frontiers in Neuroscience 01 frontiersin.org

The effects of attention in 
auditory–visual integration 
revealed by time-varying networks
Yuhao Jiang 1,2,3, Rui Qiao 1,2, Yupan Shi 1,2, Yi Tang 1,2, 
Zhengjun Hou 1,2* and Yin Tian 1,2*
1 Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing, 
China, 2 Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China, 
3 Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, China

Attention and audiovisual integration are crucial subjects in the field of brain 
information processing. A large number of previous studies have sought to 
determine the relationship between them through specific experiments, but failed 
to reach a unified conclusion. The reported studies explored the relationship 
through the frameworks of early, late, and parallel integration, though network 
analysis has been employed sparingly. In this study, we employed time-varying 
network analysis, which offers a comprehensive and dynamic insight into cognitive 
processing, to explore the relationship between attention and auditory-visual 
integration. The combination of high spatial resolution functional magnetic 
resonance imaging (fMRI) and high temporal resolution electroencephalography 
(EEG) was used. Firstly, a generalized linear model (GLM) was employed to find the 
task-related fMRI activations, which was selected as regions of interesting (ROIs) for 
nodes of time-varying network. Then the electrical activity of the auditory-visual 
cortex was estimated via the normalized minimum norm estimation (MNE) source 
localization method. Finally, the time-varying network was constructed using the 
adaptive directed transfer function (ADTF) technology. Notably, Task-related fMRI 
activations were mainly observed in the bilateral temporoparietal junction (TPJ), 
superior temporal gyrus (STG), primary visual and auditory areas. And the time-
varying network analysis revealed that V1/A1↔STG occurred before TPJ↔STG. 
Therefore, the results supported the theory that auditory-visual integration occurred 
before attention, aligning with the early integration framework.
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1. Introduction

Individuals are constantly exposed to a plethora of sensory information that they 
unconsciously integrate in order to comprehend their environment. Visual and auditory 
information constitutes the majority (over 90%) of the information that is perceived (Treichler, 
1967; Ristic and Capozzi, 2023). Auditory–visual integration occurs when auditory and visual 
stimuli coincide temporally and spatially, and when two stimuli are presented within a close 
time interval and similar spatial arrangement (Stein and Meredith, 1990; Frassinetti et al., 2002; 
Stevenson et al., 2012; Spence, 2013; Tang et al., 2016; Ľuboš et al., 2021). Attention plays a 
crucial role in selectively processing external information and improving information processing 
performance through focusing on target locations (Posner and Rothbart, 2006; Zhang T. et al., 
2022). Attention is instrumental in processing dynamic stimuli efficiently and enhancing 
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perception, as it directs limited cognitive resources toward information 
relevant to the current task (Tian et  al., 2014; Li et  al., 2015). In 
addition, the researches on the attention mechanism may help to 
improve deep neural networks for visual processing tasks (Zhang  
et al., 2019; Wang et al., 2020).

There is ongoing debate regarding the role of attention in 
multisensory integration, particularly in the case of auditory–visual 
integration. Three mainstream theories about the relationship between 
auditory–visual integration and attention were proposed in previous 
studies (Koelewijn et al., 2010; Xu et al., 2020). The first, the early 
integration framework, asserts that integration occurs prior to 
attention and can even drive it (Vroomen et al., 2001; Rachel et al., 
2022). Evidence for this is seen in the “pip-pop effect,” where the 
addition of auditory stimulation to a visual search task led to faster 
results (Erik et al., 2008). Then non-spatial auditory stimulation was 
added to the spatial visual experiment. The second theory, the late 
integration framework, demonstrates that multisensory integration 
appears behind attention. In other words, two unimodal (i.e., auditory 
and visual) events are attended to separately before they are integrated. 
This model indicates that attention is necessary for multisensory 
integration (Laura et al., 2005; Sébastien et al., 2022). A later study 
used a cross-modal attention preference task to prove that cross-
modal interactions are influenced by attention (Romei et al., 2013; 
Wen et  al., 2021). Furthermore, late integration suggests that late 
cross-modal effects are mediated by attentional mechanisms. The 
third theory is the parallel integration framework; here, the stage at 
which multisensory integration takes place is uncertain. Multisensory 
integration can be early or late, and it depends on experimental or 
external conditions (Calvert and Thesen, 2004; Sébastien et al., 2022). 
Some studies extended the seminal methods of the parallel integration 
framework (Talsma et al., 2010; Stoep et al., 2015). This may produce 
different results as a result of several factors, including task type 
(detection or identification), stimulus properties (simple or complex), 
and attention resources (exogenous or endogenous).

In the study of the relationship between attention and auditory–
visual integration, various methods have been employed. Early research 
utilized behavioral data and discovered that an auditory stimulus 
influences the reaction time (RT) of a synchronous or nearly synchronous 
visual stimulus (Mcdonald et al., 2000; Shams et al., 2000; Laura et al., 
2005; Zhang X. et al., 2022) and the reverse is also true (Platt and Warren, 
1972; Bertelson, 1999). These results indicate that a simultaneous or 
near-simultaneous bimodal stimulus reduces stimulation uncertainty 
(Calvert et  al., 2000), potentially supporting the early integration 
framework or enhancing stimulation response for the late framework 
(Stein et al., 1989; Zhang et al., 2021). However, external factors, such as 
the state of the experimental subjects, may be overlooked.

With the advancement of brain imaging technology, increasing 
numbers of researchers have turned to brain imaging to investigate the 
relationship between attention and auditory–visual integration. By 
utilizing an event-related potential component (ERP) of an auditory–
visual streaming design and a rapid serial visual presentation 
paradigm, they explored the interactions between multisensory 
integration and attention (Durk and Woldorff, 2005; Kang-jia and Xu, 
2022). The results indicated that activity associated with multisensory 
integration processes is heightened when they are attended to, 
suggesting that attention plays a critical role in auditory–visual 
integration and aligning with the late integration criteria. The 

improvement of the spatial resolution of scalp EEG has long been a 
subject of interest for researchers.

Studies using functional magnetic resonance imaging (fMRI) with 
high spatial resolution have reported the accurate location of many 
areas involved in auditory–visual integration and attention; these 
mainly include the prefrontal, parietal, and temporal cortices (Calvert 
et al., 2001; Macaluso et al., 2004; Tedersälejärvi et al., 2005; Noesselt 
et al., 2007; Cappe et al., 2010; Chen et al., 2015).The superior temporal 
gyrus (STG) and sulcus (STS) both participate in speech auditory–
visual integration (Klemen and Chambers, 2012; Rupp et al., 2022) and 
non-speech auditory–visual stimuli (Yan et al., 2015). In the past, STG 
was considered an area of pure sound input (Mesgarani et al., 2014). 
The temporoparietal junction (TPJ), which is close to the STG, is an 
important area of the ventral attention network (VAN) that is located 
mostly in the right hemisphere, and is recruited at the moment a 
behaviorally relevant stimulus is detected (Corbetta et al., 2008; Tian 
et al., 2014; Branden et al., 2022). The TPJ is activated during detection 
of salient stimuli in a sensory environment for a visual (Corbetta et al., 
2002, 2008), auditory (Alho et al., 2015), and auditory–visual task 
(Mastroberardino et  al., 2015). However, as many studies have 
mentioned, it is difficult to determine accurately the timing 
characteristics when using fMRI with poor temporal resolution.

For the reason that EEG and fMRI are two prominent noninvasive 
functional neuroimaging modalities, and they demonstrate highly 
complementary attributes, there has been a considerable drive toward 
integrating these modalities in a multimodal manner (Abreu et al., 
2018). The combination of scalp EEG’s exceptional temporal resolution 
and fMRI’s remarkable spatial resolution enables a more comprehensive 
exploration of brain activity, surpassing the limitations inherent to 
individual techniques (Bullock et al., 2021). Previous investigations 
have examined the functional aspects of the brain in various 
pathological conditions, such as schizophrenia (Baenninger et al., 2016; 
Ford et al., 2016). Multiple researchers have employed combination of 
EEG and fMRI to explore cognitive mechanisms (Jorge et al., 2014; 
Shams et  al., 2015; Wang et  al., 2018). Some other studies have 
investigated brain dynamics in relation to complex cognitive processes 
like decision-making and the onset of sleep (Bagshaw et al., 2017; 
Pisauro et al., 2017; Hsiao et al., 2018; Muraskin et al., 2018). In this 
study, we used these two neuroimaging technologies to investigate the 
appearance order of auditory–visual integration and attention. 
Previous studies have tended to apply a specific experimental paradigm 
to investigate this relationship, but few have used network analyses to 
resolve this conundrum. We employed time-varying network analysis 
based on the adaptive directed transfer function (ADTF) method to 
uncover dynamic information processing. This method can uncover 
the dynamic information processing with a multivariate adaptive 
autoregressive mode (Li et al., 2016; Tian et al., 2018b; Nazir et al., 
2020). This approach may offer new insights into the temporal order of 
multisensory integration and attention in a stimulated EEG network.

2. Materials and methods

2.1. Participants

The data for this study was obtained through separate EEG and 
fMRI recordings, conducted on 15 right-handed, healthy adult males 
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(mean ± standard deviation (SD) = 21.4 ± 2.8 years). Participants 
provided informed consent and were free from visual or auditory 
impairments and any mental health conditions. Upon completion of 
the experiments, participants were compensated for their time. The 
study was approved by the Ethics Committee of the University of 
Electronic Science and Technology of China.

2.2. Experimental design

Throughout the experiment, a white fixation cross of dimensions 
(0 5 0 5. .°× ° ) was presented at the center of a black monitor. The 
visual stimuli consisted of rectangular boxes that randomly appeared 
in either the left or right visual field (LVF or RVF, respectively). The 
box was 2 2°× ° and its width was 0 2. ϒ. The boxes remained on the 
screen for 50 ms and were followed by an auditory stimulus, a 
1,000 Hz pure tone that also randomly appeared in the left or right 
auditory field (LAF and RAF, respectively) after a 50 or 750 ms 
interval. Participants were instructed to respond by pressing the ‘Z’ 
key with their left hand if the tone appeared in the LAF, and the ‘/’ 
key with their right hand if it appeared in the RAF. Participants were 
required to react as soon as they heard the pure tone, which lasted 
for 200 ms. The fixation cross remained on the monitor for an 
additional 800 ms to ensure participants had sufficient time to 
respond correctly. The experimental procedure is illustrated in 
Figure 1.

2.3. Behavioral data and analysis

The behavioral data was obtained via EEG and fMRI. We analyzed 
RT using repeated measures analysis of variance (ANOVA) with the 
following factors: stimulus visual field (LVF vs. RVF), cue validity 
(valid vs. invalid), stimulus-onset asynchrony (SOA), and the 
interval between the cue and target stimulus (long vs. short). Data 
consistency was ensured by excluding RTs greater than 900 ms and 
less than 200 ms, as well as any instances of missed or incorrect 
key presses.

2.4. EEG and fMRI data recording

In the study, EEG and fMRI data were collected separately. 
We  used a Geodesic Sensor Net (GSN) with 129-scalp electrodes 
located according to the International 10–20 system (Tucker, 1993) to 
record the EEG at a rate of 250 Hz. The Oz, Pz, CPz, Cz, FCz, and Fz 
electrodes were placed in the middle of the skull, and the remaining 
electrodes were distributed along both sides of the midline. The 
central top electrode (Cz) was used as the reference electrode and all 
electrodes had impedances lower than 40 kΩ (Tucker, 1993).

fMRI data was collected using the fast T2*-weighted gradient 
echo EPI sequence on a 3-T GE MRI scanner (TR = 2000 ms, 
TE = 30 ms, FOV = 24 cm × 24 cm, flip angle = 90°, matrix = 64 × 64, 
30 slices) at the University of Electronic Science and Technology of 

FIGURE 1

Illustration of stimulus sequence in the experiment.
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China. This method obtained 198 volumes for each session. Because 
the machine at was unstable at the beginning of the data collection, 
we  discarded the first five image volumes of each run for  
preprocessing.

2.5. The processing framework for 
time-varying networks

The processing framework for calculating time-varying networks 
consisted of three stages, as illustrated in Figure 2.

 1. ROI selection based on task-related fMRI activations, as shown 
in Figure 2A.

The fMRI data was preprocessed and constructed by a generalized 
linear model (GLM). The results of the GLM were then subjected to a 
statistical test. Reply on the statistical results, 4 activations for the left 
cue and 4 activations for the right cue in the fMRI experiment were 
selected as ROIs (nodes) in the cerebral cortex, providing relatively 
accurate MNI coordinates for the construction of the time-varying 
network in the following steps.

 2. Source wave extraction (Figure 2B).

The EEG data was preprocessed, and the scalp electrical signals 
are mapped to the cerebral cortex by MNE source localization method. 
Then, the MNI coordinates provided by fMRI were converted to the 
corresponding positions of the head model and the corresponding 
time series of the cortical electrical signals are extracted.

 3. Time-varying network construction (Figure 2C).

In the third stage, the time-varying network was constructed 
using the ADTF technology, based on the results from steps 1 and 2.

2.6. fMRI data processing

The remaining volumes underwent preprocessing using Statistical 
Parametric Mapping version 8 (SPM8) software. Four preprocessing 
pipelines were applied in this study. Firstly, slice timing correction was 
implemented to address temporal differences among the slices. 
Secondly, spatial realignment was performed to eliminate head 
movement, whereby all volumes were aligned with the first volume. 
Participants whose head movement exceeded 2 mm or 2 degrees were 
excluded (Bonte et al., 2014). Thirdly, normalization was carried out 
to standardize each participant’s original fMRI image to the standard 
Montreal Neurological Institute (MNI) space using EPI templates. 

FIGURE 2

The processing framework for calculating time-varying networks. (A) fMRI processing; (B) EEG processing; (C) Time-varying network constructing.
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Voxel resampling to 3 × 3 × 3 mm3 was performed to overcome head 
size inconsistencies. Lastly, spatial smoothing was implemented to 
ensure high signal-to-noise ratio (SNR) by smoothing the functional 
images with a Gaussian kernel of full width half maximum (FWHM) 
of 6 × 6 × 6 mm3.

After data preprocessing, the time series of all voxels underwent 
a high-pass filter at 1/128 Hz and were then analyzed with a general 
linear model (GLM; Friston et  al., 1995) using SPM8 software. 
Temporal autocorrelation was modeled using a first-order 
autoregressive process. At the individual level, a multiple regression 
design matrix was constructed using the GLM, that included two 
experimental events based on the cue location (left visual field or right 
visual field). The two events were time-locked to the target of each trial 
by a canonical synthetic hemodynamic response function (HRF) and 
its temporal and dispersion derivatives. By including dispersion 
derivatives, the analysis accounted for variations in the duration of 
neural processes induced by the cue location. Nuisance covariates, 
such as realignment parameters, were included to account for residual 
motion artifacts. Parameter estimates were obtained for each voxel 
using weighted least-squares, which provided maximum likelihood 
estimators based on the temporal autocorrelation of the data (Wang 
et al., 2013).

In this study, to compute simple main effects for each participant, 
baseline contrasts were applied to the experimental conditions. 
Subsequently, the resulting individual contrast images were entered 
into a second-level one sample t-test using a random-effects model. In 
order to identify areas of significant activation, a threshold of p < 0.05 
(false discovery rate [FDR] corrected) and a minimum cluster size of 
10 voxels were utilized. These stringent criteria were employed to 
ensure robust and reliable identification of neural activation patterns.

2.7. EEG data preprocessing

The EEG data underwent five preprocessing steps. Firstly, the EEG 
epochs were set to a time range of −200 to 1,000 ms. Secondly, we used 
the average of 200 ms pre-stimulus data as a baseline to correct the 
epochs. Thirdly, we performed artifact rejection, excluding epochs 
contaminated by eye blinks, eye movements, amplifier clipping or 
muscle potentials that exceeded ±75 μv. Fourthly, we  filtered the  
EEG recordings using a band-pass filter of 0.1-30 Hz. Finally, 
we re-referenced the data using the reference electrode standardization 
technique (REST) (Yao et al., 2005; Tian and Yao, 2013; Tian et al., 
2018a). We excluded trials with incorrect behavioral responses and 
bad channel replacements, and averaged the ERPs from the stimulus 
onset time point based on the validity of the cue, visual field, and 
SOA length.

2.8. Minimum norm estimation

The volume conductor effect may lead to the generation of 
pseudo-connections during brain network construction using scalp 
brain electricity. And invasive methods for directly collecting brain 
electricity in the cerebral cortex are challenging to use. To overcome 
this problem, we employed source localization technology to transfer 
scalp brain electrical signal to the cortex, enabling estimation of 
cortical electrical signals (Tian et al., 2018a; Tian and Ma, 2020), and 

we converted 129 scalp electrodes into 19 electrodes covering the 
whole brain.

In this study, we used the normalized minimum norm estimation 
(MNE) source localization method to estimate the electrical activity 
of the auditory–visual cortex. Compared to other methods, the 
normalized MNE offers higher dipole positioning accuracy, especially 
in depth source analysis. Our head model consisted of a three-layer 
realistic representation of the cortex, skull, and scalp. The formula for 
MNE calculation is expressed as follows:

 ϕ ωt x t( ) = ( ) (1)

Where x t( ) is the EEG collected by the scalp, ϕ t( ) is the 
corresponding cortical EEG, and ω is the field matrix, which can 
be obtained from the following formula:

 
ω µ= +( )−C A AC A Cs

T
s
T

n
2

1

 
(2)

where Cs is the signal covariance, Cn is the noisy covariance, and 
A is the transfer matrix obtained by the boundary element theory. µ  
is a regularization parameter and is obtained by the following formula:

 
µ =

( )
( )×

trace AC A

trace C snr

s
T

n
2

 
(3)

where snr is the signal to noise ratio.

2.9. Cortical time-varying network

The MNE source localization method was employed to transfer 
scalp electrical signals to the cerebral cortex. Next, MNI coordinates 
obtained from fMRI were mapped to the corresponding positions 
on the head model, and the cortical electrical signal time series at 
these positions were extracted. Subsequently, we designated these 
positions as nodes of the network and constructed the time-varying 
network using the relationship between these time series as the 
network edges.

To calculate the ADTF, we computed the multivariate adaptive 
autoregressive (MVAAR) model for all conditions. The model was 
normalized and expressed by following equation:

 
X t j t X t j t

j

p
( ) = ( ) −( ) + ( )∑ω η,

 
(4)

where X t( ) is the EEG data vector over the entire time window, 
ω j t,( ) is the coefficient matrix of the time-varying model, which can 
be calculated by the Kalman filter algorithm, and η t( ) represents the 
multivariate independent white noise. The symbol p denotes the 
MVAAR model order selected by Schwarz Bayesian Criterion 
(Schwarz, 1978; Wilke et al., 2008; Tian et al., 2018b).

After obtaining the coefficients of the MVAAR model, 
we  calculated the ADTF by applying Equation (5) to convert the 
model coefficient ω j t,( ) to the frequency domain. The Hij  element of 
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H f t,( ) describes the directional information flow between the jth 
and the ith element at each time point t  as:

 ω ηf t X f t f t, , ,( ) ∗ ( ) = ( ) (5)

 X f t f t f t H f t f t, , , , ,( ) = ( ) ∗ ( ) = ( ) ∗ ( )−ω η η1

 (6)

where ( ) ( )
p

j2 tk
k k

k 0
f,t t e fπ−

=
ω = ω ω∑ 

 is the matrix of the time-

varying coefficients. É f,t( ) and ( )f,tη  are transformed into the 
frequency domain as X t( ) and ( )f,t ,η  respectively.

Defining the directed causal interrelation from the jth to the ith 
element, the normalized ADTF is described between (0,1) as follows:

 

¹ f,t
H f,t

H f,t
ij

ij

k

n

ik

2

2

2
( ) =

( )
( )∑  

(7)

To obtain total information flow from a single node, the integrated 
ADTF is calculated as the ratio of summed ADTF values divided by 
the interested frequency bands (f1, f2):

 
( )

( )f 2 2
ij2 f1

ij
é k,t

t
f 2 f1

υ =
−

∑
 

(8)

Surrogate data were used to establish the empirical ADTF value 
distribution under the connectionless zero assumption since the 
ADTF function has a highly non-linear correlation with the time 
series it derives, making it impossible to determine the distribution of 
the ADTF estimator under zero assumption without causality. The 
shuffling procedure independently and randomly iterated Fourier 
coefficient phases to produce new surrogate data while preserving the 
spectral structure of the time series (Wilke et al., 2008). To establish a 
statistical network, the nonparametric signed rank test was used to 
select statistically significant edges. The shuffling procedure was 
repeated 200 times for each model-derived time series from each 
participant to obtain the significance threshold of p < 0.05 with 
Bonferroni correction (Tian et al., 2018b).

2.10. Correlation analysis

The relationship between the information flow and the 
corresponding average response time (RT) was calculated using 
Pearson correlation based on the results of time-varying 
network analysis.

3. Results

3.1. Behavioral data analysis

Significant effects were observed for SOA (F[1,14] = 9.85, p < 0.01) 
and validity (F[1,14] = 8.74, p < 0.05), as well as their interaction 
(F[1,14] = 27.54, p < 0.001). However, no significant visual field effect 

(F[1,14] = 3.60, p > 0.05) or interactions between visual field and SOA 
or validity were found.

Because SOA, validity, and their interaction were significant, 
we  conducted paired t-tests for the effects of SOA and validity 
(Figure 3). The results showed that participants reacted significantly 
faster in long SOA-invalid trials (268.94 ± 19.33 ms) than in long 
SOA-valid trials (277.79 ± 17.91 ms). In short SOA-invalid trials 
(291.91 ± 20.76 ms), participants took significantly more time to react 
than in short SOA-valid trials (273.80 ± 20.87 ms). There were also 
significant differences between long and short SOA-invalid trials. 
Although the RTs of long SOA-valid trials were slower than those of 
short SOA-valid trials, the difference was not significant.

3.2. fMRI results

A single sample t-test was performed to analyze fMRI data, 
revealing areas related to visual (V1), auditory (A1), multisensory 
integration (STG), and attention (angular, middle frontal cortex 
[MFG]) in both the left and right visual field (LVF and RVF). In the 
LVF, the main activated areas (p < 0.05, FDR correction) included the 
right angular gyrus (BA39), which is part of the right temporoparietal 
junction (rTPJ), right STG (BA21), right Heschl’s gyrus as A1 (BA48), 
right lingual gyrus as rV1 (BA18), and right MFG (BA46), as shown 
in Figure  4A. In the RVF, more activated areas (p  < 0.05, FDR 
correction) included left STG (BA21), left A1 (BA48), left V1 (BA17), 
bilateral MFG (BAs44/45/46), right TPJ (BA39), and so on, as shown 
in Figure 4B.

We selected four ROIs based on the task-related fMRI activations 
depicted in Figure 4 for both LVF and RVF cues. Specifically, when the 
cue appeared in either the LVF or RVF, the right TPJ (rTPJ) was 
selected for both LVF and RVF cues. When the cue appeared in the 
LVF, we chose the right STG (rSTG), right A1 (rA1), and right V1 
(rV1). When the cue appeared in the RVF, we chose the contralateral 
STG, A1, and V1. The coordinates and sizes of the ROIs are presented 
in Table 1.

FIGURE 3

The average response time (RT) of subjects for the four conditions. lv 
denotes long SOA-valid condition, liv denotes long SOA-invalid 
condition, sv denotes short SOA-valid condition, siv denotes short 
SOA-valid condition. **p  <  0.001, *p  <  0.05.
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3.3. Time-varying network

We computed the time-varying network at time points ranging from 
200 ms to 900 ms and displayed the connection time points only when it 
changed in the four conditions. When the cue appeared in the LVF or RVF, 
the changes in cue conditions were illustrated in Figure 5A and Figure 5B, 
respectively. Figure 5C summarizes the results of the time-varying network 
analysis. The first step for the long SOA condition was A1↔STG, whereas 
for the short SOA condition, it was V1↔STG. The last step for both long 
and short SOA conditions was V1↔STG and STG↔TPJ. Notably, in the 
long SOA-valid condition, V1↔STG was the middle step.

3.4. Correlation analysis

Our analysis revealed significant correlations between reaction 
and information flow (such as STG → TPJ and TPJ → STG) for all 
conditions, as shown in Figure 6. For the long SOA, distinct differences 
were observed for each condition. Negative correlations were evident 

when the cue was invalid and appeared in the LVF (STG → TPJ: 
r = −0.54, p < 0.05; TPJ → STG: r = −0.52, p < 0.05) or RVF (STG → TPJ: 
r = −0.51, p < 0.05; TPJ → STG: r = −0.58, p < 0.05). Conversely, positive 
correlations were evident when the cue was valid and appeared in 
either the LVF (STG → TPJ:r = 0.65, p < 0.01; TPJ → STG: r = 0.52, 
p < 0.05) or RVF (STG → TPJ:r = 0.53, p < 0.05; TPJ → STG: r = 0.57, 
p < 0.05). Similar trends were noted for all conditions for the short 
SOA, as shown in Figure 6. Positive correlations between mean RT 
and information flow were observed when the cue was invalid and 
appeared in the LVF (STG → TPJ: r = 0.59, p < 0.05; TPJ → STG: 
r = 0.56, p < 0.05) or RVF (STG → TPJ: r = 0.59, p < 0.05; TPJ → STG: 
r = 0.56, p < 0.05). Similarly, positive correlations were observed when 
the cue was valid, regardless of whether it appeared in the LVF 
(STG → TPJ:r = 0.72, p < 0.005 TPJ → STG: r = 0.55, p < 0.05) or RVF 
(STG → TPJ: r = 0.52, p < 0.05; TPJ → STG: r = 0.53, p < 0.05)

4. Discussions

In this study, the behavioral results showed that the RT for a valid 
cue was significantly shorter than an invalid cue in the short SOA 
condition, while the opposite was opposite for the long SOA, which 
was similar to the unimodal task. In both long and short SOA 
conditions, we observed STG activation, a critical auditory–visual 
integration region (Klemen and Chambers, 2012). Additionally, 
we observed activation in TPJ and MFG, which are important VAN 
areas (Corbetta et al., 2008), indicating that attention plays a role in 
auditory–visual integration. Our time-varying network analysis 
revealed that V1/A1↔STG occurred before TPJ↔STG, as shown in 
Figure 5, indicating that pre-attention in auditory–visual integration.

4.1. Similar results observed between the 
bimodal and unimodal cue-target 
paradigms

Previous researches have reported that there is a significant cue 
effect for short SOAs in the visual cue-target paradigm. On the 

FIGURE 4

Brain activation maps. (A) Illustration of the activation map when the cue stimulus appeared in the LVF. The main activated areas (p  <  0.05, FDR) 
included the right TPJ, right STG, right A1, right V1, and right MFG; (B) Illustration of the activation map when the cue stimulus appeared in the RVF 
(p  <  0.05, FDR correction). The activated areas included the left STG, left A1, left V1, bilateral MFG, right TPJ, and right MT.

TABLE 1 The four selected regions of interest (ROIs) in each visual field.

ROI
MNI coordinates (mm) The size 

of ROI 
(mm)x y z

Cue in the LVF

rTPJ 45 −54 30 6

rSTG 63 −39 18 6

rA1 45 −21 12 10

rV1 9 96 −3 10

Cue in the RVF

rTPJ 45 −54 33 6

lSTG −64 −46 18 6

lA1 −40 −26 14 10

lV1 −9 −96 −9 10

https://doi.org/10.3389/fnins.2023.1235480
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jiang et al. 10.3389/fnins.2023.1235480

Frontiers in Neuroscience 08 frontiersin.org

condition of the time interval of the cue and target stimulus is shorter 
than 300 ms, the subjects exhibited faster responses when the cue was 
valid as compared to when it was invalid. However, the subjects 
showed slower responses when the cue was valid rather than invalid 
for long SOA (more than 300 ms). These findings were consistent with 
previous studies (Lepsien and Pollmann, 2002; Mayer et al., 2004a,b; 
Tian and Yao, 2008; Tian et al., 2011) and suggested that stimulus-
driven attention effects are faster and more transient than goal-
directed attention effects (Jonides and Irwin, 1981; Shepherd and 
Müller, 1989; Corbetta et al., 2002; Busse et al., 2008; Macaluso et al., 
2016; Tang et al., 2016). Similar outcomes have been observed in the 
auditory paradigm (Alho et  al., 2015; Hanlon et  al., 2017). Our 
behavioral analysis aligns with previous research on the unimodal 
paradigm and suggests that there is no difference between unimodal 
and bimodal paradigms in the cue-target paradigm.

4.2. Integration and attention exist in the 
bimodal cue-target paradigm

Previous studies have emphasized that auditory–visual integration 
in the cue-target paradigm occurs when the cue with one modal 

stimulus and the target with a different modal stimulus are presented 
from around the same spatial position (Stein and Meredith, 1990; 
Spence, 2013; Wu et al., 2020) and at approximately the same time 
(Stein and Meredith, 1990; Frassinetti et al., 2002; Bolognini et al., 
2005; Spence and Santangelo, 2010; Stevenson et al., 2012; Tang et al., 
2016). However, it will not appear if the cue precedes the target by 
more than 300 ms (Spence, 2010). In our paradigm, the time intervals 
between cue and target stimulus were divided into 100 and 800 ms, 
which cannot be directly compared to previous studies. Our fMRI 
results, where the STG appeared in all conditions, indicate that 
auditory and visual integration occurs even when these two stimuli 
are not aligned in space or time (i.e., more than 300 ms interval).

The role of attention in multisensory integration is still under 
debate. Some studies proposed that multisensory integration is an 
automatic process (Vroomen et  al., 2001; José et  al., 2020), while 
others suggested that attention played an important role in 
multisensory integration (Talsma et  al., 2007, 2010; Fairhall and 
Macaluso, 2009; Tang et al., 2016). Since rTPJ and MFG important 
parts of the ventral attention network (Corbetta et al., 2008; Klein 
et  al., 2021), the experimental activation of these rTPJ and MFG 
suggested that attention may also be involved in integration. We used 
time-varying networks to determine the temporal order between 

FIGURE 5

The time-varying networks when the cue stimulus appeared in the (A) LVF and (B) RVF. (C) Summary of time-varying networks. ①②③ denote the order 
in which the connections appear.
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multisensory integration and attention using combination of fMRI 
and EEG data, which allowed for greater precision than EEG data 
alone. Additionally, the fMRI data provided a more precise spatial 
resolution for the time-varying networks.

4.3. Auditory–visual integration prior to 
attention

In this research, we constructed a time-varying network using 
task-related fMRI activations as nodes, including TPJ as the core of 
the VAN (Corbetta et al., 2008), and STG as an important area for 

integration (Yan et  al., 2015). Our aim was to investigate the 
relationship between multisensory integration and attention. As 
depicted in Figure 5C, the V1/A1↔STG connection was always the 
first order, followed by STG↔TPJ, regardless of the conditions. This 
finding supports the notion that pre-attention is involved in auditory 
and visual integration, which is consistent with previous studies (Erik 
et al., 2008). However, we observed some differences under different 
conditions, such as the SOA length. For short SOA, the first connection 
was V1↔STG, as visual stimuli are dominant in processing spatial 
characteristics, while auditory events dominate temporal characteristic 
processing (Bertelson et al., 2000; Stekelenburg et al., 2004; Bonath 
et  al., 2007; Navarra et  al., 2010). Conversely, for long SOA, 

FIGURE 6

The correlation between information flow and average reaction time (RT) when the cue stimulus appeared in the (A) LVF and (B) RVF. *a significant 
difference between the two regions. STG  →  TPJ denotes the causal flow from STG to TPJ. TPJ  →  STG denotes the causal flow from TPJ to STG.
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information flowed from the A1 to STG. This result might be due to 
the auditory–visual stimuli being temporally unsynchronized in our 
data collection. As the SOA increased, the dominant role of the visual 
stimulus diminished, and the auditory effect became stronger, leading 
to a significant A1↔STG flow. Interestingly, TPJ↔STG and STG↔V1 
were the last step in all conditions, indicating that the TPJ modulates 
the primary cortex by using integration areas as a transfer node in 
all cases.

4.4. Relationship between information flow 
and RT

Numerous studies have investigated how attention affects a 
subject’s reaction time, but there is disagreement on whether attention 
boosts or limits the reflection (Senkowski et  al., 2005; Karns and 
Knight, 2009; Macaluso et al., 2016). Some studies have suggested that 
attention accelerates reaction speed (Mcdonald et al., 2005, 2009; Van 
der Stoep et al., 2017), while others have proposed that attention may 
actually inhibit reaction (Tian and Yao, 2008). A recent study has 
demonstrated that both stimulus-driven attention and multisensory 
integration can accelerate responses (Van der Stoep et  al., 2017; 
Motomura and Amimoto, 2022).

In this study, we compared the correlation between mean RT and 
the information flow of STG↔TPJ under different circumstances. 
Our findings suggest that attention has a direct influence on 
multisensory integration, as the extent of information flow reflects 
the mutual influence of the two brain regions. Specifically, 
we observed a negative correlation between the two regions in the 
long SOA-invalid condition, indicating that larger information flow 
led to faster reflection times. We inferred that this phenomenon is 
due to bottom-up attention, where increased information flow leads 
to greater information exchange between the STG and TPJ and, thus, 
faster reactions. However, in other conditions, we observed positive 
correlations, which we  attribute to the modulation of attention. 
Specifically, greater attention modulation results in 
inhibited reactions.

5. Conclusion

In this paper, our analysis of the behavioral data showed no 
discernible difference between the multisensory and unisensory 
cue-target paradigms. We  also employed fMRI data analysis to 
demonstrate the existence of auditory–visual integration in the long 
SOA condition and the necessity of attention for such integration. The 
constructed time-varying networks based on fMRI coordinates 
revealed that multisensory integration occurs prior to attention and 
pre-attention is involved in auditory–visual integration. Furthermore, 
our findings suggest that attention can impact the subject’s reaction 
time, but the effect depends on the situation, and greater attention 
modulation results in inhibited reactions.
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