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self-crossover design study
Meng-Xin Wang 1,2, Aihaiti Wumiti 1,2, Yao-Wen Zhang 2, 
Xue-Sheng Gao 3, Zi Huang 1, Meng-Fei Zhang 1, Zhi-Yong Peng 1, 
Yoshitaka Oku 4 and Zhi-Ming Tang 1,2*
1 Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen 
University, Meizhou, China, 2 Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun 
Yat-sen University, Guangzhou, China, 3 Rehabilitation Medicine Department, Affiliated Hospital of 
Weifang Medical University, Weifang, China, 4 Department of Physiology, Hyogo Medical University, 
Hyogo, Japan

Purpose: To investigate the effect of transcutaneous cervical vagus nerve 
stimulation (tcVNS) on motor cortex excitability in healthy adults.

Method: Twenty eight healthy subjects were assigned to receive real and sham tcVNS 
for 30 min. The interval between the real and sham conditions was more than 24 h, 
and the sequence was random. The central and peripheral motor-evoked potential 
(MEP) of the right first dorsal interosseous (FDI) muscle was measured by transcranial 
magnetic stimulation (TMS) before and after stimulation. MEP latency, MEP amplitude 
and rest motor threshold (rMT) were analyzed before and after stimulation.

Results: MEP amplitude, MEP latency and rMT had significant interaction effect 
between time points and conditions (p  <  0.05). After real stimulation, the MEP 
amplitude was significantly increased (p  <  0.001). MEP latency (p  <  0.001) and 
rMT (p =  0.006) was decreased than that of baseline. The MEP amplitude on real 
condition was higher than that of sham stimulation after stimulation (p =  0.027). 
The latency after the real stimulation was significantly shorter than that after 
sham stimulation (p =  0.005). No significantly difference was found in rMT after 
stimulation between real and sham conditions (p >  0.05).

Conclusion: tcVNS could improve motor cortex excitability in healthy adults.
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1. Introduction

Stroke, brain trauma, and other neurological diseases often result in extensive and lasting 
motor dysfunction (Nazarova et al., 2021). In some cases, such as when upper limb function is 
affected, the recovery process is long, which seriously affects the life of patients and places a 
heavy burden on the family and society (Zhao and Huang, 2019). Rehabilitation training is an 
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important approach to improve patients’ motor function, but optimal 
solutions have not yet been found (Gittler and Davis, 2018).

Vagus nerve stimulation (VNS), one of many explorations of 
motor dysfunction rehabilitation (Kimberley et al., 2018; Li et al., 
2022), can be divided into invasive and non-invasive VNS (nVNS) 
(Ramos-Castaneda et al., 2022). Previous studies have reported its 
application in cases of epilepsy (Ryvlin et al., 2021; Oehrn et al., 2022), 
depression (Conroy and Holtzheimer, 2021; Evensen et al., 2022), and 
tinnitus (De Ridder et al., 2021). Few studies have investigated its 
effect on motor function (Dawson and Abdul-Rahim, 2022). Porter 
et al. attempted to explore the effect of VNS on the motor cortex and 
found that repeated pairings between VNS and compression or 
rotation task training increased the motor cortex area of the distal and 
proximal forelimbs of rats, respectively (Porter et al., 2012). Dawson 
et  al. reported that after invasive VNS (iVNS) was performed by 
wrapping an electrode around the left cervical vagus nerve of stroke 
patients, the upper limb function improved significantly better than 
in a regular rehabilitation training group or sham stimulation group 
(Dawson et al., 2021), indicating that VNS combined with motor 
training can improve the motor function of upper limbs. However, as 
this method is invasive and has high technical requirements, it is 
unlikely to be widely used.

nVNS includes tcVNS and transcutaneous auricular VNS 
(taVNS) (Yang et al., 2018; Farmer et al., 2020; Li et al., 2022; van 
Midden et al., 2023). Most researches on taVNS come from the study 
on auricular points in traditional Chinese medicine (Wang et al., 2022; 
Zhang et al., 2022). tcVNS is also an important kind of vagus nerve 
stimulation (Frangos and Komisaruk, 2017), especially with potential 
advantages in parameter standardization (Gurel et al., 2020). After 
exiting the cranial cavity through the jugular foramen, the bilateral 
vagus nerves run together with the common carotid artery and 
internal jugular vein within the carotid sheath. Their location near the 
surface can be  identified by the medial edge of the bilateral 
sternocleidomastoid muscle, making it easy to locate and place 
stimulation electrodes. Also, the tcVNS stimulate the same branch of 
vagus nerve of iVNS (Gurel et al., 2020). Several pilot studies have 
shown that nVNS might improve motor function after stroke better 
than separate rehabilitation training (Capone et al., 2017; Yang et al., 
2018). Compared with iVNS, which is not only expensive but carries 
high surgical risk, tcVNS is safer, more comfortable, and easier to 
carry out (Yuan and Silberstein, 2016; Redgrave et al., 2018). Moreover, 
it greatly reduces medical cost, which is of great clinical significance. 
However, although a large number of studies have been conducted on 
tcVNS in recent decades, the mechanism through which it improves 
motor function remains unclear. Objective evaluation indicators of 
neurophysiological effects under tcVNS are also lacking. The 
explanations given by most existing hypotheses rest on synaptic 
plasticity in neurotransmitter promotion-related pathways, and few 
studies have focused on the effects of VNS on motor cortex excitability.

TMS is a widely used noninvasive method of measuring motor 
cortex excitability (Tang et al., 2019; Zhang et al., 2022). MEP can 
be obtained in the dominant muscles by delivering a single pulse of 
magnetic stimulation in the motor cortex. MEP amplitude and MEP 
latency can be used to evaluate corticospinal excitability (Udupa and 
Chen, 2013). The increase of MEP amplitude and the shortening of 
cortical latency indicate increased cortical excitability.

In this study, we delivered an interference current to the neck skin 
to stimulate the vagus nerves’ bilateral cervical branches and assessed 

its safety in healthy subjects. The amplitude and latency of MEP were 
observed to explore the effect of bilateral tcVNS on motor 
cortex excitability.

2. Method

2.1. Subject

According to the preliminary experiment data, the study involved 
28 healthy volunteers between the ages of 20 and 38 years old with an 
average age of 24.8 ± 4.4. Nine were male, and 19 were female. All 
participants met the inclusion criteria of being ① aged 20–35 and 
② right-handed and exclusion criteria of having ① a history of mental 
disorder or nervous system disease, ② pacemakers, cochlear implants, 
dental implants, or other metal implants, and ③ severe cervical 
spondylosis, including cervical instability. Participants were asked to 
avoid alcohol, tea, and coffee, which might affect brain activity, and to 
keep a relatively regular routine during the study. All participants 
signed written informed consent to participate in the study. The study 
protocol was approved by the Ethics Committee of Yuedong Hospital, 
the Third Affiliated Hospital of Sun Yat-Sen University (approval 
document number: 2021–7), and the Chinese clinical trial registration 
number is ChiCTR2100054543.

2.2. Study design

The study used a self-crossover, randomized, single-blind 
controlled study design. All subjects received tcVNS in real and sham 
stimulation conditions on two different days with an interval of more 
than 24 h. The real and sham stimulus sequences were randomly 
assigned based on computer-generated numbers, which were kept by 
one person. The experiment was carried out by two operators. One 
person performed the tcVNS stimulation. The other operator, who did 
not know the stimulation conditions, used TMS to measure MEP 
(latency and amplitude) before and after the real or sham condition.

2.3. tcVNS stimulation

The experiment was conducted in a quiet and comfortable 
environment. The subjects sat in a comfortable position in a chair with 
arms on either side and were asked to remain relaxed.

The application conditions of tcVNS were as follows (Nagami 
et  al., 2019): The interference current stimulation equipment was 
made in Japan (GentleAce neckgear J1000; J Craft, Osaka, Japan). The 
two pairs of electrodes (gray and white; see Figure 1) were 4 cm apart, 
delivering an alternating current of different frequencies (2000 Hz and 
2050 Hz, respectively) to generate an interference current with a phase 
difference frequency of 50 Hz. The stimulation position was the 
bilateral cervical branch of the vagus nerve. The subject was instructed 
to sit in a chair, and the researchers cleaned the subject’s skin on the 
neck with a 75% medical alcohol swab. Two pairs of electrodes, each 
consisting of one gray and one white electrode, were affixed onto 
separate skin patches with a 4 cm distance between them. The patches 
were symmetrically placed bilaterally on the neck. The gray electrodes 
were positioned at the intersection of the thyroid cartilage and the 
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front edge of the sternocleidomastoid muscle. The white electrodes 
were placed in a straight line between the mandibular angle and the 
corresponding gray electrodes on both sides (as depicted in Figure 1). 
Stimulation intensity was adjusted using a graded approach control 
software on a tablet computer, with a minimum stimulation intensity 
of 0.1 mA. However, each subsequent level of intensity did not 
necessarily result in an equivalent increase in actual output current. 
Under the real stimulation condition, to ensure safety and avoid 
excessive stimulation, the experimenters adjusted the stimulation 
intensity to maintain it between a range of 2.5 mA to 3.0 mA for a 
duration of 30 min. As individuals have different sensory thresholds, 
the sensations experienced by participants during the stimulation 
were not uniform. However, most participants reported tolerable 
vibratory sensations. This precise approach to controlling stimulation 
intensity ensured the safety of the participants. Under the sham 
stimulation condition, the setting was maintained for a total of 30 min 
with the device turn off To maintain single blinding, a designated data 
analyst conducted the statistical analysis without knowledge of the 
stimulation conditions and remained unaware of whether the data 
came from the real or sham stimulation conditions until all analyses 
were completed. This stringent approach minimized the risk of biased 
data analysis and enhanced the credibility and robustness of the 
study findings.

2.4. Transcranial magnetic stimulation

The method was as explained in our previous studies (Tang et al., 
2019; Zhang J. et al., 2022; Zhang M. F. et al., 2022). The subject sat 
relaxed in a high-backed chair with armrests which supported their 
forearms, back, and legs. The subject was advised not to move their 
body during the rest motor threshold (rMT) and MEP measurements 
to keep the coil in the same position (Figure 2).

A facial scrub was used to clean the skin of the subject’s first dorsal 
interosseous (FDI) muscle to ensure a low skin impedance of ≤10 

kΩ. A pair of 1 cm diameter bipolar disposable surface electrodes was 
attached to the FDI muscle of the right hand at a distance of 1.5 cm 
(Figure  2C). The ground electrode was placed on the right ulnar 
styloid process. The MEP was recorded by EMG (Neuron-Spectrum-5, 
Russia) with filtering set at 5–10KHz, sampling rate at 25KHz, and 
scanning speed at 5 ms/div.

The subjects kept their bilateral upper limb muscles relaxed and 
wore positioning caps. C3 was used as the reference point to locate the 
hand representative region in the primary motor cortex according to 
the international 10–20 EEG localization standard. TMS equipment 
(Wuhan Yiruide Medical Equipment New Technology Co., Ltd., 
China) was used with a figure-eight coil, which consists of two small 
circular coils with a diameter of 9 cm and opposite current directions 
overlapping each other, to measure MEP. The coil was tangent to the 
scalp, and the handle was at a 45-degree angle from the midline of the 
body (Figure 2A). The 70% maximum machine intensity of the TMS 
was selected as the baseline to initiate stimulation. The location around 
C3 that consistently elicited large-amplitude MEP was identified as the 
“hotspot.” According to previous guidelines, we employed the relative 
frequency method to determine the TMS output intensity (Rossini 
et al., 2015). It was reduced as it approached the threshold until the 
lowest output intensity was able to evoke at least 5 MEPs with 
amplitudes >50 μV of 10 consecutive TMS stimulations. This output 
intensity was defined as rMT. Before and after tcVNS stimulation, 
we stimulated the “hotspot” with 120% rMT intensity TMS to obtain 
the corticospinal MEP (Tang et al., 2019; Zhang et al., 2022). Any MEPs 
that were contaminated by activity in other muscles or had an 
amplitude less than 50 μV were excluded from the analysis. Ten MEP 
were recorded (Yang et al., 2017; Sun et al., 2019; Tang et al., 2019), and 
their peak MEP amplitude and latency were calculated (Figure 2C).The 
mean of the ten MEPs was used for further analysis.

2.5. Safety monitoring

The subject’s heart rate and blood oxygen were monitored during 
the study by a pulse oximetry device (POD3, Heal Force, Ltd. 
Shenzhen, China) worn on their right index finger. The experiment 
was stopped immediately if the heart rate fell below 60 or adverse 
reactions occurred, such as difficult breathing, unbearable skin 
tingling, or dizziness.

2.6. Statistical analysis

The G Power 3.1 statistical tool was used to determine the required 
sample size for the present trials based on the results of 
pre-experiments and the desired statistical power of 80% with 
statistical significance at p < 0.05 (2-tailed test). The analysis showed 
that at least 20 subjects were required for the study.

SPSS 23.0 software was used to analyze the data. We  used the 
Shapiro–Wilk test to perform normality distribution. Data were expressed 
as mean ± standard deviation (SD); two factor (time * condition) repeated 
measurement ANOVA was used to compare the differences among each 
assessment point and post-Hoc using Bonferroni correction was used to 
compare the differences in MEP amplitude, MEP latency and rMT before 
and after stimulation within each condition. p < 0.05 was considered 
statistically significant.

FIGURE 1

The stimulation electrode’s location of tcVNS.
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3. Results

3.1. Changes of MEP amplitude

There was a significant interaction effect between measurement time 
points and conditions (F1, 27 = 7.039, p = 0.013) (Figure 3). Significantly 
main effect was found in time points (F1,27 = 29.473, p < 0.001). No 
significant main effect was found in conditions (F1,27 = 2.307, p = 0.140).

After real stimulation, the MEP amplitude (0.73 ± 0.36 mV) 
was significantly higher than that before stimulation 
(0.43 ± 0.22 mV) (t  = 4.185, p  < 0.001). However, the MEP 
amplitude after the sham stimulation (0.52 ± 0.31 mV) did not 
change significantly compared with that before the stimulation 
(0.49 ± 0.24 mV) (t  = 0.784, p  = 0.440). There was significant 

difference of MEP amplitude between the real and sham 
condition after stimulation (t = 2.342, p = 0.027).

3.2. Change of the MEP latency

As shown in Figure 4, there was a significant interaction effect 
between time points and conditions (F1,27 = 21.316, p < 0.001). 
Significantly main effect was found in time points (F1,27 = 19.746, 
p < 0.001). No significant main effect was found in conditions 
(F1,27 = 0.621, p = 0.438).

The MEP latency after real stimulation (20.03 ± 1.68 ms) was 
significantly shorter than before stimulation (20.81 ± 1.64 ms) 
(t = 6.173, p < 0.001), while there was no statistically significant change 

FIGURE 2

Assessment of MEP by transcranial magnetic stimulation. (A) The coil located on the M1 to assess the MEP amplitude and latency. (B) The electrode on 
the FDI (below) and the MEP waveform.

FIGURE 3

MEP amplitude on Real and Sham condition. The MEP Amplitude was significantly increased on real condition after tcVNS (p  <  0.001). After tcVNS, MEP 
Amplitude was higher in real condition compared to the sham condition (p  =  0.027).
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in the MEP latency before and after the sham stimulation 
(20.57 ± 1.11 ms vs. 20.50 ± 1.26 ms) (t = 0.649, p = 0.522). The latency 
after the real stimulation was significantly shorter than that after sham 
stimulation (t = 3.093, p = 0.005).

3.3. Change of the rMT

As shown in Figure  5, there was a significant interaction 
effect between measurement time points (F1,27 = 9.097, p = 0.006). 
No significant main effect was found in time points (F1,27 = 3.645, 
p = 0.067). No significant main effect was found in conditions 
(F1,27 = 0.248, p = 0.622).

The rMT after real stimulation (55.04 ± 9.95%) was significantly 
decreased than before stimulation (57.18 ± 9.59%) (t  = 2.993, 
p = 0.006), while there was also no statistically significant change in 
the rMT before and after the sham stimulation (55.58 ± 10.10% vs. 

55.83 ± 10.32%) (t  = 0.461, p  = 0.648). There was no significant 
difference after the real stimulation and that of after sham stimulation 
(t = 0.866, p = 0.394).

3.4. Safety

At the onset of real stimulation, three participants experienced 
mild skin tingling, which was tolerable and quickly adapted to. No 
other adverse reactions were reported.

4. Discussion

tcVNS can now safely stimulate the vagus nerve without injury, 
and it is becoming widely used in various functional disorders in 
stroke rehabilitation. However, how tcVNS activates the relevant brain 

FIGURE 4

MEP latency on Real and Sham condition. MEP latency significantly decreased on real condition after tcVNS (p  <  0.001). After tcVNS, MEP latency was 
shorten real condition compared to the sham condition (p  =  0.005).

FIGURE 5

rMT on Real and Sham condition. rMT significantly decreased on real condition after tcVNS (p  =  0.006).
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regions and produces central effects to improve motor function 
remains to be explored. This study investigated the effect of tcVNS on 
the excitability of the motor cortex. The increase in MEP amplitude 
and the shortening of latency prompted the corticospinal tract, 
suggesting that tcVNS could significantly improve the excitability of 
the motor cortex.

nVNS includes both tcVNS and taVNS. Some previous studies 
have investigated the taVNS on the motor function, but few have 
investigated this in relation to tcVNS (Frangos and Komisaruk, 2017). 
Redgrave et  al. combined taVNS with post-stroke upper limb 
rehabilitation, and found improvement in motor function in a pilot 
study (Redgrave et  al., 2018). Capone et  al. reported that taVNS 
combined with robot-assisted rehabilitation might promote the motor 
function of the upper limb (Capone et al., 2017). However, they only 
assessed the clinical effectiveness and did not investigate the 
mechanism. Our previous studies have found that stimulation of 
the auricular vagus nerve by auricular acupuncture can improve the 
excitability of the motor cortex (Zhang et al., 2022). Based on this 
premise, the current study utilized interference current to stimulate 
both bilateral cervical vagus nerves, and innovatively found that 
tcVNS can increase the excitability of the motor cortex. This was 
demonstrated by the increased MEP amplitude and the shortened 
latency, indicating the activation of the corticospinal tract.

Many studies have used animal models to investigate the central 
nervous mechanism of VNS and considered that VNS activates the 
basal nucleus (Lyubashina and Panteleev, 2009), locus coeruleus (Hilz, 
2022), and dorsal raphe nucleus (Hulsey et al., 2019) through the 
nucleus tractus solitarius (NTS) after the vagus nerve (Cooper et al., 
2021). This causes an extensive release of norepinephrine, 
acetylcholine, serotonin, and other neurotransmitters in the cortex, 
combined with specific rehabilitation tasks targeted to promote 
synaptic plasticity in these neural pathways (Hulsey et al., 2019). Some 
researchers have found that inhibition of norepinephrine re-uptake 
could enhance excitability of the corticospinal tract, which may be the 
physiological mechanism whereby VNS promotes cortical excitability 
(Roosevelt et al., 2006; Kuo et al., 2017).

However, few studies have investigated the direct effect of nVNS 
on brain excitability. MEP is a reliable indicator to measure cortical 
excitability (Tang et al., 2019; Zhang J. et al., 2022; Zhang M. F. et al., 
2022). We used latency and amplitude to evaluate the effect of VNS on 
the excitability of the motor cortex and used sham stimulation to 
eliminate possible placebo effects. The MEP amplitude of the real 
stimulus condition was significantly higher than that before the 
tcVNS. No significant changes was found on sham stimulation 
condition. MEP amplitude may be affected by both long term inhibitory 
and excitatory effects induced by TMS stimulation (Di Lazzaro et al., 
2004; Mercante et al., 2015). Some previous studies reported that VNS 
induced short interval intracortical inhibition (Capone et al., 2015; van 
Midden et al., 2023). So that the MEP amplitude cannot sensitively 
reflect the changes of M1 plasticity (Vallence et al., 2023). The change 
of MEP latency can compensate for the lack of MEP amplitude. Latency 
reflects the time required for intra-cortical processing, corticocortical 
conduction, spinal processing, and neuromuscular transmission, 
depending on the state of the corticospinal system at the time of TMS 
delivery. The change of state at any point along the corticospinal 
pathway may affect the MEP latency (Hirano et al., 2016).

We used a crossover study design and a random stimulus 
sequence to ensure that different participants and the stimulus 

sequence did not affect the experimental results. The interval 
between the two stimulus conditions should be at least 24 h to avoid 
possible legacy effects. Considering the parasympathetic effect of 
the vagus nerve, the safety of stimulating bilateral vagus nerve 
simultaneously is still controversial. In previous studies, unilateral 
VNS has mostly been selected. One previous study reported that 
bilateral nVNS through the neck is safe (Nagami et al., 2019). In 
addition, previous reports have used a pulse current to stimulate the 
cervical vagus nerve (Dawson et al., 2021; De Ridder et al., 2021). 
However, we  used a 50-Hz interference current, which is more 
comfortable than the pulse current interference wave because it 
does not cause muscle contraction.

This study also has several limitations. First, we did not attempt to 
investigate the optimal parameters for tcVNS treatment, such as 
intensive, duration. Second, only the MEP of the motor cortex of the left 
hemisphere was measured while both vagus nerves were stimulated 
bilaterally. Third, the sample size of this study was small, and the 
participants were mostly 20–30 years old, fewer male subjects. Fourth, 
this study only carried out a single stimulation, and the long-term effect 
of VNS on the motor cortex remains unclear. In addition, most 
participants were able to distinguish between real and sham stimulation 
due to the significant differences in intensity. Therefore, a single-blind 
design was employed in this study. Finally, this study suggested the 
activation of tcVNS on the corticospinal tract, but the specific neural 
pathway remains unknown. We need to explore this point in a follow-up 
study further.

5. Conclusion

In conclusion, bilateral tcVNS could safely and effectively increase 
the excitability of the motor cortex and may become a new treatment 
to improve motor function in central neural injured patients.
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