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E�cient human activity
recognition with spatio-temporal
spiking neural networks

Yuhang Li*, Ruokai Yin, Youngeun Kim and Priyadarshini Panda

Department of Electrical Engineering, Yale University, New Haven, CT, United States

In this study, we explore Human Activity Recognition (HAR), a task that aims

to predict individuals’ daily activities utilizing time series data obtained from

wearable sensors for health-related applications. Although recent research has

predominantly employed end-to-end Artificial Neural Networks (ANNs) for feature

extraction and classification in HAR, these approaches impose a substantial

computational load on wearable devices and exhibit limitations in temporal

feature extraction due to their activation functions. To address these challenges,

we propose the application of Spiking Neural Networks (SNNs), an architecture

inspired by the characteristics of biological neurons, to HAR tasks. SNNs

accumulate input activation as presynaptic potential charges and generate a binary

spike upon surpassing a predetermined threshold. This unique property facilitates

spatio-temporal feature extraction and confers the advantage of low-power

computation attributable to binary spikes. We conduct rigorous experiments

on three distinct HAR datasets using SNNs, demonstrating that our approach

attains competitive or superior performance relative to ANNs, while concurrently

reducing energy consumption by up to 94%.

KEYWORDS

brain-inspired computing, neuromorphic computing, human activity recognition, spiking
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1. Introduction

In recent years, the proliferation of smart devices, such as smartphones and fitness

trackers, has led to a growing interest in understanding user activities and behavior for

healthcare applications. Human Activity Recognition (HAR) (Lara and Labrador, 2012;

Anguita et al., 2013; Vrigkas et al., 2015) is an area of research that aims to identify

user activities, with applications spanning sports injury detection, well-being management,

medical diagnostics, smart building solutions (Ramanujam et al., 2021), and elderly

care (Nweke et al., 2019). To accomplish these objectives, HAR tasks rely on specific input

patterns derived from various sensors embedded in smart devices, including accelerometers,

gyroscopes, and electroencephalogram (EEG) sensors. As the data collected from wearable

sensors are time series in nature, the recognition of temporal patterns in sensor data is crucial

for achieving high accuracy and efficiency.

Traditionally, researchers have employed hand-crafted features and straightforward

classifiers for HAR tasks. Feature extraction techniques can be broadly categorized into

statistical and structural (Figo et al., 2010; Bulling et al., 2014). Statistical features, such as

mean, median, time domain, and frequency domain, encapsulate the distribution properties

of individual training data samples. In contrast, structural methods account for the

interactions between different training data samples, exemplified by techniques like principal

component analysis (PCA), linear discriminant analysis (LDA), and empirical cumulative
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distribution functions (ECDF) (Abidine et al., 2018). Employing

machine learning-based classifiers (Kim and Ling, 2009; Aggarwal

and Xia, 2014; Shoaib et al., 2016) in conjunction with hand-crafted

features has resulted in reasonably satisfactory performance.

In more recent studies, deep learning techniques have been

adopted for end-to-end feature extraction and classification in

HAR tasks (Nweke et al., 2018). These approaches employ

convolutional layers in Artificial Neural Networks (ANNs) (Mnih

et al., 2015; Ignatov, 2018; Wan et al., 2020) and optimize the

model using gradient backpropagation. Due to the capacity of

gradient descent optimization to automatically determine the

most suitable parameters, ANNs have demonstrated proficient

performance across diverse datasets. Figure 1 illustrates the process

of this algorithm, where the ANN utilizes time series data from

wearable sensors to predict human activity.

However, we contend that ANNs, which employ full precision

(32-bit) computation and exhibit low sparsity, impose considerable

computational complexity and energy consumption on wearable

devices. As expounded by Rastegari et al. (2016) and Qin

et al. (2020), 32-bit networks necessitate 58× more operations

compared to fully 1-bit networks. Furthermore, ANNs rely on

ReLU neurons (Krizhevsky et al., 2012) that do not account for

temporal correlations. This design choice may be suboptimal,

particularly for time series data, as it simply adapts the ANN

framework from the image domain.

Due to the high-efficiency demands on wearable devices,

reducing the memory and computation cost of HAR models has

been a crucial research problem. As an example, Cheng et al.

(2022) propose to use an ensemble of a set of experts, where each

expert is a simple linear feature extractor. In addition, Tang et al.

(2020) use Lego bricks as lower-dimension filters. Although these

methods reduce the hardware cost to a certain extent, they lack

direct optimization on the hardware side. As we mentioned, an

extremely low-bit neural network can reduce hardware costs by an

order of magnitude (Li et al., 2019).

Hypothetically, simply adapting the current architecture to 1-

bit networks will greatly impact the representation ability, and thus

reduce the accuracy of HAR. To address this problem, one has to

consider how to extract the temporal information in sensor data

more effectively with discrete and limited 1-bit representation.

To address the aforementioned problems, we employ Spiking

Neural Networks (SNNs) (Roy et al., 2019; Tavanaei et al., 2019;

Deng et al., 2020; Panda et al., 2020; Li et al., 2021b; Xu et al.,

2022, 2023; Zhu et al., 2022) in conjunction with convolutional

layers for processing time series data in HAR tasks. HAR can benefit

from SNNs in two key aspects: (1) SNNs leverage binary spikes

(either 0 or 1) for activation, enabling multiplication-free and

highly sparse computation, thereby reducing energy consumption

for time series data (Zhang et al., 2018, 2021; Wu et al., 2021);

(2) SNNs inherently model the temporal dynamics present in time

series data, as spiking neurons within SNNs maintain a variable

called the membrane potential over time. When the membrane

potential surpasses a predefined threshold, the neuron fires a spike

in the current time step. Capitalizing on these two advantages, our

SNNs exhibit comparable or even superior performance to ANNs.

Additionally, we extend a previous hardware accelerator design

to support 1D convolution along the time dimension, making it

suitable for SNN implementation (Yin et al., 2022). We evaluate

our SNNs on three widely-used HAR datasets (UCI-HAR Anguita

et al., 2013, UniMB SHAR Micucci et al., 2017, HHAR Stisen et al.,

2015) and compare them with ANN baselines. Our SNNs achieve

the same or higher accuracy than ANNs while reducing energy

consumption by up to 94%.

In summary, our contributions are 3-fold:

1. We propose the use of SNNs for HAR tasks, significantly

reducing energy consumption while integrating a temporally-

evolving activation function.

2. We design a hardware accelerator tailored for deploying SNNs

on edge devices.

3. We conduct extensive experiments on three HAR benchmarks,

demonstrating that our SNNs outperform ANNs in terms of

accuracy while maintaining energy-saving advantages.

2. Materials and methods

2.1. Notations

We use bold lower letters for vector representations. For

example, x and y denote the input data and target label variables.

Bold capital letters like W denote the matrices (or tensors as clear

from the text). Constants are denoted by small upright letters, e.g.,

a. With bracketed superscript and subscript, we can denote the time

dimension and the element indices, respectively. For example, x
(t)
i

means the i-th training sample at time step t.

2.2. Background of HAR

Concretely, we denote the wearable-based sensor dataset with

{xi}
N
i=1, and each sample xi ∈ R

T×D is collected when the wearer

is doing certain activity yi, e.g., running, sitting, lying, standing,

etc. Here, data samples are streaming and have T time steps in

total. D is the dimension of the sensor’s output. As an example,

the accelerometer records the acceleration in the (x, y, z)-axis, thus

D = 3 for the accelerometer data. We are interested in designing

an end-to-end model f (·) and optimizing it to predict the activity

label y.

2.3. Spiking neuron

In this section, we introduce the definition of spiking neurons.

We adopt the well-known Leaky-Integrate-and-Fire (LIF) neuronal

model for spiking neurons (Liu andWang, 2001), which constantly

receives input and fires spikes through time. Formally, the LIF

neuron maintains the membrane potential v through time, and at

t-th time step (1 ≤ t ≤ T), the membrane potential receives the

pre-synaptic input charge c(t), given by

v(t+1),pre = τv(t) + c(t), where c(t) = Ws(t). (1)

Here, τ is a constant between [0, 1] representing the decay

factor of the membrane potential as time flows, which controls
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FIGURE 1

The overall HAR task procedure with ANN. Collected from smart devices, the sensor data are processed by ANN which recognizes user activity.

FIGURE 2

The schematic view of artificial neurons and spiking neurons. Artificial neuron takes full precision input and rectifies it if it is <0 and pass it otherwise;

spiking neuron considers the correlation between times, and fire a spike only if the membrane potential is higher than a threshold.

the correlation between time steps. τ = 0 stands for 0

correlation and LIF degenerates to binary activation (Rastegari

et al., 2016) without temporal dynamics, while τ = 1

stands for maximum correlation and Deng and Gu (2021) and

Li et al. (2021a) proves that LIF will become ReLU neuron

when T is sufficiently large. c(t+1) is the product between

weights W and the spike s(t+1) from previous layer. After

receiving the input charge, the LIF neuron will fire a spike if

the pre-synaptic membrane potential exceeds some threshold,

given by

s(t+1) =

{

1 if v(t+1),pre
> Vth

0 otherwise
, (2)

where Vth is the firing threshold. Note that the spike s(t+1)

will propagate to the next layer, here we omit the layer index for

simplicity.
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If the LIF neurons fire a spike, the membrane potential will be

reset. This can be done by either soft-reset or hard-reset, denoted

by

{

v(t+1) = v(t+1),pre · (1− s(t+1)) # Hard-Reset

v(t+1) = v(t+1),pre − s(t+1) · Vth # Soft-Reset
, (3)

where hard-reset sets v(t+1) to 0, while soft-reset subtracts

v(t+1) by Vth. We choose LIF neurons because s(t+1) is binary and

dependent on input in previous time steps. Figure 2 describes the

difference between ANN and SNN in a systematic way. In our

experiments, we will conduct ablation studies on the decay factor,

the firing threshold, and the reset mechanism.

2.3.1. Integrating spiking neurons into ANN
We first integrate spiking neurons into artificial neural

networks by replacing their non-linear activation with LIF. As

a result, we can compare the performance between artificial

neurons and spiking neurons. Specifically, since the time series data

naturally has a time dimension, we also integrate the pre-synaptic

potential charge along this time dimension. For instance, suppose

a ∈ R
n×c×T is a pre-activation tensor, where n, c,T represent the

batch size, channel number, and total time steps, respectively. We

set the charge in each time step for LIF as the pre-activation in the

corresponding time step, i.e., c(t) = a:,:,t . Then, we stack the output

spikes along the time dimension again, i.e., S = stack({s(t)}Tt=1), for

calculating the pre-activation in next layer.

2.4. Optimization

Although LIF neurons manage to model the temporal features

and produce binary spikes, the firing function (Equation 2) is

discrete and thus produces zero gradients almost everywhere,

prohibiting gradient-based optimization. Particularly, the gradient

of loss (denoted by L) w.r.t. weights can be computed using the

chain rule:

∂L

∂W
=

T
∑

t=1

∂L

∂s(t)
∂s(t)

∂v(t),pre

(

∂v(t),pre

∂c(t)
∂c(t)

∂W
+

t−1
∑

t′=1

∂v(t),pre

∂v(t
′)

∂v(t
′)

∂v(t
′),pre

∂v(t
′),pre

∂c(t
′)

∂c(t
′)

∂W

)

. (4)

Here, all terms can be differentiated except ∂s(t)

∂v(t),pre
which brings

zero-but-all gradients. To circumvent this problem, we use the

surrogate gradient method. In detail, we use the triangle surrogate

gradient, given by

∂s(t)

∂v(t),pre
= max

(

0, 1−

∣

∣

∣

∣

∣

v(t),pre

Vth
− 1

∣

∣

∣

∣

∣

)

. (5)

As a result, SNNs can be optimized with stochastic gradient

descent algorithms, as shown in Figure 3.

2.5. Hardware implementation

Finally, we introduce the hardware platform that we design for

carrying out the experiments on energy efficiency. We extend the

overall architecture and PE design from Yin et al. (2022) to support

the necessary computation and data movement for our SNNs in

HAR tasks. Owing to the 1D convolution and temporal dynamics

that are naturally embedded in the time series data, the complexity

of the hardware design has been largely reduced.

As shown in Figure 4, our systolic-array-based hardware

platform equips one PE array and two global buffers for holding

the weights and spikes. The size of the PE array and global buffers

are configurable according to different network structures. In this

work, we set the number of PEs to 128, weight (W) buffer to 32 KB,

and spike (S) buffer to 576 bytes, for matching with the dataflow

used in Yin et al. (2022). We briefly explain the computation and

data movement flow below.

In Figure 4, at step 1 , the entire weights for the layer are

fetched into the global buffer from DRAM. The weights and the

spikes will be written into the scratchpads inside PEs at step

2 . At step 3 , the accumulation is carried out for computing

the Ws(t) and the partial sum result is added with the residual

membrane potential from time step t − 1 at step 4 . The latest

membrane potential for time step t is then sent to the LIF unit

at step 5 to generate the output spike s(t). According to the

dataflow in Yin et al. (2022), each PE will only focus on working on

one output neuron, and the PE array processes the whole output

feature map in parallel. After that, spikes for the next layer will

be written into the S buffer at step 6 , and the whole process will

repeat. Note that we can directly apply the input spike to skip the

accumulation and weight scratchpad access if the input is equal to

zero. We show the energy cost for each operation on the PE level

in Table 1 for the reader’s reference. Here, Emac is the energy cost

for a single multiply-accumulate (MAC) operation (note that the

multiplication with spikes becomes logical AND operation between

spikes and weights); Espa is the energy cost for handling spike

sparsity; ELIF is the energy of a LIF operation; EIspad and EWspad

are the single access energy to the input and weight scratchpad

separately. All of the values are normalized by the energy cost of

a MAC operation in ANN.

3. Experiments

In this section, we verify the effectiveness and efficiency of our

SNNs on three popular HAR benchmarks. We first briefly provide

the implementation details of our experiments and then compare

our method with ANN baselines. Finally, we conduct ablation

studies to validate our design choices.

3.1. Implementation details

We implement our SNNs and existing ANNs with the PyTorch

framework (Paszke et al., 2019). For all our experiments, we use

Adam optimizer (Kingma and Ba, 2014). All models are trained for

60 epochs, with batch size 128. The only flexible hyper-parameter

is the learning rate, which is selected from {1e − 4, 3e − 4, 1e − 3}
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FIGURE 3

An example of the forward and backward process of LIF neurons in 3 time steps. →, forward; →, backward; ❶, potential charge; ❷, fire; ❸, reset; ❹,

integrate and decay.

FIGURE 4

The illustration of the hardware design we used for the experiment.

TABLE 1 Normalized energy cost for each operation on the PE level.

Operation Normalized energy cost

Emac 0.175

Espa 0

ELIF 0.383

EIspad 0.107

EWspad 1.712

The energy is normalized with the energy cost for one MAC operation in the ANN.

with the best validation accuracy. We use Cosine Annealing Decay

for the learning rate schedule. For all three HAR datasets, we split

them to 64% as the training set, 16% as the validation set, and 20%

as the test set. We report test accuracy when the model reaches

the best validation accuracy. Note that these datasets only have one

label for each input sample, therefore top-1 accuracy is the same as

the F-1 score. Similar to the SNN in image recognition tasks (Kim

et al., 2022), the last layer of our SNN architecture is a fully

connected layer. Therefore, we simply integrate all the membrane

potentials in this layer for the softmax class prediction. We use the

vanilla cross-entropy loss function rather than other specific loss

functions (Deng et al., 2022; Zhu et al., 2022) to optimize ourmodel.

The dataset descriptions are shown below:

UCI-HAR (Anguita et al., 2013) contains 10.3 k instances

collected from 30 subjects. It involves 6 different activities including

walking, walking upstairs, walking downstairs, sitting, standing,

and lying. The sensors are the 3-axis accelerometer and 3-axis

gyroscope (both are 50 Hz) from Samsung Galaxy SII.

UniMB SHAR (Micucci et al., 2017) contains 11.7 k instances

collected from 30 subjects. It involves 17 different activities

including 9 kinds of daily living activities and 6 kinds of fall

activities. The sensor is the 3-axis accelerometer (maximum 50 Hz)

from Samsung Galaxy Nexus I9250.

HHAR (Stisen et al., 2015) contains 57 k instances collected

from 9 subjects. It involves 6 daily activities including biking,

sitting, standing, walking, stair up, and stair down. The sensors are

accelerometers from 8 smartphones and 4 smart watches (sampling

rate from 50 to 200 Hz).

3.2. Comparison with ANNs

For ANN baselines, we select Convolutional Neural Networks

(CNN) (Avilés-Cruz et al., 2019), DeepConvLSTM (DCL)

(Mukherjee et al., 2020), Long Short Term Memory (LSTM)

(Wang and Liu, 2020), and Transformer (Vaswani et al., 2017)

architectures. We replace the ReLU neurons with spiking

neurons, therefore, we can only integrate them into CNN

and DeepConvLSTM since LSTM and Transformer have other

activations like tanh and swish. The CNN architecture is marked by

C32-MP2-C64-MP2-C64-MP2-FC, where each convolutional layer

is a 1-dimensional convolution with a kernel size of 8. For DCL
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TABLE 2 Accuracy (%) comparison between di�erent networks on three HAR datasets (DCL, DeepConvLSTM).

Model UCI-HAR (Anguita et al., 2013) SHAR (Micucci et al., 2017) HHAR (Stisen et al., 2015)

CNN 96.29± 0.12 92.38± 0.51 96.19± 0.14

DCL 97.87± 0.32 90.78± 1.05 97.15± 0.17

LSTM 82.41± 4.04 83.87± 0.96 95.59± 0.20

Transformer 96.02± 0.27 83.19± 0.74 95.82± 0.16

SpikeCNN 96.40 ± 0.15 94.04 ± 0.34 96.20 ± 0.09

SpikeDCL 98.86 ± 0.28 92.08 ± 0.77 97.52 ± 0.10

The bold values indicate that they achieve the highest accuracy under the same architecture family.

TABLE 3 Accuracy (%) comparison between our SNNs with existing ANNs,

including CNN, LSTM, and DeepConvLSTM.

Method Model UCI-HAR SHAR HHAR

Ronao and Cho

(2016)

CNN 94.79 - -

Khan et al.

(2018)

CNN - - 78.75

Wang and Liu

(2020)

LSTM 91.65 - 85.82

Mukherjee et al.

(2020)

DCL - 92.30 -

Zhu et al. (2018) DCL 97.31 - -

Ours SpikeCNN 96.40 ± 0.15 94.04 ± 0.34 96.20 ± 0.09

Ours SpikeDCL 98.86 ± 0.28 92.08± 0.77 97.52 ± 0.10

The bold values indicate that they achieve the highest accuracy under the same architecture

family.

architecture, it is marked by C64-C64-C64-C64-LSTM64, where

each convolutional layer uses a kernel size of 5. Dropout is applied

in Artificial CNN and DCL to reduce redundant activations, but

not in spiking CNN and DCL. Each result is averaged from 5

runs (random seeds from 1,000 to 1,004) and includes a standard

deviation value.

We summarize the results in Table 2, from which we find

that SNNs have higher accuracy than the ANNs. For example,

on the UniMB SHAR dataset, SpikeCNN has a 1.7% average

accuracy improvement over its artificial CNN counterpart. Even

more remarkably, the SpikeDeepConvLSTM (SpikeDCL) on the

UCI-HAR dataset reaches 98.86% accuracy, which is 1% higher

than DCL. Considering the accuracy is approaching 100%, the

1% improvement would be very significant. For UCI-HAR and

HHAR datasets, we find SpikeCNN has similar accuracy to

CNN, instead, the SpikeDeepConvLSTM consistently outperforms

DeepConvLSTM, indicating that SNNs can be more coherent with

the LSTM layer. Regarding the standard deviation of accuracy, we

find that SNNs are usually more stable than ANNs, except for only

one case, SpikeCNN on UCI-HAR.

We also compare our SNN with existing methods using ANNs

on three HAR datasets. The results are summarized in Table 3. It

can be found that our method achieves higher accuracy compared

to these baselines, demonstrating the effectiveness of our method.

For instance, our SpikeCNN has 1.7% higher accuracy than the

CNN used in Ronao and Cho (2016) and our SpikeDCL obtains

1.5% higher accuracy than the DCL proposed in Zhu et al. (2018).

3.3. Ablation studies

In this section, we conduct ablation studies with respect to

the (hyper)-parameters in the LIF neurons, including decay factor,

threshold, and reset mechanism. We test SpikeDCL and SpikeCNN

on UCI-HAR and SHAR datasets.

3.3.1. The e�ect of decay factor
We select 5 fixed decay factors from {0.0, 0.25, 0.5, 0.75, 1.0}.

Note that as discussed before τ = 0 indicates no correlation

between two consecutive time steps, therefore SNN becomes

equivalent to Binary Activation Networks (BAN), while τ = 1

indicates full correlation. Additionally, we add another choice

parameterized τ where the decay factor can be learned for each

layer. This choice avoids the manual adjustments of the decay

factor. Specifically, we initialize b = 0 and use τ = sigmoid(b)

to represent the decay factor. The gradient w.r.t. c is given by

∂L

∂b
=

T
∑

t=1

∂L

∂s(t)
∂s(t)

∂v(t),pre

(

∂v(t),pre

∂τ

∂τ

∂b
+

t−1
∑

t′=1

∂v(t),pre

∂v(t
′)

∂v(t
′)

∂v(t
′),pre

∂v(t
′),pre

∂τ

∂τ

∂b

)

. (6)

We provide all results in Table 4. We can find that τ has a huge

impact on the final test accuracy. For the UCI-HAR dataset with

SpikeDCL, the accuracy of τ = 0 is 94.36% while the accuracy of

τ = 0.75 is 98.86%. Additionally, if we compare other 0 < τ < 1

cases with τ = 0, we find that τ = 0 always produces a large

deficiency. This indicates that considering the temporal correlation

with τ > 0 is necessary for the time series tasks. It also verifies our

hypothesis in Section 1 that simply using 1-bit without considering

temporal information will degrade the accuracy. Moreover, for the

SHAR dataset, the τ = 1 case only has 60.55 accuracy while the

τ = 0.25 case achieves 91.72% accuracy.

It is also worthwhile to note that different datasets have varying

optimal decay factor rates. The UCI-HAR favors 0.75 as its decay

factor while the SHARprefers 0.25.We think the primary reason for

this change is that SHAR has sharper variation in its input and has

a much larger range than UCI-HAR. Therefore, it should maintain

a relatively low τ .

As for the parameterized decay factor, we do not observe its

superiority over the fixed decay factor model. The parameterized

τ generally achieves decent performance but not the best.
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TABLE 4 Ablation study on the decay factor τ .

Dataset Model Decay factor τ

0.0 0.25 0.5 0.75 1.0 Param

UCI-HAR (Anguita et al., 2013) SpikeCNN 95.48 95.63 95.78 96.40 95.92 96.11

SpikeDCL 94.36 96.50 97.57 98.86 96.60 97.37

SHAR (Micucci et al., 2017) SpikeCNN 93.54 94.04 93.48 93.85 74.68 93.54

SpikeDCL 89.53 92.08 90.93 90.10 60.55 91.53

The bold values indicate that they achieve the highest accuracy under the same architecture family.

TABLE 5 Ablation study on the firing threshold Vth and the reset mechanism.

Dataset Model Firing threshold Vth Reset

0.25 0.5 0.75 1.0 Hard Soft

UCI-HAR (Anguita et al., 2013) SpikeCNN 95.71 96.40 96.18 96.11 96.09 96.40

SpikeDCL 98.27 98.86 97.60 96.81 98.53 98.73

SHAR (Micucci et al., 2017) SpikeCNN 93.91 94.04 93.89 93.87 92.75 94.04

SpikeDCL 91.42 92.08 91.72 91.53 91.13 92.08

The bold values indicate that they achieve the highest accuracy under the same architecture family.

3.3.2. The e�ect of firing threshold
We next study the effect of the firing threshold. Generally, the

firing threshold is related to the easiness of firing a spike. We set

the threshold as {0.25, 0.5, 0.75, 1.0} and run the same experiments

with the former ablation. Here, through Table 5 we observe that

the firing threshold has a unified pattern. SNN reaches its highest

performance when the firing threshold is set to 0.5. This result is

not surprising since 0.5 is in the mid of 0 and 1, and thus has the

lowest error for the sign function.Meanwhile, we find the difference

in accuracy brought by the firing threshold is lower than the decay

factor. For instance, the largest gap when changing the threshold

for SpikeDCL on the SHAR dataset is 0.65%, while this gap can be

32% when changing the decay factor. Therefore, the SNN is more

sensitive to the decay factor rather than the threshold.

3.3.3. The e�ect of reset mechanism
Finally, we verify the reset mechanism for SNNs, namely soft-

reset and hard-reset. The results are sorted in Table 5. For all

cases, the soft-reset mechanism is better than the hard-reset. We

think the reason behind this is that the hard reset will directly set

the membrane potential to 0, therefore cutting off the correlation

between intermediate time steps. Instead, the soft-reset keeps

some previous time step’s information on membrane potential

after firing.

3.4. Hardware performance evaluation

In this section, we compare the hardware performance between

SNN and ANN. Here, we compare two metrics, namely the

activation sparsity and the energy consumption. Higher sparsity

can avoid more computations with weights in hardware that

supports sparse computation. We measure the sparsity either in

ReLU (ANNs) or in LIF (SNNs) and visualize them in Figure 5

(blue chart). The ReLU in ANN usually has around 50% sparsity,

an intuitive result since the mean of activation is around 0. LIF

neurons, however, exhibit a higher sparsity, approximately 80%,

probably due to the threshold for firing being larger than 0. As a

result, SNNs can save more operations in inference.

The second metric in hardware performance is energy

consumption. We estimate the energy consumption by simulating

the proposed hardware design in Section 2.5 together with our

ReLU-based ANN baseline through the energy simulator proposed

in Yin et al. (2022). The overall energy we consider consists of

two parts: computing energy and data-moving energy. SNNs have

advantages in computing energy due to their binary activation and

higher sparsity. The results are shown in Figure 5 right. It can be

seen that SNNs consume up to 94% less energy than ANNs, which

could largely promote the battery life in smart devices. However, in

the image processing domain, SNNs may have higher data-moving

energy because they need to store the membrane potential and

access them in the future (Yin et al., 2022, 2023; Moitra et al.,

2023). We demonstrate that, in the HAR domain, SNNs have even

lower data-moving energy than ANNs. The input data in HAR

are augmented multiple times to generate the features in the time

dimension. However, the SNNs in HAR do not need to increase

the dimension of intermediate features to accommodate the time

dimension resulting in lower data-moving costs. In summary,

SNNs bring higher task performance due to the LIF neurons,

and also energy efficiency due to the binary representation with

high sparsity.

3.5. Convergence

In this section, we visualize the convergence curves of

both ANN and SNN. We record the training accuracy and

validation accuracy during training for the CNN and DCL

models. The curves are shown in Figure 6. In the first figure,

we can find that the CNN converges faster than the SpikeCNN.

The training accuracy of ANN is always higher than the SNN.
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FIGURE 5

Hardware costs comparison between ANNs and SNNs on UCI-HAR and SHAR datasets, respectively. We include sparsity and energy consumption.

FIGURE 6

Training and validation curve on the SHAR dataset.

The validation accuracy of ANN also maintains its advantages

at first, however, the validation accuracy of SNN becomes

higher in the later stages. We conjecture that in the pure

convolutional architecture, SNN is harder to be optimized than

ANN and it may have a smaller generalization gap due to its

binary activation.

For the right side of Figure 5, we record the curves of

DeepConvLSTM. It can be seen that SNN has faster convergence

in this case. The validation accuracy of SNN is always higher

than ANN. This result confirms that SNN is more coherent with

LSTM layers.

3.6. Representation similarity

In this section, we visualize the similarity between the ANN’s

and SNN’s representation. We use Centered Kernel Alignment

(CKA) (Kornblith et al., 2019; Li et al., 2023) to calculate the

representation similarity index. We compare CNN and DCL

on UCI-HAR and SHAR datasets. We compute the CKA value

between convolutional or activation layers, for ReLU and LIF.

Therefore, we can construct a heatmap with x, y axes being the

layer index, and each entry is the CKA value of layers with those

indices. The heatmaps are shown in Figure 7. In general, we find
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FIGURE 7

Feature similarity measure between ANN and SNN using CKA.

that the first layer in ANN and SNN produces nearly the same

representation. As the network goes deep, the similarity becomes

lower implying SNN’s latter layers extract different features from

the HAR tasks as compared to ANNs. We can tentatively say that

the difference in features may be the reason why SNNs and ANNs

yield different accuracy on HAR tasks. We also discover that the

shallow layers and the deep layers are very different, with a lower

than 0.4 CKA value.

4. Conclusion

In this paper, we have shown the supremacy of Spiking

Neural Networks (SNNs) over Artificial Neural Networks (ANNs)

on HAR tasks, which, to our best knowledge, is the first.

Compared to the original ANNs, SNNs utilize their LIF neurons

to generate spikes through time, bringing energy efficiency as well

as temporally correlated non-linearity. Our results show that SNNs

achieve competitive accuracy while reducing energy significantly,

and thus demonstrate the advantage of SNNs for low-power

wearable devices.
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