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The dichroic macular pigment in the Henle fiber layer in the fovea enables

humans to perceive entoptic phenomena when viewing polarized blue light. In

the standard case of linearly polarized stimuli, a faint bowtie-like pattern known

as the Haidinger’s brush appears in the central point of fixation. As the shape

and clarity of the perceived signal is directly related to the health of the macula,

Haidinger’s brush has been used as a diagnostic marker in studies of early stage

macular degeneration and central field visual dysfunction. However, due to the

weak nature of the perceived signal the perception of the Haidinger’s brush has

not been integrated with modern clinical methods. Recent attempts have been

made to increase the strength of the perceived signal by employing structured

light with spatially varying polarization profiles. Here we review the advancements

with the structured light stimuli and describe the current challenges and future

prospects.
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1. Introduction

1.1. Age-related macular degeneration and the Haidinger’s
brush

Age-related macular degeneration (AMD) is a global leading cause of irreversible

blindness (Lim et al., 2012). Deposition of numerous subretinal drusen is known to be an

early sign of AMD preceding the intermediate stage of the disease, which typically involves

central field distortions and impairment of visual acuity (Bowes Rickman et al., 2013; Wong

et al., 2022). Further degeneration of the retina and choroidal neovascularization (CNV),

and the proliferation of small extraneous and fragile blood vessels within the choroid, occur

during advanced AMD (Yeo et al., 2019; Borrelli et al., 2020). If the early functional signs

of macular degeneration can be detected, clinically visible anatomical damage to the eye can

be more readily prevented or minimized (Heesterbeek et al., 2020; Di Carlo and Augustin,

2021). Consequently, detecting AMD at the earliest stage is invaluable. Current methods

to detect AMD include visual identification of the drusen and CNV using a slit lamp and

imaging the retina with optical coherence tomography (OCT) (Cook et al., 2008; Waldstein

et al., 2020). Unfortunately, the clinical manifestations of an early stage of AMD are subtle,
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and the disease is often detected after noticeable visual impairment

has begun (Green et al., 1985; Bowes Rickman et al., 2013).

A promising diagnostic marker for detecting the early signs

of AMD may be the perception of entoptic phenomena when

viewing polarized blue light (Forster, 1954). Uniformly polarized

blue light stimuli induce a bowtie-like entoptic pattern known

as the Haidinger’s brush. The discovery of the Haidinger’s brush

dates back to 1844 (Haidinger, 1846), and the first mechanism

models developed by Maxwell and Helmholz (Maxwell, 1850;

von Helmholtz, 2013) postulated the existence of a radial filter

in the eye. Later investigations confirmed the presence of a

dichroic macular pigment in Henle fibers in the retina that possess

radial arrangement throughout the fovea (Horváth and Varjú,

2004). Although the exact mechanism that is responsible for the

Haidinger’s brush is still unclear, it is typically attributed to the

tangential arrangement of the macular pigment molecules and

the radial arrangement of the Henle fibers (Horváth and Varjú,

2004; Le Floch et al., 2010; Misson et al., 2015, 2019; Misson and

Anderson, 2017; Wang et al., 2022). The relevant dichroic macular

carotenoids, namely lutein, zeaxanthin, and meso-zeaxanthin

possess an anisotropic absorption peak at approximately 460

nm (Temple et al., 2015; Mottes et al., 2022). Their placement in

the radially oriented fibers effectively forms a weak radial polarizer

in the human eye for the color blue.

Haidinger’s brush has been employed as a diagnostic marker

in studies of age-related macular degeneration (Forster, 1954;

Naylor and Stanworth, 1955; Müller et al., 2016; Misson et al.,

2020, 2021). A major focus is on determining the time period

between polarization-based vision loss and normal vision loss in

people suffering from AMD. However, despite the developments

associated with the Haidinger’s brush, modern clinical tools do

not employ entoptic phenomena for diagnosing AMD. One of the

major reasons being the faint nature of the entoptic signal. The

recent integration of a structured light toolbox into vision science

aims to address this problem by greatly enhancing the visibility and

versatility of entoptic phenomena.

1.2. Development of structured light
techniques

The development of custom light fields or “structured light”

has seen remarkable progress in the last 30 years (Chen et al.,

2021; Ni et al., 2021; Bliokh et al., 2023). The core idea is

to induce non-trivial propagation properties by tailoring the

light beam’s wave front. For example, imprinting an azimuthally

varying phase profile creates orbital angular momentum (OAM)

states that possesses a helical wavefront and carry quantized

OAM (Bazhenov et al., 1990; Allen et al., 1992); imprinting

a cubic phase profile creates the Airy beams that possess a

curved trajectory in free space and self-healing property whereby

the beam appears to reconstruct itself in the presence of

obstacles (Berry and Balazs, 1979); and imprinting a radial phase

prepares the “non-diffractive” Bessel beams (Indebetouw, 1989).

The enabling properties of structured light beams and the access

to new degrees of freedom have brought forth a wide range of

impactful applications in optical phenomenology and microscopy,

high-bandwidth communication, manipulation of matter, and

quantum science (Mair et al., 2001; Andersen et al., 2006; Marrucci

et al., 2006, 2011; Maurer et al., 2007; Padgett and Bowman, 2011;

Wang et al., 2012; Ritsch-Marte, 2017; Sarenac et al., 2018; Schwarz

et al., 2020; Cameron et al., 2021).

Numerous methods for preparation and characterization of

structured light beams have been developed (Rubinsztein-Dunlop

et al., 2016). However, the single major technological driving

force responsible for the wide adaptation of the structured light

techniques is the development of an optical component called the

Spatial Light Modulator (SLM) (Curtis et al., 2002). The SLM is

capable of imprinting an arbitrary 2D phase profile over the input

beam, thus enabling the preparation of complex phase and intensity

structured beams. The ability ofmodern SLMdevices to accomplish

this with fast switching rates and high resolution further increases

their applicability.

The coupling of polarization to structured light enables

the preparation of beams with spatially varying polarization

profiles (Marrucci et al., 2011), opening avenues to applications in

high-bandwidth communication and optical metrology (Milione

et al., 2015; Rubinsztein-Dunlop et al., 2016). These states were

also the backbone of the recent integration of structured light

techniques into vision science for the creation of stimuli with

higher numbers of azimuthal fringes (Sarenac et al., 2020), enabling

the perception and discrimination of Pancharatnam-Berry phases

(Sarenac et al., 2022), measuring the visual angle of entoptic

phenomena (Kapahi et al., 2023), retinal imaging using structured

light (Kapahi et al., 2023), and the creation of radially varying

entoptic stimuli (Pushin et al., 2023).

2. Structured light for vision science
applications

The typical action of a SLM is to induce an arbitrary spatially

dependant phase profile f (x, y) onto the polarized input beam

(typically horizontal):

|9SLM〉 = eif (x,y) |H〉 , (1)

where the resolution of f (x, y) is set by the pixel size of the SLM,

typically a few microns in size. Each pixel can be individually

addressed to set the phase at its location between 0 and 2π , and

the fast switching rates of the SLM enable one to vary f (x, y) in

real time. In the case of vision science the focus has been on

creating spatially varying profiles of linear polarization. The action

of the human eye can be modeled as a radial polarization filter, and

therefore, it is convenient to consider phase profiles with radial and

azimuthal symmetry. With an appropriate input and subsequent

beam manipulation the general state of the structured light beams

in recent vision science studies can be expressed as:

|9SL〉 =
1
√
2

[

ei(nrr+ℓφ+θ t) |R〉 + |L〉
]

, (2)

where (r,φ) are the transverse spatial coordinates, nr and ℓ and

the radial and OAM numbers, |L〉 and |R〉 are the right and left
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circularly polarized states, and θ t is a time varying phase shift that

dictates the speed of the perceived entoptic motion. Sarenac et al.

(2020) showed that the number of entoptic azimuthal fringes that

a human sees when viewing optical states with a superposition of

right and left circular polarization coupled to two different orbital

angular momentum (OAM) values (ℓ1 and ℓ2) is equal to the

number (N) of radial lines in the corresponding polarization profile

of the beam, where N = |(ℓ1 − ℓ2)− 2|.
A new challenge that arises with the structured light stimuli

is taking into account the effect of free space propagation which

alters the beam profile. In the case of OAM beams, a black

obstruction region naturally arises in the middle as the beam

propagates. This feature was present in Sarenac et al. (2020). To

remove the effects of free-space propagation, a technique can be

implemented to image the plane of the state preparation onto the

retina (Kapahi et al., 2023). This is analogous to a microscopy

4f imaging system, whereby the state at the location of the SLM

is imaged at the location of the retina. The decoupling of free

space propagation has the additional benefit of enabling the use

of precise arbitrary obstructions. For example, the middle region

can be intentionally obstructed to test the threshold of polarization-

based peripheral vision (Kapahi et al., 2023). An interesting result

of Kapahi et al. (2023) study is that the perceived size of the

entoptic pattern with N = 11 azimuthal fringes was 9.5◦ ±
0.9◦. This significantly differs from previous estimates of the

Haidinger’s brush phenomenon’s extant (N = 2 azimuthal fringes),

of 3.75◦ (Coren, 1971), suggesting that higher azimuthal fringe

density increases pattern visibility.

A multitude of novel perception tasks are enabled with the

structured light stimuli. Several examples of stimuli and their

corresponding entoptic phenomena are shown in Figure 1. The

first column shows the case of (nr = 0, ℓ = 0) that results in a

uniformly polarized stimulus and the perception of the Haidinger’s

brush pattern described earlier. The second column considers a

stimulus whose polarization profile matches the orientation of the

eye’s radial filter, resulting in a uniform entoptic profile. The third

column considers a stimulus with polarization coupled to a higher

OAM state (nr = 0, ℓ = 9) resulting in an entoptic profile of

N = 7 azimuthal fringes. The last column considers a stimulus

with a OAM = 2 coupled radial state (nr > 0, ℓ = 2) whereby

the OAM = 2 decouples from the radial filter of the eye and the

resulting entoptic profile is along the radial direction as shown.

Pushin et al. (2023) employed this stimulus to test discrimination

sensitivity to inwards and outwards radial motion. It was found

that participants had more difficulty discriminating radial motion

directions than rotational motion directions. A possible cause

could be that in comparison to azimuthally varying stimuli

where the fringe oscillations are along the direction of constant

macular pigment, radially varying entoptic motion is along the

direction with the most change in macular pigment (Pushin et al.,

2023).

A major challenge in perception tasks involving uniformly

polarized light stimuli and the Haidinger brush is compensating

for the ocular birefringence that is oriented about a roughly

horizontal axis and subjectively varies in magnitude (Van Blokland

and Verhelst, 1987; Bour, 1991; Knighton and Huang, 2002). For

some values of birefringence the rotation of the Haidinger’s brush

becomes undetectable while for others it can appear to rotate in the

opposite direction. Kapahi et al. (2023) showed that for structured

light states with ℓ > 3, the perceived rotation direction of the

entoptic phenomenon is insensitive to ocular birefringence.

A typical setup and procedure for perception tasks with

structure light stimuli is depicted in Figure 2. The SLM prepares

the desired state for observation, which is then imaged onto

the participant’s retina. Depending on what is being tested,

an obstruction may be introduced onto the phase profile. The

participant views the corresponding entoptic profile and performs

a discrimination task, for example, discriminating the direction

of motion. Depending on the response, the SLM updates the

obstruction size for the next stimulus. A reliable psychophysical

threshold can then be obtained using a staircase method where the

size of the obstruction is varied according to the accuracy of the

participant’s responses (Kapahi et al., 2023; Pushin et al., 2023).

3. Future prospects

Several exciting avenues can be directly explored given the

advances in preparation of structured light stimuli. For example,

whereas Kapahi et al. (2023) determined that the perceived size

of the entoptic pattern with N = 11 azimuthal fringes was 9.5◦

compared to the Haidinger’s brush phenomenon’s extant of 3.75◦,

a study to quantify the relationships between the number of

azimuthal fringes and perceived size has not yet been done. Similar

opportunity is available for the studies with radial numbers (Pushin

et al., 2023). Having the ability to determine the apparent size vs.

the density of fringes will enable a tomographic reconstruction of

the macular pigment profile that is responsible for the polarization-

based perception. Furthermore, given that the extent of the

structured light induced entoptic images is shown to extend beyond

the regions of the fovea, a study is needed to determine the

relationship between the perceived size and the thickness of the

retinal fiber layers.

The studies with structured light stimuli up to now have

been performed with participants that possess a healthy macula.

The application of these methods to participants that are at

various stages of AMD has not yet been reported. Although

the studies with an obstruction present have been done with a

central obstruction (Kapahi et al., 2023; Pushin et al., 2023), when

considering participants with AMD amore appropriate obstruction

will have to be devised as those participants might already have a

problem with their central field of vision.

Although Kapahi et al. (2023) introduced retinal imaging using

structured light, this was only in terms of intensity images that

were used to determine the exact visual extent of the perceived

entoptic phenomenon. It may be possible to extend structured light

retinal imaging to directly quantify the polarization content of the

reflected light in order to associate retinal structural features with

polarization sensitivity and to assess macular health without any

need for participant interaction.

In addition to the AMD related applications, structured

light stimuli also enable several interesting physics applications

in the rising field of quantum vision (Loulakis et al., 2017;

Margaritakis et al., 2020; Gassab et al., 2023). Sarenac et al. (2022)
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FIGURE 1

Examples of phase and polarization profiles of structured light stimuli (top) and the corresponding entoptic profiles that a participant with a healthy

macula would observe (bottom). The clarity of the entoptic profiles is proportional to macular pigment density which typically peaks at the central

point of vision and decreases with eccentricity. The first column depicts a horizontally polarized light stimulus and the Haidinger’s brush. Introducing

structured light techniques to prepare stimulus with polarization coupled orbital angular momentum (OAM) states allows us to induce a wide variety

of entoptic patterns. The second column depicts the scenario where the stimulus with OAM = 2 is used to match the structure of the Henle fibers

thereby inducing a monotone entoptic pattern. The third column depicts the use of higher OAM numbers to induce stronger stimulus with higher

numbers of azimuthal fringes. The last column depicts the use of a radial state coupled to an OAM = 2 state that induces entoptic profiles with

radially varying fringes.

FIGURE 2

The working principle of the studies with structured light stimuli. A spatial light modulator (SLM) creates an arbitrary polarization state with spatial

resolution limited by its pixel size (modern values around ≈ 3 µm by 3 µm). Given the versatility of the SLM, one can introduce arbitrary obstructions,

such as the depicted example which removes the central region in order to test the participant’s peripheral vision. Optics components (not shown)

are used to project the state from the location of the SLM to the participant’s retina, thereby removing propagation e�ects. The size of the obstruction

can be varied according to the participant’s feedback, and a threshold value for eccentricity can be obtained through a standard staircase method.
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tested the ability of human observers to discriminate distinct

profiles of spatially dependant geometric phases when directly

viewing stationary structured light beams. Participants used self-

generated eye movements to induce motion in the perceived

entoptic phenomenon. Given the access to the additional OAM

degree of freedom, an interesting future experiment to consider

for structured light stimuli is the measurement of multi-partite

correlations with human detectors performing polarization-based

Bell-state projections (Shen et al., 2021).

4. Conclusion

Technological advancements in preparation and

characterization of structured light have been successfully

integrated into vision science applications. This young and exciting

field contains many opportunities to gain additional insight into

macular health by integrating structured light, quantum optics,

and vision science. For example, larger and more visible entoptic

percepts can be created than with traditional Haidinger’s brush,

and obstructions with varying sizes can be introduces to determine

interpretable thresholds.
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