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Sublinear information bottleneck
based two-stage deep learning
approach to genealogy layout
recognition

Jianing You and Qing Wang*

College of Information and Electrical Engineering, China Agricultural University, Beijing, China

As an important part of human cultural heritage, the recognition of genealogy

layout is of great significance for genealogy research and preservation. This

paper proposes a novel method for genealogy layout recognition using our

introduced sublinear information bottleneck (SIB) and two-stage deep learning

approach. We first proposed an SIB for extracting relevant features from the input

image, and then uses the deep learning classifier SIB-ResNet and object detector

SIB-YOLOv5 to identify and localize di�erent components of the genealogy layout.

The proposedmethod is evaluated on a dataset of genealogy images and achieves

promising results, outperforming existing state-of-the-art methods. This work

demonstrates the potential of using information bottleneck and deep learning

object detection for genealogy layout recognition, which can have applications

in genealogy research and preservation.

KEYWORDS

genealogy layout recognition, sublinear information bottleneck, YOLOv5 detector,
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1. Introduction

A genealogy is a special document that records the family lineage and important figures

in a family’s history in the form of a chart (Wang and Zhang, 2008). It is a characteristic

of Chinese civilization, and is a historical record of the bloodline of a kinship group,

including the people and events related to the same ancestor. Genealogy is a valuable

humanistic resource that plays an irreplaceable and unique role in in-depth research in

fields such as history, folklore, demography, sociology, and economics. However, due to

wars and social upheavals in history, the lineages and genealogies of many families have

been destroyed or lost. Therefore, digital preservation of genealogy has become necessary.

Through digital technology, genealogy can be digitally stored and disseminated, making it

convenient for researchers and scholars to access and study, and protecting the cultural value

and inheritance of genealogy (Chang, 2014).

Genealogy recognition technology is one of the important means of digital preservation

of genealogy. By recognizing the ancient books of genealogy, the information in the

genealogy can be automatically extracted and processed, thus realizing the digital storage

and dissemination of genealogy (Fan, 2013). However, due to the complex and diverse layout

structures of genealogy ancient books, the recognition difficulty is also high. Therefore,

accurate layout detection and positioning technology is an important prerequisite for

genealogy recognition.

Genealogy recognition relies heavily on document layout analysis technology. The most

famous and widely used traditional document layout analysis algorithm is the Docstrum
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algorithm proposed by L. (1993). It sequentially divides the black

and white connected domains in the image into text, text lines, and

text blocks from bottom to top, thus obtaining the layout. For table

recognition, the table lines are obtained through erosion, dilation,

and other operations, the row and column areas are divided, and

then the cells are combined with text contents to reconstruct

the table object. In response to some shortcomings of the

algorithm, subsequent researchers have proposed corresponding

optimization algorithms. For example, Wieser and Pinz (1994)

proposed a method of combining bottom-up merging and top-

down cutting for newspaper page segmentation. Watanabe et al.

(1995) introduced a classification tree to manage different types

of layout structures, and proposed a method for recognizing the

layout structure of documents with multiple table formats. Liu-

Gong et al. (1995) used a universal model to convert document

images into layout structures. Lee et al. (2000) used geometric

structure analysis to propose a knowledge-based method for

analyzing complex geometric structures of journal pages. Lee and

Ryu (2001) constructed a pyramid quadtree structure for multiscale

analysis based on a parameter-free method, and proposed a

periodicity measurement method to find the periodic properties

of text regions. In addition, in the application of textual literature,

Bukhari et al. (2011) proposed a layout distribution system for

extracting text in reading order from scanned images of Arabic

texts written in different languages and styles. However, traditional

algorithms still face some technical challenges, mainly in (1)

layout analysis and table structure extraction; (2) image processing

methods relying on various threshold and parameter selections;

(3) difficulty in ensuring generalization of document images in

different scenarios.

In recent years, deep learning has shown great promise

in improving the accuracy and efficiency of genealogy layout

recognition. With its ability to automatically learn and extract

features from large datasets, deep learning models can also adapt

to different variations in genealogy images, such as variations in

font styles, sizes, and orientations, without the need for manual

feature engineering (Li et al., 2022). However, there are still some

challenges that need to be addressed to improve the performance

of deep learning models in genealogy recognition. One of the major

challenges is dealing with images that are poorly scanned or contain

noise or artifacts, which can affect the accuracy of recognition.

Another challenge is handling complex layouts, which can make

it difficult for deep learning models to distinguish between text and

non-text regions. Moreover, the lack of large and diverse annotated

datasets for genealogy recognition limits the performance of deep

learning models. This is because deep learning models require large

amounts of annotated data to effectively learn and generalize to

new data. Therefore, efforts to create more annotated datasets for

genealogy recognition are needed to improve the performance of

deep learning models in this domain.

Therefore, in this paper, we present a two-stage deep learning

approach for genealogy image layout recognition. Firstly, genealogy

images are fed into the ResNet classifier model to identify whether

the image contains a bordered or borderless image. Based on

the classification results, the image is then directed to either a

borderless or a bordered YOLOv5 object detection model. Both

the deep learning classifier and object detection models are trained

using large amounts of labeled data, which can lead to high

accuracy in recognizing different image features and layouts, and

can be easily scaled to recognize a large number of different image

layouts, making them suitable for recognizing different genealogy

image layouts. Further, the proposed method can also be relatively

fast at recognizing image layouts, making them suitable for real-

time or near real-time applications. Furthermore, we introduce

the sublinear information bottleneck (SIB) algorithm to compress

the intermediate feature representation of the network model as

much as possible while ensuring the accuracy of the model’s

output, thus achieving high generalization and strong robustness

in layout recognition. The main contributions of this paper can be

summarized as follows:

(1) Proposing a two-stage deep learning approach that

providing advantages of high accuracy, scalability, flexibility, and

speed performance;

(2) Introducing the SIB compression technology to improve the

network’s generalization performance, making it more adaptable to

genealogy images.

(3) Using rich collection resources, we scan and manually

label common genealogy images to establish a genealogy image

and layout positioning standard dataset for model training and

experimental result testing.

The rest of this paper is organized as follows: Section 2 reviews

related work on deep learning-based layout recognition and the

basic concept of information bottleneck. In Section 3, we introduce

our proposed layout recognition method in detail, including the

SIB, SIB-ResNet classifier and SIB-YOLOv5 object detector. In

Section 4, we construct a genealogy layout dataset that we designed

and established independently and perform performance testing

on our proposed method. Finally, Section 5 summarizes the

whole paper.

2. Related works

2.1. Deep learning based genealogy layout
recognition

In recent years, deep learning-based approaches have become

increasingly popular for genealogy layout recognition due to their

ability to automatically learn discriminative features from data.

Borges Oliveira and Viana (2017) proposed a fast automatic

document layout method based on convolutional neural networks

(CNN), which greatly improved overall performance. Moreover,

Kosaraju et al. (2019) proposed a texture-based convolutional

neural network model called DoT-Net, which can effectively

recognize document component blocks such as text, images,

tables, mathematical expressions, and line graphs, solving the

problems caused by location transformations, inter-class and intra-

class variations, and background noise. Singh and Karayev (2021)

unveil an architecture for a Handwritten Text Recognition (HTR)

model based on Neural Networks, which is capable of recognizing

complete pages of handwritten or printed text without the need

for image segmentation. It is built on the Image to Sequence

architecture, allowing it to accurately extract text from an image

and sequence it correctly. Additionally, it can be trained to generate
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auxiliary markup that pertains to formatting, layout, and content.

Wu et al. (2023) proposed a genealogical knowledge graph model

to implement the construction and applications of genealogical

knowledge graphs. One of the challenges in genealogy layout

recognition is the lack of large datasets, as well as the presence of

various types of noise, such as text overlap, low contrast, and curved

text. To address this, researchers have proposed different strategies,

such as dataset collection and data augmentation.

In Singh and Karayev (2021), Sumeet et al. presented

TableBank, a new image-based table detection and recognition

datase with 417K high quality labeled tables, allowing building

strong baselines of deep neural networks. Zhong et al. (2019)

introduced the PubLayNet dataset for document layout analysis,

the dataset is created by automatically associating the XML

representations with the content of more than 1 million publicly

available PDF articles on PubMed Central. Data augmentation is

also a commonly used technique to increase the size and diversity

of training data. To address the issue of data scarcity for rare

family relationships, He et al. (2021) leveraged data augmentation

technology to generate additional synthetic data. Subsequently,

they developed a multitask-based artificial neural network model

capable of simultaneously detecting names, extracting relationships

between individuals, and assigning attributes such as birth and

death dates, residence, age, and gender.

Deep learning-based approaches have shown promising results

for genealogy layout recognition. However, there is still room for

improvement, particularly in handling complex genealogy layouts

with overlapping and curved text.

2.2. Information bottleneck

Information Bottleneck (IB) was first proposed by Tishby and

Zaslavsky (1999) for traditional machine learning methods. In

2015, Tishby hypothesized in his paper that deep learning is an

information bottlenecking procedure that compresses data noise

as much as possible and keeps the information that the data

wants to convey (Tishby and Zaslavsky, 2015). This suggests that

neural networks are like squeezing information into a bottleneck,

leaving only the features that are most relevant to the general

concept and removing the large amount of irrelevant and noisy

data. Later, it was used in Schwartz-Ziv and Tishby (2017) for

the study of interpretability of deep learning, and realized the

effective combination of information bottleneck theory and deep

learning networks.

The Information Bottleneck is an information theory method

used for tasks such as data compression and classification, which

effectively extracts key information from data. The core idea is to

minimize the uncertainty of the output information while retaining

the maximum amount of input information.

Specifically, given input random variable X and output random

variable Y , the IB method finds an intermediate random variable

T to describe the relationship between input and output, which

maximally preserves the information of X, while minimizing the

information entropy between T and Y , i.e.,

I(T;X)− βI(T;Y) (1)

where I(T;X) and I(T;Y) are the mutual information between T

and X, and T and Y , respectively, and β is a tuning parameter

that balances the information entropy between X and Y , and that

between T and Y .

The advantage of the IB method is that it can automatically

learn the most important features from data without requiring

prior knowledge, thus extracting the most useful information.

It has been widely used in natural language processing, image

recognition, signal processing, and other fields.

Dong and He (2023) used the optimization objective proposed

by the information bottleneck theory, added a loss function to the

tensor input to the linear classification layer in the model, and

aligned the clean samples with the high-level features obtained

when the adversarial samples are input to the model by sample

cross-training. Li and Liu (2019) employed IB theory to understand

the dynamic behavior of convolutional neural networks (CNNs)

and investigate how the fundamental features have impact on the

performance of CNNs. To construct a classifier which is more

robust to small perturbations in the input space, Pensia et al.

(2020) propose a novel strategy for extracting features in supervised

learning. The experimental results for synthetic and real data sets

show that the proposed feature extraction methods indeed produce

classifiers with increased robustness to perturbations. In Song et al.

(2022), Song et al. investigated for the first time a novel and flexible

multimodal representation learning method, multi-feature deep

information bottleneck (MDIB), for breast cancer classification in

CESM. Moreover, Amjad and Geiger (2020) investigate training

deep neural networks (DNNs) for classification via minimizing the

information bottleneck (IB) functional. The above studies show

that information bottleneck theory has a positive impact on feature

extraction, model optimization and performance improvement of

deep learning models.

3. Proposed method

3.1. Sublinear information bottleneck

The SIB is a novel method for unsupervised feature selection

and compression that extends the original information bottleneck

(IB) method by incorporating second-order statistics of the input

data (Kolchinsky et al., 2018).

The SIB method aims to find a compressed representation T

of the input data X that preserves the most relevant information

for a given task Y . Specifically, the method seeks to minimize the

following objective function:

L = I2(X;T)+ βH(Y|T) (2)

where I2(X;T) is the second-order mutual information between X

and T, and H(Y|T) is the conditional entropy of Y given T.

The first term I2(X;T) measures the amount of second-order

statistical dependence between X and T, while the second term

H(Y|T) measures the amount of uncertainty in predicting Y given

T. By minimizing this objective function L, the SIB method finds

a compressed representation T that preserves the most relevant

information for predicting Y .
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The optimization problem is typically solved using a

Lagrangian relaxation approach, which leads to a set of non-

linear equations that can be solved iteratively (Juttner et al., 2001).

Compared to the original IB method (Owen, 2001), the SIBmethod

takes into account the second-order statistics of the input data,

which can capture higher-order dependencies and correlations

between input variables. This can lead to better feature selection

and compression performance, especially in complex datasets with

non-linear dependencies.

The conventional problem in IB theory is to minimize the

mutual information I (X;T) with respect to the encoding mapping

p (t|x), given a fixed input distribution p (x). This function is

convex. On the other hand, maximizing the conditional entropy

H (Y|T) = H (Y) − I (T;Y) with respect to the decoding mapping

p
(

y|t
)

, given a fixed joint distribution p
(

x, y
)

, is a concave function.

The entropy H (Y) is a constant for the dataset or assumed to have

a small fluctuation for a patch of training data. Therefore, the SIB

function L used to determine the global or local minimum is a

concave function.

We define the optimal parameter set ω to achieve the best

performance of the minimal value of the loss L and a randomly

generated parameter set φ. Let the representation predicted by φ be

Ŷ , and ŷ be an instance of Ŷ . Thus, we have

H
(

qφ(Y|T)
)

≤ H
(

qφ(Y|T)
)

+ DKL

(

qω(Y|T) ‖ qφ(Y|T)
)

= −Eqω(Y ,T)

[

logqφ(Y|T)
]

= −Eq
ω(Y ,Ŷ)

(

Eq
φ(Ŷ ,T)

[

logqφ(Y|Ŷ)
])

= −Eq
ω(Y ,Ŷ)

[

logqφ(Y|Ŷ)
]

= C

(

qφ(Y|Ŷ)
)

(3)

where E [·] denotes the expectation value, C(·) is the cross-entropy,

and (a) is due to

qY|T
(

y|t
)

= qY|q(ŷ|t)
(

y|q
(

ŷ|t
))

= qY|Ŷ
(

y|ŷ
)

(4)

The equality in (3) is achieved only when qφ(y|t) is identical to the

optimal mapping qω(y|t). Moreover, if the Kullback-Leibler (KL)

divergence DKL

(

qω(Y|T) ‖ qφ(Y|T)
)

→ 0, then H
(

qφ(Y|T)
)

→

C

(

qφ(Y|Ŷ)
)

. This implies that minimizing the distance between

the network parameter set φ and the optimal setω leads to a smaller

gap between H
(

qφ(Y|T)
)

and its upper bound. The term I (X;T)

denotes the information that is compressed from the input signal X

to the intermediate activation T:

I (X;T) =
∑

x,t

q (x, t) log

(

q (x, t)

p (x) q (t)

)

=
∑

x,t

q (x, t) log

(

q(t|x)

q(t)

)

=
∑

x,t

q (x, t) log q (t|x) −
∑

t

q (t) log q (t) (5)

Computing the marginal distribution of T, q(t) =
∑

x q(t|x)p(x),

may pose a challenge. Taking inspiration from VIB (Alemi et al.,

2017), we employed the variational distribution r(t) to approximate

q(t). As the KL divergence is non-negative by definition, we obtain:

DKL

(

q(T) ‖ r(T)
)

=
∑

t

q(t) log q(t)−
∑

t

q(t) log r(t)

≥ 0 (6)

According to (5) and (6), we have

I (X;T) ≤
∑

x,t

q(x, t) log q(t|x)−
∑

t

q(t) log r(t)

=
∑

x,t

p(x)q(t|x) log q(t|x)−
∑

x,t

p(x)q(t|x) log r(t)

=
1

N

N
∑

n=1

q(t|xn) log
q(t|xn)

r(t)

=
1

N

N
∑

n=1

DKL

[

q (T|xn) ‖ r (T)

]

(7)

whereN is the number of data samples that has been defined before.

By combining (3) and (7) with the constraints H(Y|T) ≥

0, I(X;T) ≥ 0, we established an upper bound for our proposed

SIB, which is given by:

L ≤ L̄ =C

(

qφ(Y|Ŷ)
)

+ β

[

1

N

N
∑

n=1

DKL

[

q (T|xn) ‖ r (T)
]

]2

(8)

The minimization of the loss function L can be transformed into

the minimization of the upper bound L̄, thereby achieving the

objective of reducing L.

3.2. SIB-ResNet

In recent years, ResNet has become one of the most popular

deep neural network architectures for image classification and

other computer vision tasks (He et al., 2016). One of the keys

to its success is the use of residual connections, which allow

the network to effectively learn features at multiple scales while

minimizing the vanishing gradient problem. However, ResNet still

suffers from the curse of dimensionality, as the feature maps tend

to become increasingly complex and high-dimensional as they pass

through the network. To alleviate this issue, we propose to insert

four proposed sublinear information bottleneck (SIB) layers into

ResNet, which aims to extract the most relevant information from

the input while discarding the redundant information. These layers

perform dimensionality reduction by encoding the feature maps

into a compressed representation, which can then be decoded back

to the original dimensionality. By adding these SIB layers, we aim to

improve the efficiency and scalability of ResNet, while maintaining

its high accuracy. As shown in Figure 1, the constructed loss for

SIB-ResNet is

LSIB−ResNet = I2(X;T1)+

3
∑

i=1

αiI(Ti;Ti+1)+ βH(Y|T4) (9)

where αi > 0, (i = 1, 2, 3) and β > 0 are designed parameters to

balance the weight of each term.
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FIGURE 1

The proposed structure of SIB-ResNet.

FIGURE 2

The proposed structure of SIB-YOLOv5. *Represents the number of times the module is repeated in the graph.

3.3. SIB-YOLOv5

The YOLOv5 model utilizes several loss functions to optimize

its performance during training. These include:

(1) Objectness loss: This function aims to identify whether the

object is present or not in a given anchor box. It penalizes false

positives or negatives when detecting an object in the anchor box.

Lobj = λobj

S2
∑

i∈anchors

B
∑

j=0

1
obj
ij

(

IOUpre − IOUtrue

)2
(10)

where i denotes the index of anchor boxes, j denotes the

index of bounding boxes, 1
obj
ij is an indicator function that is

equal to 1 if the anchor box i is assigned to the ground-truth

box j, and 0 otherwise. S is the grid size, and B is the number of

predicted bounding boxes each anchor predicts. IOUpre represents

the intersection over union (IOU) between the predicted bounding

box and its assigned ground truth box, while IOUtrue represents the

true intersection over union (IOU) between the ground truth box

and anchor box.

(2) Classification loss: This function helps to classify the object

detected in the anchor box. It computes the cross-entropy between
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FIGURE 3

The two styles of genealogical picture and their corresponding tag boxes.

FIGURE 4

The implementation process of model.

the predicted class probabilities and the true class of the object.

Lcls = λcls

S2
∑

i∈anchors

B
∑

j=0

1
obj
ij

∑

c∈C
[

pcij log
(

p̂cij

)

+ (1− pcij) log
(

1− p̂cij

)]

(11)

where pcij is the indicator function for the jth bounding box in the

ith anchor box having class c and p̂cij is the predicted probability for

the same class. 1
obj
ij is the same as in the objectness loss.

(3) Localization loss: This function predicts the bounding

box of the object in the image. It computes the mean squared

error between the predicted box coordinates and the true

box coordinates.

Lloc = λloc

S2
∑

i∈anchors

B
∑

j=0

1
obj
ij

∑

m∈{x,y,w,h}

(σm
ij )

2
(

t̂mij − tmij

)2
(12)

where σm
ij is the mask to select the predicted value of m, and tmij is

the true value of m for the jth bounding box in the ith anchor box.

t̂mij is the predicted value for the same parameter.

These loss functions work together to optimize the YOLOv5

model during training, allowing it to detect objects accurately and

precisely in images.
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TABLE 1 Comparison results of Experiment 1.

Model Weights
[MB]

mAP [%] Recall
[%]

Speed
[ms]

ResNet 87.32 96.2 92.5 27

GooLeNet 26.33 90.8 88.9 19

VGG 474.66 97.1 94.8 39

IB-ResNet 74.49 92.3 88.3 22

SIB-ResNet 78.29 96.8 92.5 24

The CBL module is a key component of the YOLOv5 object

detection model, it performs point-wise linear transformations

coupled with pointwise activation functions on a subset of feature

maps. This approach reduces the channel dimension input, greatly

enhancing the non-linear characteristics of CNN features and

improving their descriptive power. The resulting reduction of

model complexity lowers computation costs while preserving

significant spatial granularity. Compared to YOLOv4 (Bochkovskiy

et al., 2020), in YOLOv5, the CBL module has been further

improved by introducing a Swish activation function. This

activation function is known to provide non-linearity superior to

ReLU, making it a popular choice. The CBL module’s mathematical

formulation is then as follows:

y = CBL(x) = σ (γ (x+ β))× Swish(x) (13)

Here, x is the input tensor, the bias shift β , and scaling parameter

γ are learnable parameters, while σ and Swish denote the sigmoid

and Swish activation functions, respectively. The YOLOv5 model

also makes use of a similar but more complex CBL block, which

leverages the power of skip connections to perform deep feature

fusion, reducing computation costs and enhancing the model’s

accuracy simultaneously.

As shown in Figure 2, the SIB layer is embedded into CBL

module to reduce the dimensions of the CBL input, forcing the

module to learn a more concise and reduced representation of the

input, thus improving its generalization abilities. Define the original

input X by T0, the overall loss of our proposed SIB-YOLOv5 can be

summarized as

LSIB−YOLOv5 =

K
∑

i=0

αiI
2Ti;Ti+1 + λ1Lobj + λ2Lcls + λ3Lloc

(14)

where K is the number of CBL modules with SIB, αi > 0, (i =

1, . . . ,K) is the ratios of each SIB, λ1, λ2 and λ3 are the termweights

of original YOLOv5 loss.

4. Experimental results

4.1. Genealogy dataset

The Chinese genealogy has undergone thousands of years

of development, from the undefined format before the Pre-

Qin period, to the simple graph format created by Sima Qian,

to Ban Gu’s four-generation and one-turn format, and then

to the graphic transmission and separation format during the

Northern and Southern Dynasties. It has gradually improved over

time, and even today, new discoveries are still being made in

the compilation methodology of Chinese genealogy. There are

currently six common types of genealogy samples, and different

family tree styles have different effects on the fitting of deep learning

models. In this experiment, we mainly scanned and extracted two

common styles (with and without borders on the inner pages)

and manually labeled the positions of the tag boxes, recording the

positions of the upper left and lower right vertices of the tag boxes

relative to the images to achieve image labeling. The two styles of

genealogical picture and their corresponding tag boxes are shown

in Figure 3.

4.2. Experimental settings

The experiment was conducted on a server running Ubuntu

20.04 operating system with an Intel(R) Xeon(R) Platinum 8255C

CPU and an RTX 3080 GPU with a memory size of 10GB.

The training was accelerated using CUDA 11.3, and PyTorch

1.10.0 deep learning framework was used for training. The Resnet

classification model and YOLOv5-6.0 prediction model were used,

with an input image size of 640 × 640. The initial learning rate

was set to 0.01 and the final learning rate was set to 0. The SGD

optimizer had amomentum of 0.937, and the batch size for training

was set to 16.

This layout detection method for Chinese genealogy image

recognition and region localization, which is divided into two

parts: classification and detection. The classification part employs

an SIB-ResNet network optimized by the SIB theory for feature

extraction, achieving high accuracy. The detection part uses an

SIB-YOLOv5 model, where the SIB enhances the model’s precision

and computational speed compared to the original network. The

specific process is shown in the Figure 4. To validate the proposed

method, a set of experiments was designed for classification,

detection, and overall performance testing.

Experiment 1 compares the classification performance of

ResNet, VGGNet, IB-ResNet, and SIB-ResNet through a set of

comparative trials. All models were trained on the same data

and tested on the same test set to compare their detection speed

and accuracy.

Experiment 2 focuses on the detection part and compares

the computational efficiency, mAP value of the training set, and

accuracy and recall of specific data sets between YOLOv5 and SIB-

YOLOv5 models with the same data set and parameter settings

during the training process.

Experiment 3 is a comprehensive test that utilizes a specific test

set to evaluate the performance of SIB-YOLOv5 models trained

on randomly scattered data sets and SIB-YOLOv5 models trained

on data sets selected by the SIB-ResNet classifier. The extracted

detection areas are compared with the selected positions marked in

the local data set, and cosine similarity is calculated. If the similarity

reaches the threshold, it is considered a successful recognition.

The total number of actual images in the test set, the number of

correctly classified images, the number of correct detections, the

average completion time, and the overall performance are recorded

and evaluated.
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FIGURE 5

The feature heat map of the SIB-ResNet network.

4.3. Evaluation metrics

This paper evaluates the accuracy of the detection model

using the metrics of recall, precision, average precision (AP),

and mean average precision (mAP). Before introducing

these metrics, the following concepts are defined: TP (true

positives) refers to correctly assigned positive samples; TN

(true negatives) are the correctly assigned negative samples;

FP (false positives) are the incorrectly assigned positive

samples; and FN (false negatives) are the incorrectly classified

negative samples.

Precision: the proportion of correctly classified positive samples

to all samples that the classifier identifies as positive:

Precision =
TP

TP + FP
(15)

TABLE 2 Comparison results of Experiment 2.

Model Weights
[MB]

mAP [%] Recall
[%]

Speed
[ms]

YOLOv5 41.9 90.6 93.7 33

IB-YOLOv5 34.5 87.2 90.8 22

SIB-YOLOv5 35.6 89.2 92.3 24

Recall: the proportion of correctly classified positive samples to

all actual positive samples:

Recall =
TP

TP + FN
(16)

AP: the area under the curve formed by the precision-recall

curve, where recall is on the x-axis and precision is on the y-axis,
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FIGURE 6

Comparison of the training loss. (A) The training loss of YOLOv5. (B) The training loss of IB-YOLOv5. (C) The training loss of SIB-YOLOv5.
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FIGURE 7

The detection results between the YOLOv5 model trained on the dataset after the SIB-ResNet classifier selection and the YOLOv5 model trained on

the randomly selected dataset under di�erent genealogy images. (A) Borderless pictures recognized by SIB-YOLOv5. (B) Borderless pictures

recognized by SIB-YOLOv5 after the SIB-ResNet classifier selection. (C) Framed pictures recognized by SIB-YOLOv5. (D) Framed pictures recognized

by SIB-YOLOv5 after the SIB-ResNet classifier selection.

as shown in (17):

AP =

n−1
∑

i=1

(ri+1 − ri)p(ri+1) (17)

mAP: themean average precision of all categories in the dataset,

as shown in (18):

mAP =
1

m

m
∑

i=1

(APi) (18)

4.4. Experimental results

In Experiment 1, we compared our proposed SIB-ResNet with

ResNet, GooLeNet, VGG, and conventional IB-ResNet, results

can be found from Table 1. We can see that, the Resnet network

model with the addition of the information bottleneck algorithm is

lightweight. SIB-ResNet improves accuracy by nearly 5 percent over

the equally lightweight GooLeNet. Compared with the traditional

ResNet network, SIB-ResNet obtains faster recognition time while

the precision and recall are not affected. SIB-ResNet model has only

4 MB more weights than the IB-ResNet model, and although it is 2

ms slower than IB-ResNet in terms of inference time, the average

precision and recall improved by 4.5 and 4.2 percentage points,

respectively, over IB-ResNet. VGG is slightly better than SIB-
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ResNet in terms of average precision and recall, but its weights are

about 6 times the weights of SIB-ResNet model, and its inference

speed is slightly slower than that of SIB-ResNet.

We also presented the feature heat map of the SIB-ResNet

network, as shown in Figure 5, through which we can observe

which areas the network focuses on more for the purpose of correct

classification. Based on the heat map, we can see that the high

response areas are indeed concentrated in the border position

area, which is the area that we have identified as the most helpful

for making judgments, regardless of whether it is a border or

borderless layout.

In Experiment 2, the same data sets and the same parameter

settings were used in the training process of both YOLOv5 and SIB-

YOLOv5models to compare the computational efficiency, themAP

values of the training set, and the accuracy and recall of detection

for a specific data set of the two different models, and the results

were given in Table 2.

Figure 6 represents the comparison results of various

evaluation metrics between YOLOv5 and SIB-YOLOv5. From the

figure, it can be seen that the SIB-YOLOv5 model converges faster

and has smaller loss values compared to the traditional YOLOv5

model, indicating that training the deep learning network using

the introduced sublinear information bottleneck (SIB) improves

the convergence ability of the network.

To better verify the feasibility of the model proposed in

this paper, we designed experiment 3 and selected some images

of different categories for testing, as shown in Figure 7 for

the comparison of the detection results between the YOLOv5

model trained on the dataset after the SIB-ResNet classifier

selection and the YOLOv5 model trained on the randomly

selected dataset under different genealogy images. Figures 7A, B

indicate the detection results for the borderless genealogy

images, Figure 7A shows the detection results of the YOLOv5

model trained on the randomly selected dataset, and Figure 7B

shows the detection results of the YOLOv5 model trained

on the dataset after the SIB-ResNet classifier selection. In the

prediction of borderless family tree, the classifier-optimized

model is significantly better than the non-classifier-optimized

model for the positioning of the borders, and the prediction

frames are placed at reasonable locations. Figures 7C, D are

the detection result of the genealogy image with border, it can

be seen that the detection error of the model with borders

mainly comes from the confusion between the borders and

text, and the model trained by the classifier can solve this

problem well.

Through a series of experiments, we found that the

classification of genealogical images using the ResNet34 network

has higher training efficiency and recognition accuracy compared

to other deep learning networks, and the introduced information

bottleneck theory approach enables a lighter and more adaptive

model. In the target detection part of Experiment 2, we demonstrate

that the SIB-YOLOv5 model shows better performance than the

traditional YOLOv5 model, which has poor performance

in complex and diverse family tree versions and low target

localization accuracy compared to the SIB-YOLOv5 model. The

results of Experiment 3 illustrate that the sublinear information

bottleneck (SIB) and the two-stage deep learning approach

proposed in this paper are robust to complex genealogical picture

types, thus showing superior performance as well as more accurate

localization accuracy. In the future, as the classifier classifies more

and more categories, the model is continuously optimized to

be able to perform comprehensive and accurate recognition of

genealogical images.

5. Conclusion

In this paper, we present a novel sublinear information

bottleneck (SIB) approach for genealogy layout recognition

and apply it to the ResNet classifier and YOLOv5 object

detection network, resulting in the SIB-ResNet and SIB-YOLOv5

models. Compared to traditional IB methods, our SIB is more

effective in compressing various types of noise present in

genealogy layout images, such as text overlap, low contrast,

and stains, while adding minimal additional computational

complexity. Our proposed method can simultaneously address

the recognition of genealogy layout images with and without

borders, demonstrating greater adaptability. Through a series of

experimental results, we demonstrate the effectiveness of our

approach, achieving excellent performance in both recognition

accuracy and computational speed.
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