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Introduction: The spiking neural network (SNN) is a bionic model that is

energy-e�cient when implemented on neuromorphic hardwares. The non-

di�erentiability of the spiking signals and the complicated neural dynamics make

direct training of high-performance SNNs a great challenge. There are numerous

crucial issues to explore for the deployment of direct training SNNs, such as

gradient vanishing and explosion, spiking signal decoding, and applications in

upstream tasks.

Methods: To address gradient vanishing, we introduce a binary selection gate

into the basic residual block and propose spiking gate (SG) ResNet to implement

residual learning in SNNs. We propose two appropriate representations of the gate

signal and verify that SG ResNet can overcome gradient vanishing or explosion by

analyzing the gradient backpropagation. For the spiking signal decoding, a better

decoding scheme than rate coding is achieved by our attention spike decoder

(ASD), which dynamically assigns weights to spiking signals along the temporal,

channel, and spatial dimensions.

Results and discussion: The SG ResNet and ASD modules are evaluated on

multiple object recognition datasets, including the static ImageNet, CIFAR-

100, CIFAR-10, and neuromorphic DVS-CIFAR10 datasets. Superior accuracy is

demonstrated with a tiny simulation time step of four, specifically 94.52% top-

1 accuracy on CIFAR-10 and 75.64% top-1 accuracy on CIFAR-100. Spiking

RetinaNet is proposed using SG ResNet as the backbone and ASD module for

information decoding as the first direct-training hybrid SNN-ANNdetector for RGB

images. Spiking RetinaNet with a SG ResNet34 backbone achieves anmAP of 0.296

on the object detection dataset MSCOCO.

KEYWORDS

spiking neural networks, gate residual learning, attention spike decoder, spiking

RetinaNet, object recognition, object detection

1. Introduction

In recent years, significant progress has been made in deep learning research, which has

become a primary tool for various computer vision tasks, such as object recognition, object

detection, and semantic segmentation. Key technologies such as ResNet (He et al., 2016) and

batch normalization (Ioffe and Szegedy, 2015) have enabled the construction of deep neural

networks with numerous parameters and deep model structures, achieving high accuracy

in the aforementioned tasks. However, the growing network complexity and data quantity

make it increasingly expensive to train and deploy deep neural networks. Therefore, it is

necessary to explore network models and computational paradigms that are more efficient

than current artificial neural networks (ANNs). One of the main research directions is the

spiking neural network (SNN), a bionic neuron model inspired by biological neuron models
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based on spiking signals (Gerstner and Kistler, 2002; Cheng et al.,

2023; Yi et al., 2023). Researchers have paid considerable attention

to SNN because of its high-energy efficiency on neuromorphic

hardwares (Merolla et al., 2014; Davies et al., 2018).

Due to the non-differentiability of the spiking signals, training

high-performance SNNs is challenging. First, researchers utilized

the spike-timing-dependent plasticity (STDP) (Song et al., 2000)

rule to conduct the unsupervised training of SNNs. STDP is a

biology-inspired process that adjusts the synaptic weights based on

the relative timing of the presynaptic and postsynaptic neurons’

action potentials. However, STDP cannot accomplish supervised

learning for large-scale networks, which limits its practical

application. Currently, there are two mainstream approaches to

obtain deep SNN models: ANN-to-SNN conversion and direct-

training. The ANN-to-SNN conversion method consists of two

steps. First, an ANNmodel corresponding to the target SNNmodel

is trained. Then, the connection between the firing rates of the

SNN and the activation values of the ANN are used to establish a

conversion formula to help convert the weight of the ANN model

to that of the SNN. The accuracy of this conversion is largely

determined by the simulation time steps of SNNs. The simulation

time step is usually in hundreds or thousands to obtain an SNN

with competitive performance, which results in the unacceptably

high latency. The second method, direct-training, approximates

the non-differentiable heaviside step function with a surrogate

gradient and trains the SNNs directly through backpropagation.

Researchers usually adopt the backpropagation through time

(BPTT) framework, which is derived from RNN. Unlike ANN-

to-SNN conversion, the direct-training method requires only a

tiny time step. The network thus obtained has very low latency,

making it superior in real-time scenarios. However, because

of the complicated neural dynamics of SNNs and the non-

differentiability of spiking signals, direct-training of SNNs requires

further exploration on several crucial issues to achieve acceptable

results on large-scale datasets, such as ImageNet (Deng et al., 2009)

and MSCOCO (Lin et al., 2014).

The first issue is the gradient vanishing or explosion problem,

which restricts SNNs to shallow architectures. To solve this

problem, a natural idea is to introduce residual learning fromANNs

into the SNNs. Spiking ResNet (Lee et al., 2020) replaces the ReLU

activation function in the residual block with spiking neurons such

as the integrate-and-fire (IF) and leaky-integrate-and-fire (LIF)

(Gerstner and Kistler, 2002). However, it has been found that such

a spiking residual block of spiking ResNet cannot achieve identity

mapping because of the complex dynamics of spiking neurons. On

this basis, SEW ResNet (Fang et al., 2021a) has used an element-

wise function to modify the residual block and has successfully

achieved identity mapping. However, the ADD function used in

SEW ResNet introduces non-spiking signals, which no longer

conforms the properties of SNNs and preventes SNNs from being

deployed on neuromorphic hardware. Therefore, effective residual

learning in SNNs remains a problem worth exploring. We believe

that the shortcut connection with addition in the residual block

enables the analog tensor in different levels to achieve lossless

information fusion, which is the reason for the high performance of

the ADD-based SEWResNet. However, the spiking signal is binary,

and its addition operation cannot be deployed. This motivates us to

explore a better residual block structure to accomplish information

fusion with only full-spike operations.

Another problem is the decoding of spike trains, which

determines the high-dimensional image features in object

recognition. There are two schemes: temporal and rate coding. The

former directly adopts spike times as the information carrier, which

is efficient in large time-step systems. However, direct-training

SNNs have tiny time steps, leading to low accuracy of temporal

coding. The latter method uses firing rates as the information

carrier. Many direct training methods (Fang et al., 2021a; Zheng

et al., 2021) have adopted it due to its high performance. However,

Wu et al. (2021) found that rate coding produced a less smooth

learning curve, reducing the final accuracy. Meanwhile, from the

perspective of neuroscience, rate coding is unreasonable because

it treats activation at each time step as equally important. In fact,

spikes at different times and in different spaces may have different

effects on the results, depending on the salient region (Itti et al.,

1998; Yao et al., 2021).

The inability to handle complex computer vision tasks well

is another problem. Most existing approaches are limited to

classification. Object detection, a fundamental task in vision, has

widespread applications in many real-time scenarios. However,

there are only a few direct-training spiking object detectors.

Cordone et al. (2022) trained an SSD detector using spiking VGG,

MobileNet, and DenseNet as the backbones. Kugele et al. (2021)

constructed a similar detector using a spiking DenseNet. They both

performed detection on event data. Neither case performed well in

the large-scale MSCOCO datasets, indicating that their methods

were not applicable to most existing vision systems. In addition,

the gradient degradation problem was not addressed such that

the deeper DenseNet achieved a worse accuracy in Cordone et al.

(2022).

To address the gradient vanishing or explosion problem,

we implemented the identity mapping of the residual block

under the constraints of spiking signals by proposing spiking

gate (SG) ResNet. The inspiration mainly comes from GRU

(Cho et al., 2014) and Highway Network (Srivastava et al.,

2015). These works have shown that the gate mechanism can

dynamically control the flow of information in the network and

can significantly solve the gradient vanishing problem. In each

basic block of SG ResNet, a binary selection gate is introduced

to guide the information fusion of the spiking signals. As for the

decoding scheme, we propose the attention spike decoder (ASD)

to decode the spike output from SG ResNet more effectively.

The ASD block is highly generalizable and can be applied to

object recognition and detection tasks. The effectiveness of the

SG ResNet and ASD block are evaluated on object recognition

datasets, including three static image datasets and a neuromorphic

dataset. In addition, we propose spiking RetinaNet using SG

ResNet as the backbone and the ASD block for information

decoding. This is the first direct-training hybrid SNN-ANN

detector that can achieve good performance on the MSCOCO

dataset.

Our contributions are as follows:

• A spiking gate ResNet with full-spike operations is developed

to solve the gradient vanishing in SNNs to make deep SNNs

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2023.1229951

trainable. Furthermore, two appropriate formulations of the

binary gate in SG ResNet are provided.

• An attention spike decoder is proposed to apply temporal,

channel, and spatial attention to accumulate the information

of spiking signals. This is an effective and general decoder for

both object recognition and detection.

• Numerous experiments are conducted on both static image

and neuromorphic datasets in the object recognition task to

verify the effectiveness of the SG ResNet and ASD block.

• Spiking RetinaNet, which is a hybrid neural network, is

proposed to combine the SG ResNet backbone with a

detection head. The ASD block plays a vital role in spike

decoding. We demonstrate that with a proper backbone and

decoding, a direct-training SNN can perform well in object

detection.

2. Related work

There are two main approaches to training and deploying

deep SNNs: ANN-to-SNN conversion and direct-training SNNs.

Most works of these two approaches restrict the task to object

recognition. In this study, a spiking RetinaNet detector is also built.

Thus, related works of object recognition will be chiefly overviewed

and then we will review the research on object detection with SNNs.

2.1. ANN-to-SNN conversion

Rueckauer et al. (2016) provided a theoretical basis for the

ANN-to-SNN conversion approach. Theoretically, the firing rates

of spiking neurons in SNNs can be estimated by the activation of

the ReLU function in ANNs with the corresponding structures.

With weight normalization and BN integration, a well-trained

ANN can be converted to an SNN with minimal loss of precision

(Diehl et al., 2015). Sengupta et al. (2019) proposed SpikeNorm to

improve conversion, which was the first to test this approach on

deep architectures such as VGG and ResNet. Furthermore, time-

based coding (Han and Roy, 2020), SNN calibration (Li et al.,

2021), and clamped and quantized training (Yan et al., 2021)

have been proposed for optimizing the conversion error. Other

methods (Deng and Gu, 2021; Bu et al., 2022; Li and Zeng, 2022)

have realized high-performance conversions, which have narrowed

the gap between the SNNs and ANNs. However, there are many

drawbacks to ANN-to-SNN conversion methods. First, it does not

work with neuromorphic data because ANNs cannot be trained on

these data. Second, high precision requires SNNs to adopt a very

large simulation time step, leading to high latency of the converted

SNNs, which is unsuitable for deployment in real scenarios.

2.2. Direct-training SNNs

Direct-training methods optimize the parameters of SNNs

using direct error backpropagation. One popular approach is to

unfold the network over the simulation time by referring to the

BPTT framework of the RNN. Because the heaviside step function

used in spiking neurons is not differentiable, researchers typically

use sigmoid, arc-tangent, and other functions to calculate the

surrogate gradient. Such methods (Wu et al., 2018; Neftci et al.,

2019; Lee et al., 2020) usually obtain low latency and can train

SNNs with small simulation time steps. Recently, in addition to

designing powerful spiking neurons (Fang et al., 2021b; Li et al.,

2022; Yao et al., 2022), researchers have primarily improved the

accuracy of direct-training SNNs from network structure and

training techniques (Guo et al., 2023). We will elaborate on them.

Similar to ANN, deep plain SNNs still suffer from gradient

vanishing or explosion problems. Thus, SNN structure design

based on residual learning has become mainstream. However,

indiscriminately imitating the ResNet (Lee et al., 2020) cannot

solve this problem because of the properties of spiking neurons.

Fang et al. (2021a) systematically analyzed the cause of gradient

vanishing from the perspective of identity mapping in SEW ResNet

and tried to solve this problem using element-wise functions.

However, their approach breaks the rule that SNNs use only

spiking signals. In addition, multi-level firing (Feng et al., 2022),

membrane shortcut (Hu et al., 2021), and threshold-dependent

batch normalization (Zheng et al., 2021) technologies have been

successively utilized to construct deeper SNNs. Unlike themanually

designed networks above, AutoSNN (Na et al., 2022) and SNASNet

(Kim et al., 2022) use the neural architecture search approach for

SNN structure design.

At the training technique level, some researchers aim

to improve the surrogate gradient-based backpropagation

process. These improvement routes include membrane or spike

regularization (Guo et al., 2022a,c), spike knowledge distillation

(Xu et al., 2023a,b), and designing better surrogate gradients

(Che et al., 2022; Guo et al., 2022b). In addition to the surrogate

gradient-based backpropagation, there are also some effective

direct-training methods designed specifically for SNNs, including

STDP-based learning (Saunders et al., 2018; Tavanaei and Maida,

2019; Hao et al., 2020), tandem learning (Wu et al., 2021), and

differentiations on spike times (Mostafa, 2017; Wunderlich and

Pehle, 2021; Zhou et al., 2021), spike representation (Meng et al.,

2022), and equilibrium state (Xiao et al., 2021).

2.3. Object detection with SNNs

Similar to object recognition, spiking detectors are generated

by ANN-to-SNN conversion and direct-training methods. Spiking

YOLO (Kim et al., 2020) is the first spiking detector converted

from an ANN. Channel-wise data-based normalization is used to

optimize the conversion process. Miquel et al. (2021) proposed

the analog-to-spiking conversion method, which allows a more

complex network structure like RetinaNet. Chakraborty et al.

(2021) combined the unsupervised spike time dependent plasticity

method and hybrid training method spike time dependent

backpropagation to deploy a spiking hybrid detector. All the above

studies have adopted conversion from ANN to SNN. Therefore,

their networks have large time steps and are inefficient. Kugele

et al. (2021) and Cordone et al. (2022) presented direct-training

spiking detectors by combining some spiking backbones with an

SSD detection head. Such detectors have very low latency and are

well-suited for real-time scenarios. However, they are only applied
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to event cameras and cannot be used in existing vision systems with

RGB camera images. To the best of our knowledge, our spiking

RetinaNet is the first to complete object detection on static images

dataset such as MSCOCO.

3. Spiking architectures and decoding

In this section, we first introduce the spiking neuron models

used in this study. Then, the spiking gate residual (SGR) block

and SG ResNet is proposed based on residual learning and gate

mechanism.We further propose two appropriate representations of

the binary selection gate in the SGR block and analyze its gradient

propagation. Finally, the attention spike decoder is proposed to

decode the spike output from SG ResNet.

3.1. Spiking neuron model

Spiking neurons imitate biological neural mechanisms that

communicate via spiking signals. The IF and LIF (Gerstner and

Kistler, 2002) models are used in this study. They are simplified

models with high implementation efficiency while preserving

sufficient biological dynamics. The following formula expresses the

linear differential equation of LIF neurons:

τm
dV l

i (t)

dt
= −

[

V l
i (t)− Vrest

]

+ RIli(t), (1)

where V l
i is the membrane potential, Ili is the input current, τm

is the time constant, Vrest represents the resting potential, and R

represents the membrane resistance. Without loss of generality,

we treat R as unitary in the rest of the study; i and l denote

that this neuron is the ith one in the lth layer of the whole

network. Compared with LIF, the IF neuron ignores the leaky

effect of membrane potential. The following equation describes its

dynamics:

dV l
i (t)

dt
= RIli(t). (2)

In this equation, provided that the membrane potential V l
i

exceeds the spike fire threshold Vth, the neuron fires a spike

immediately. Simultaneously, the membrane potential will be reset

to Vrest . The neuron’s output can be then represented by the

following equation:

sli(t) = 2

(

V l
i (t)− Vth

)

(3)

where sli is the output spike of the neuron at time step t, and 2 is

the heaviside step funcion defined as follows:

2(x) =

{

1, x ≥ 0

0, x < 0
(4)

In practice, it is necessary to discretize the dynamical equations.

The discretized LIF and IF dynamics are shown in Eqs 5 and 6

(Fang et al., 2021b), respectively.

Hl
i[t] = V l

i [t − 1]+
1

τm

(

Ili[t]−
(

V l
i [t − 1]− Vreset

))

(5)

Hl
i[t] = V l

i [t − 1]+ Ili[t] (6)

where Hl
i[t] can be regarded as the hidden membrane potential

before trigger time t. V l
i [t − 1] represents the membrane potential

of a neuron at time t−1. Ili[t] is the synaptic current at time t, which

is determined by the output of the neurons in the preceding layer.

wl−1
ij denotes the synaptic connection strength between jth neuron

in layer l − 1 and the ith neuron in layer l, and bli represents the

corresponding bias. Then, Ili[t] can be expressed by the following

formula.

Ili[t] =
∑

j

wl−1
ij Sl−1

j [t]+ bli (7)

The discrete output equation of the neuron is shown in Eq. 8,

where Sli[t] is the output spiking signal at time t. When Sli[t] = 1,

the neuron fires a spike; otherwise, when (Sli[t] = 0), the neuron

does not fire any spike.

Sli[t] = 2

(

Hl
i[t]− Vth

)

(8)

Once the neuron fires a spike, the membrane potential V l
i [t] at

time t is reset toVrest . Therefore, the discrete representation ofV
l
i [t]

is presented as follows.

V l
i [t] = Hl

i[t](1− Sli[t])+ VrestS
l
i[t]. (9)

For simplicity, both V[0] and Vrest are set to 0. Meanwhile,

the derivative of the function 2 is determined by the pre-defined

surrogate function. The implementation and GPU acceleration of

all neurons are based on the PyTorch and SpikingJelly (Fang et al.,

2020) frameworks.

3.2. Spiking gate ResNet

The high-level architecture of SG ResNet is the same as that

of ResNet. We used the spiking gate residual block to replace the

base module and created a deep SNN without gradient vanishing.

Figure 1 shows the structures of the basic residual block, spiking

residual block, and spiking gate residual block.

3.2.1. Basic and spiking residual block
Figure 1A shows the basic residual block in ResNet, where

ReLU represents the rectified linear unit activation function, and

the weight layer consists of a convolutional layer and a batch

normalization layer. This expression is given by Eq. 10, where X

is the input of the current block, which is the output of the previous

block. Based on the property of ReLU function in the domain
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FIGURE 1

Basic residual block (A), spiking residual block (B), and our spiking gate residual block (C).

FIGURE 2

Illustration of the gate mechanism.

[0,+∞), the residual block can easily implement identity mapping

when F (X) ≡ 0.

Y = ReLU (F (X) + X) (10)

Figure 1B shows the structure of the spiking residual block,

which replaces ReLU function with spiking neurons. Its expression

is given in Eq. 11. Fang et al. (2021a) proved that, in such a

structure, identity mapping could only be achieved by using the IF

model under specific conditions, leading to gradient vanishing or

explosion in deep spiking ResNet.

Y[t] = SN (F (X[t]) + X[t]) (11)

3.2.2. Spiking gate residual block
The basic gate mechanism is shown in Figure 2. Given inputs

X1,X2, and the gate signalGate ∈ [0, 1], the analog gate mechanism

performs a weighted sum of X1 and X2. If a binary value is selected

as Gate and both inputs are spike signals, the gate mechanism

chooses one of the inputs as the output. We call it a binary selection

gate (BSG). The formula of BSG is shown as follows:

Y = BSG(X1,X2;Gate)

= Gate · X1 + (1− Gate) · X2.
(12)

Figure 1C displays the structure of our spiking gate residual

(SGR) block, where X[t] and Y[t] are the input and output of the

module, respectively. SN is a spiking neuron layer. There are two

main modifications compared to spiking residual blocks. First, the

second SN is moved before the shortcut connection such that no

redundant activation of X[t] is performed, similar to the ReLU

before addition (RBA) block (He et al., 2016). Second, the addition

operation of the shortcut connection is replaced by the BSG, and

the output and intermediate variables are always spiking signals

with the help of the binary signal Gate. The formulation of this

block is expressed in Eq. 13. When Gate equals 1, the output is

SN (F (X[t])), and when Gate is 0, the output is X[t], with the SGR

block implementing identitymapping. The formulation ofGatewill

be discussed later.

Y[t] = BSG (SN (F (X[t])),X[t];Gate)

= Gate · SN (F (X[t])) + (1− Gate) · X[t].
(13)

In the basic residual block, at least one ReLU activation

exists between the input and the output. Specific properties of

the ReLU function make multiple activations equivalent to a

single activation. Moreover, multiple activations have the benefit of

preventing infinite output in deep layers, which exists in the RBA

block. However, properties of spiking neurons differs from ReLU.

Multiple SN activations are not equivalent to a single activation
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FIGURE 3

Downsample spiking gate residual block in SG ResNet.

and may even block gradient propagation. Therefore, to remove

the redundant activations, the second SN is moved to the position

before the shortcut connection in Eq. 13. Meanwhile, our BSG

ensures that the module’s output remains spiking signal, which

avoids the infinite output in the RBA block.

3.2.3. Formulation of downsample block
As a stack of the above SGR blocks, the SG ResNet usually

consists of multiple stages. In some stages, the first block must

downsample the image, and hence, it is referred to as a downsample

block, and its structure is shown in Figure 3. We replace the

original identity connection with the third weight layer and an SN

neuron layer in this block. Meanwhile, to realize downsampling,

a convolutional layer with a stride of 2 is adopted in the first and

third weight layers. Due to SN activation in the shortcut path,

this downsample block cannot achieve perfect identity mapping.

However, the number of downsample blocks is usually only four

and stays unchanged as the depth of the network grows. Therefore,

the corresponding degradation is ignored.

3.3. Gate formulation and analysis

3.3.1. Formulation of binary selection gate
The most important part of the BSG module is Gate, the

binary selection gate signal. For convenience, we denote the hidden

features after the second weight layer of the SGR Block as H[t],

where H[t] = SN (F (X[t])). H ∈ RT×c×h×w stacks all features

over the temporal dimension. In this study, T represents the time

step of the spiking network, c is the number of channels of the

feature map, and h and w are the height and width of the feature

map, respectively. The expression for Gate is provided in Eq. 14:

Gate = 2
(

W ·H + B− thr
)

, (14)

where W,B ∈ RT×c×h×w. In Eq. 14, we first applied element-wise

linear mapping to H with learnable weight W and bias B. Then,

the heaviside step function with a threshold of thr shown in Eq. 4

is applied to transform the analog result into binary form.W and B

are initialized to 1 and 0, respectively. Under such conditions, when

H = 0, the value of Gate will also be zero, and the entire SGR block

will act as an identity mapping block. In practice, h and w vary with

the image size, whereas T changes with the simulation time step.

If the image size or simulation time step is large, the number of

parameters corresponding to W and B may be unacceptable. For

efficiency, we proposed two representations: BSG* with learnable

parameters and BSG without learnable parameters.

For BSG*, we have H share weight and bias along the

dimensions T, h, and w. Therefore, the sizes of W and B are

R1×c×1×1.

For BSG, we have Gate = H when W ≡ 1 and B ≡ 0. Under

such conditions, W and B are constant, and the SGR block has no

additional learnable parameters. In this case, the SGR block can be

expressed as follows:

Y = Gate · H + (1− Gate) · X

= H2
+ (1−H)X.

(15)

3.3.2. Gradient analysis
With BSG and BSG*, the SGR block achieves identity mapping

when H ≡ 0. In this case, the gradient of the SGR block’s

output Y with respect to input X can be calculated using the

following formula. Because the second SN has been moved before

the shortcut connection, the following gradients do not need to

involve the derivation of the spiking neurons.

∂Y

∂X
=

∂
(

Gate ·H + (1− Gate) · X
)

∂X

=
∂(0+ 1 · X)

∂X
= 1.

(16)

Denote Y l and Xl as the output and input of the lth block,

respectively. As Y l = Xl+1, the gradient backpropagation can be

calculated as follows:

∂Y l+k

∂Xl
=

k
∏

i=0

∂Y l+i

∂Xl+i
= 1. (17)

Because the relative gradient above is constant, the gradient

of the deep layers in SG ResNet can be backpropagated to the

shallow layers. Thus, SG ResNet can solve the gradient vanishing

or explosion problem.
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3.3.3. Di�erence to SEW ResNet
SG ResNet and SEW ResNet (Fang et al., 2021a) are both

improved variants of spiking ResNet, while their motivations are

different, which is ultimately reflected in the different ways of

integrating the left and right branches of the residual block.

SEW ResNet aims to achieve identity mapping, using

element-wise functions to integrate the left and right branches.

It proposes spike-constrained AND and IAND functions

and the unconstrained ADD function. However, the ADD

function requires non-spike computations, making it unsuitable

for deployment.

We plan to use the gate mechanism to control the flow of spike

information. At the beginning of the design, we set both spike

constraint and identity mapping as goals. First, we binarize the

analog gate signal into a spike one, and the gate mechanism turns

into a binary selection gate, which can ensure that the output is

also a spike signal. Furthermore, we have proven that when the

selection of the gate signal comes from the hidden feature H of the

left branch, and the residual block can achieve identity mapping.

From the performance perspective, SG ResNet is superior to

SEW ResNet based on AND and IAND functions under spike

constraint. However, if the spike condition is relaxed, SEW ResNet

based on the ADD function is better. The ADD function integrates

both branches without loss of information, while the spike

constraint determines that information integration is inevitably

lossy. This comparison will also be analyzed in the experiment.

3.4. Attention spike decoder

After the spiking network, a decoder is required to decode the

spiking features to analog. The spiking feature output by the SG

ResNet is denoted as X ∈ RT×c×h×w, where T is the time steps, c

is the channel size, and h and w denote the spatial dimension of

the image. The rate coding method averages X along the temporal

dimension, so the resulting XR ∈ Rc×h×w is the corresponding

firing rate. However, such a method treats information at each time

point as equally important, which is not reasonable in neuroscience.

We introduce the attention module in Woo et al. (2018) along

multiple dimensions and propose ASD module to decode the

spiking features and fully utilize the information in the sparse

spike form. The detailed structure of the ASD module is shown

in Figure 4, including temporal, channel, and spatial attention,

as well as the averaging operation and skip connections. Given

spiking feature X, we first perform temporal-wise refinement using

temporal attention (TA) and then average the feature along the

time dimension. Channel attention (CA) and spatial attention (SA)

then perform feature refinement sequentially. Finally, the output

of the rate coding and SA are added as the output of ASD by skip

connections.

3.4.1. Temporal attention and average operation
As is shown in Figure 4A, TA first computes channel-spatial

statistics using 3-D global average-pooling. These statistics are fed

into two point-wise convolutional layers to obtain the 1-D temporal

attention map. Subsequently, after a sigmoid function, the 1-D

temporal attention map is multiplied by the origin feature.

Before the output of TA is sent to CA, the average operation

is used to squeeze features in the temporal dimension for two

reasons. First, a squeeze of the temporal dimension by the average

operation significantly reduces the computational effort of TA and

SA while keeping the statistics and attention maps unchanged.

Second, both TA and SA use max-pooling to extract attention

maps. Each element of the spiking feature is a Boolean value

that is unsuitable for max-pooling. Therefore, Boolean values are

converted to analog before TA and SA.

3.4.2. Channel attention
As is shown in Figure 4B, CA takes XT as the input and outputs

channel-refined feature XTC . First, we extract spatial statistics using

2-D global average-pooling and max-pooling. These two sets of

statistics are then fed into a two-layer point-wise convolution with

shared weights. The output channel size for the first convolution

is set to C/r to reduce computation, where r is the reduction rate.

After the convolution, the two outputs are merged by element-wise

summation and a channel attentionmap is generated using sigmoid

activation. Finally, the channel-refined feature XTC is obtained by

multiplying the attention map with XT .

3.4.3. Spatial attention and skip connection
As is shown in Figure 4C, SA takesXTC as the input and outputs

the spatial-refined feature XTCS. First, we extract and concatenate

the channel statistics using 1-D average-pooling and max-pooling.

The concatenated statistics are then fed into a 7 × 7 convolutional

layer with a sigmoid activation to generate a spatial attention map.

Finally, the spatially refined feature XTCS is obtained by multiplying

the attention map with XTC .

Instead of directly using XTCS as the output, we add it to the

rate coding feature by the skip connection to obtain a more robust

feature representation. The average operation is utilized to obtain

the rate coding feature from the original spiking feature. Finally, the

output XASD of the ASD module is the fusion of attention-refined

and rate-coded features.

4. Object recognition and detection

Object recognition requires the network to output the semantic

class of the specified image, and object detection requires bounding

boxes and corresponding classes of all objects in the image. In

this section, we explain our network structure that solve these two

problems, as is shown in Figure 5. The network is composed of

the spiking backbone, recognition network, and detection network.

The proposed SG ResNet is used as a spiking backbone to extract

the image features. The recognition network decodes the image

features and obtains the corresponding semantic classes. The

detection network takes multiple scales of image features as inputs

and outputs the bounding boxes and corresponding classes of

objects. Thus, the object recognition network consists of a spiking

backbone and a recognition network; the object detection network

consists of the spiking backbone and a detection network.
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FIGURE 4

Illustration of attention spike decoder. Given spiking feature X, temporal-wise refinement is first performed using temporal attention, and the features

along time dimension are averaged in (A). Then, channel attention (B) and spatial attention (C) perform feature refinement sequentially. Finally, the

output of rate coding and spatial attention is added for the output.

FIGURE 5

Illustration of the networks in object recognition and object detection tasks. The object recognition network consists of the spiking backbone and

recognition network; the object detection network consists of the spiking backbone and detection network.

4.1. Spiking backbone

The spiking backbone consisted of an encoder layer and

a four-stage computational body. The encoder layer includes

a convolution with a stride of 2, an IF neuron, and a max-

pooling downsampling layer. It receives analog images as inputs

and converts them into spikes. The four-stage body is built with

spiking gate residual blocks and performs the bulk of computation.
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The second to fourth stages downsample the features and output

8, 16, and 32 times downsampled spiking features, respectively.

The detailed kernel, depth, and channel size settings of the spiking

backbone are listed in Table 1. The layer configurations refers to

the classic ResNet configurations. As a result, the amount of layers

includes the total number of convolutional layers in the backbone

and the fully connected layer in the recognition network.

4.2. Recognition network

The recognition network has a small number of parameters.

First, the ASD module is used to decode the output of the fourth

stage in the backbone into the corresponding analog feature.

Then, the analog image feature is squeezed into a 1-D vector

by global average-pooling. A fully connected layer followed by a

softmax function classifies the vector into the semantic class, which

performs recognition of the images.

4.3. Detection network

The proposed spiking RetinaNet, a hybrid SNN-ANN object

detector, consists of an SG ResNet (SNN) and a detection network

(ANN). SG ResNet extracts the deep features of images for

detection network, and the ASD module does the intermediate

signal conversion. RetinaNet is chosen as our detection framework

because it is one of the most classic one-stage detectors. Its

backbone and detection subnet are highly decoupled. It fits well

with most ResNet-like backbones, making it very suitable for

verifying and comparing the feature extraction capabilities of the

backbones in detection tasks.

In this study, the feature pyramid petwork (FPN) (Lin et al.,

2017a) and detection head in the RetinaNet (Lin et al., 2017b)

model are used for the detection network. First, we use three

independent ASD modules to convert the spiking features of the

second to fourth stages in the backbone into analog features. Taking

these features as the input, the FPN constructs a five-level feature

pyramid with levels from P3 to P7, where the resolution of Pl
is 2l times lower than the input, and each Pl has 256 channels.

The feature pyramid is fed into a detection head with shared

weights between different scales. The detection head consists of

two sub-networks, the classification subnet and box regression

subnet, each having four convolutional layers to accomplish the

corresponding task. After the processing of the two sub-networks,

the final predictions are obtained, including the bounding box and

class information of the object.

5. Experiment

The methods are tested on the object recognition and detection

tasks. For object recognition, SG ResNet is compared with other

methods on both the static and neuromorphic image benchmarks,

including CIFAR-100, CIFAR-10, ImageNet, and DVS-CIFAR10.

For object detection, we demonstrate that the performance of our

spiking RetinaNet is very close to that of RetinaNet with artificial

neurons under the same experimental setup. Ablation studies are

then conducted on several vital questions, such as the ability to

overcome gradient vanishing.

Since both SG ResNet and SEW ResNet are variants of Spiking

ResNet and SEW ResNet based on ADD does not strictly meet

the spike constraints, we compare the two methods in the ablation

study and show the advantages of SG ResNet under the condition

of spike constraints.

In our experiments, the implementation and GPU acceleration

of all neurons are based on the PyTorch and SpikingJelly (Fang

et al., 2020) frameworks. On natural image datasets, we adopt IF

as the spiking neuron and set Vrest = 0 and Vth = 1. For the DVS-

CIFAR10 dataset, we adopt the PLIF neuron and set the initial time

constant to 2. The ArcTan function (σ ′(x) = 1
1+(πx)2

) is used as the

surrogate function to calculate the gradients of all spiking neurons.

For all experiments, we use the stochastic gradient descent (SGD)

optimizer with a momentum of 0.9. To reduce GPU memory cost

and accelerate training, we adopt the mixed precision training in

PyTorch. The training schedule, learning rate, batch size, and other

parameters are presented in Table 2.

5.1. Object recognition

Comparisons on CIAFR-100, CIFAR-10, ImageNet, and DVS-

CIFAR10 are presented in Table 3. Unless otherwise specified,

the decoding modules used after SG ResNet are ASD modules.

We list the deploying methods of all studies. Among them,

the spike-based BP means the direct-training method using

the surrogate gradient. ANN-to-SNN means the ANN-to-SNN

conversion method. Hybrid training combines the above two

methods and trains networks in two stages, and IDE training,

tandem learning, and SNN distillation are specialized training

methods designed for SNNs.

For a fair comparison, we use the standard top-1 accuracy in

the object recognition task for all datasets. Top-k accuracy is an

essential metric for assessingmodel generalization ability and refers

to the proportion of samples in the test set for which the correct

category appears in the top-k confidence of the model’s output. The

higher the metric, the better the model performs.

5.1.1. CIFAR-100
CIFAR-100 is a static image classification dataset with 60,000

images and a image size of 32 × 32. It contains 100 classes, and

each class has 500 images for training and 100 images for testing.

On the CIFAR-100 dataset, we apply random cropping with a

size of 32, a padding with a size of 4, and horizontal flipping for

data augmentation. Moreover, data normalization is applied by

subtracting the mean value of the pixel intensity and dividing by

the standard variance. This ensures that the input images have zero

mean and unitary variance.

We make some modifications to the SG ResNet for the CIFAR

dataset by setting the kernel size of the first convolutional layer to

3 × 3 and removing the max-pooling layer at the same time. We

test it on three networks with different depths, SG ResNet10, SG

ResNet18, and SGResNet34. As is expected, the greater the network

depth, the higher the accuracy. Thus, SG ResNet does not suffer
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TABLE 1 Detailed network settings of SG ResNet.

10-layers 18-layers 34-layers 50-layers

Encoder layer
7× 7, 64, stride 2 for ImageNet and MSCOCO/3× 3, 64, stride 1 for CIFAR

3× 3 maxpool, stride 2 for ImageNet and MSCOCO/identity for CIFAR

Stage1







3× 3, 64

3× 3, 64






× 1







3× 3, 64

3× 3, 64






× 2







3× 3, 64

3× 3, 64






× 3













1× 1, 64

3× 3, 64

1× 1, 256













× 3

Stage2







3× 3, 128

3× 3, 128







∗

× 1







3× 3, 128

3× 3, 128







∗

× 2







3× 3, 128

3× 3, 128







∗

× 4













1× 1, 128

3× 3, 128

1× 1, 512













∗

× 4

Stage3







3× 3, 256

3× 3, 256







∗

× 1







3× 3, 256

3× 3, 256







∗

× 2







3× 3, 256

3× 3, 256







∗

× 6













1× 1, 256

3× 3, 256

1× 1, 1, 024













∗

× 6

Stage4







3× 3, 512

3× 3, 512







∗

× 1







3× 3, 512

3× 3, 512







∗

× 2







3× 3, 512

3× 3, 512







∗

× 3













1× 1, 512

3× 3, 512

1× 1, 2, 048













∗

× 3

∗Represents that the first SGR block performs downsampling.

TABLE 2 Training settings and hyper parameters.

Dataset Learning rate schedule Epoch Learning rate Weight decay Batch size GPU

CIFAR-100 Step, Tsteps = [60, 120, 160] 200 0.1 0.0001 32 1

CIFAR-10 Step, Tstep = [100, 150] 200 0.1 0.0001 32 1

ImageNet Cosine, Tmax = 320 320 0.1 0 32 8

DVS-CIFAR10 Cosine, Tmax = 64 64 0.01 0 8 1

MSCOCO Step, Tstep = [64, 70] 72 0.01 0.0001 2 8

from the gradient vanishing problem. We achieve 75.64% accuracy

with a time step of only 4 on the SG ResNet34 network, which is

much better than the other methods in terms of both latency and

performance.

5.1.2. CIFAR-10
CIFAR-10 is a small-size dataset similar to CIFAR-100. It

has only 10 classes, and each class contains 5,000 images for

training and 1,000 images for testing. Data augmentation and

pre-processing on CIFAR-10 are the same as CIFAR-100 dataset.

On CIFAR-10, we adopted a network structure similar to

CIFAR-100 and conducted experiments on the three depths.

Compared with other network-structure-level methods of SNNs,

we achieve 94.52% accuracy with a time step of 4 on the SG

ResNet34 network. This confirms the superiority of our newly

proposed method.

5.1.3. ImageNet
ImageNet (Deng et al., 2009) is a large-scale dataset which

contains 1.28 million images for training and 50,000 images for

validation. On this dataset, we randomly crop the images with a size

of 224 × 224. Furthermore, random horizontal flipping is further

applied for augmentation. Similar to CIFAR-100 and CIFAR-10, we

normalize every image to ensure zero mean and unitary variance.

On ImageNet, we conduct experiments on SG ResNet18, SG

ResNet34, and SG ResNet50. With the ASD module, SG ResNet34

has achieved an accuracy of 65.08%. Furthermore, SG ResNet50

has achieved 66.25% accuracy with a time step of only 4. Here, SG

ResNet50 uses rate coding as the decoder because we found that

SG ResNet50 with ASD decoder converges much faster than rate

coding, indicating an overfitting problem in the training process.

Same as that in CIFAR datasets, we observe an enhancement

of accuracy in deeper networks. Our SG ResNet outperforms

some studies with spike-based BP and hybrid training methods.

Compared with ANN-to-SNN methods, we report competitive

results with much fewer time steps.

5.1.4. DVS-CIFAR10
DVS-CIFAR10 (Li et al., 2017) is a neuromorphic dataset

which contains 10,000 images in the format of spike train. It

is obtained by recording the moving images of CIFAR-10 on a

LCD monitor with a DVS camera. On this dataset, we adopt the

AER data pre-processing (Fang et al., 2021b). During the pre-

processing, the event is split into 16 slices(same number as time

steps). Furthermore, for each training sample, we randomly deleted
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TABLE 3 Top-1 accuracy and time step comparisons on object recognition datasets.

Dataset Network Deploying methods Time steps Accuracy

CIFAR-100

ResNet20 (Han et al., 2020) ANN-to-SNN 4,096 67.82%

VGG-like (Yan et al., 2021) ANN-to-SNN 300 71.84%

ResNet20 (Liu et al., 2022) ANN-to-SNN 16 68.69%

VGG11 (Rathi et al., 2020) Hybrid Training 125 67.84%

CIFARNet-F (Xiao et al., 2021) IDE Training 100 73.07%

Ms ResNet110 (Hu et al., 2021) Spike-based BP – 66.83%

AutoSNN (Na et al., 2022) Spike-based BP 8 69.16%

SNASNet (Kim et al., 2022) Spike-based BP 8 73.04%

MT-ResNet-20 (Wang et al., 2023) Spike-based BP 5 73.45%

SG ResNet10 (ours) Spike-based BP 4 73.19%

SG ResNet18 (ours) Spike-based BP 4 74.86%

SG ResNet34 (ours) Spike-based BP 4 75.64%

CIFAR-10

ResNet20 (Han et al., 2020) ANN-to-SNN 4,096 91.36%

VGG16 (Rathi et al., 2020) Hybrid training 200 92.02%

CIFARNet (Wu et al., 2021) Tandem learning 8 90.98%

ResNet18 (Xu et al., 2023b) SNN Distillation 4 93.41%

ResNet19 with tdBN (Zheng et al., 2021) Spike-based BP 6 93.16%

Ms ResNet110 (Hu et al., 2021) Spike-based BP – 92.12%

AutoSNN (Na et al., 2022) Spike-based BP 8 93.15%

SNASNet (Kim et al., 2022) Spike-based BP 8 94.12%

DS-ResNet (Feng et al., 2022) Spike-based BP 4 94.25%

MT-ResNet-20 (Wang et al., 2023) Spike-based BP 5 94.44%

SG ResNet10 (ours) Spike-based BP 4 93.0%

SG ResNet18 (ours) Spike-based BP 4 93.92%

SG ResNet34 (ours) Spike-based BP 4 94.52%

ImageNet

ResNet34 (Han et al., 2020) ANN-to-SNN 4,096 69.89%

ResNet20 (Li et al., 2021) ANN-to-SNN 32 64.54%

ResNet34 (Rathi et al., 2020) Hybrid Training 250 61.48%

ResNet34 with tdBN (Zheng et al., 2021) Spike-based BP 6 63.72%

ResNet50 with tdBN (Zheng et al., 2021) Spike-based BP 6 64.88%

Ms ResNet34 (Hu et al., 2021) Spike-based BP 6 69.42%

SG ResNet18 (ours) Spike-based BP 4 62.51%

SG ResNet34 (ours) Spike-based BP 4 65.08%

SG ResNet50 (ours) Spike-based BP 4 66.25%

DVS-CIFAR10

CIFARNet (Wu et al., 2021) Tandem learning 20 65.59%

7-layer CNN (Wu et al., 2019) Spike-based BP 40 60.50%

ResNet-19 (Zheng et al., 2021) Spike-based BP 10 67.80%

Ms ResNet20 (Hu et al., 2021) Spike-based BP – 75.56%

AutoSNN (Na et al., 2022) Spike-based BP 20 72.50%

DS-ResNet (Feng et al., 2022) Spike-based BP – 70.36%

7B SG ResNet (ours) Spike-based BP 16 70.60%

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1229951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2023.1229951

four slices for augmentation.We use a 7B-Net which contains seven

SGR blocks, which has achieved 70.6% accuracy with a time step

of 16.

5.2. Object detection

We validate the effectiveness of spiking RetinaNet on the

MSCOCO (Lin et al., 2014) dataset and compare it with ANN

RetinaNet. MSCOCO is a large-scale object detection dataset

containing 330K images and 80 target classes. In the experiments,

the train and val sets of the 2017 release are used as our training and

testing datasets, respectively. We randomly crop the images with a

size of 1,333 × 800. Furthermore, random horizontal flipping with

a ratio of 0.5 was applied for augmentation during training.

Two metrics, mean average precision (mAP) and mean average

recall (mAR), are used to evaluate object detection effectiveness.AP

evaluates the ability of the detector to perform correct classification

and accurate localization of a certain category. mAP is the average

value of AP for each category. In addition to the mAP, we evaluate

the detection performance for objects of different sizes. APS, APM ,

and APL indicate the detection performance for small, medium,

and large objects, respectively. Unlike precision, recall is concerned

with whether the detector can detect more ground truths. AR is the

average recall over IoU from 0.5 to 1.0. Similarly, we also use ARS,

ARM , and ARL to represent the recall of small, medium, and large

objects, respectively.

The training schedules are listed in Table 2. Time steps of all SG

ResNet backbones are 4. The experimental results are presented in

Table 4. For each comparison group, the largestmAP andmAR are

in bold, and the second largestmAP andmAR are underlined.

It is worth mentioning that SG ResNet consumes tens of times

less energy than ANN ResNet, which is quantitatively analyzed

in Section 5.3.1. With such energy efficiency, spiking RetinaNet

can accomplish the object detection task effectively. Under the

condition of using backbones of the same depth, spiking RetinaNet

achieved a slightly lower mAP than ANN RetinaNet but with

a far more energy-efficient backbone. Spiking RetinaNet with

SG ResNet18 and ASD module achieved an mAP of 0.285 and

mAR of 0.476. By comparing the detection results of different

objects, we find that spiking RetinaNet is more robust in detecting

small objects. Compared with the median and large objects, the

performance degradation of small objects is lower. The APS and

ARS of spiking RetinaNet with SG ResNet18 and ASD are even

higher than those of ANN RetinaNet.

5.3. Ablation studies

5.3.1. Energy e�ciency comparison
The energy efficiency of SG ResNet is analyzed in the study. The

network energy consumption is related to the type of operations

it employs and the number of floating-point operations (FLOPS).

Most operations in the convolutional layers of ANNs are multiply-

and-accumulate (MAC) (Panda et al., 2020). However, because the

spiking signals used by SNNs are binary, the convolutional layers of

SNNs use only the accumulate (AC) operations. These operations

occur only when the spiking neuron fires a spike. Certainly, some

layers will also adopt MAC operations in SNNs, such as the encoder

layer and the ASD module in SG ResNet. The FLOPS counts of

the convolutional layers of ANN and SNN for CIFAR-100 are

calculated using Eqs 18 and 19, respectively.

FLOPSANN = O2
× Cin × Cout × k2, (18)

FLOPSSNN = O2
× Cin × Cout × k2 × Fr × T, (19)

where O is the output size, CIN and Cout denote the input and

output channel size, and k is the weight kernel size. Because the

spike activity of SNN is sparse, the firing rate Fr ≪ 1 in each

convolutional layer. For the energy calculation, we take the energy

consumption of 45nm COMS technology (Han et al., 2015) as the

criterion, in which 32-bit integer MAC operation consumes 3.1pJ,

and 32-bit integer AC operation consumes 0.1pJ. We calculate the

FLOPS of MACs and ACs in SNN and ANN, respectively, and

further estimate the total energy consumption. Using 3 × 32 ×

32 CIFAR images as the input, we analyzed ANN ResNet18 and

SG ResNet18. Because the number of parameters and FLOPs of

batch normalization are small and can be incorporated into the

convolutional layer during deployment, we ignored the effect of

batch normalization in our experiments. Analysis results are shown

in Table 5.

Regarding parameter numbers, SG ResNet18 has only 0.03M

more than ANN ResNet18 (from the ASD module). In terms

of FLOPS, SG ResNet18 has only 1.9M MACs, and most of the

operations are ACs. The total energy consumed by SG ResNet18 is

4.1× 107pJ, which is 41.7 times lower than that of ANN ResNet18.

5.3.2. E�ects of the ASD module
We propose the attention spike decoder to convert image

features from spiking to analog. In this part, we validate the

superiority of the ASD module over the rate coding method in

SG ResNet10, SG ResNet 18, and SG ResNet 34. Experiments

are conducted on CIFAR-100, and the training setups of the two

decoders are the same. Results are presented in Table 6.

In this experiment, the ASD module has only 0.033M

parameters and 0.08M FLOPS, with an energy consumption of

only 2.55 × 105pJ (0.63% of the total energy consumption of SG

ResNet18). This shows that the improvement brought by ASD is

due to its superior design rather than the increase in parameters or

computational power.

As is shown in the table, the attention spike decoder has

improved the accuracy compared with rate coding. SG ResNet34

has the highest accuracy improvement among the three deep

network structures, from 75.01 to 75.64%. The previous object

detection experiments in Table 4 also show that the ASD module

performs better than rate coding. In spiking RetinaNet with a

SG ResNet18 backbone, the ASD module has improved the mAP

and mAR by 0.5 and 0.8%, respectively. In the experiment of SG

ResNet50 with ASD on ImageNet, an overfitting problem occurs,

indicating that the ASD module may not fit well with large models

with bottleneck modules.
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TABLE 4 Object detection results of ANN RetinaNet and spiking RetinaNet on the MSCOCO dataset.

Network Backbone With ASD mAP APS APM APL mAR ARS ARM ARL

ANN RetinaNet ANN ResNet18 ✗ 0.299 0.143 0.313 0.417 0.478 0.269 0.502 0.659

Spiking RetinaNet SG ResNet18 ✗ 0.280 0.141 0.290 0.395 0.468 0.259 0.497 0.636

Spiking RetinaNet SG ResNet18 X 0.285 0.150 0.300 0.400 0.476 0.272 0.508 0.643

ANN RetinaNet ANN ResNet34 ✗ 0.319 0.159 0.339 0.448 0.497 0.289 0.523 0.680

Spiking RetinaNet SG ResNet34 ✗ 0.292 0.148 0.308 0.406 0.478 0.268 0.510 0.653

Spiking RetinaNet SG ResNet34 X 0.296 0.153 0.313 0.407 0.484 0.280 0.510 0.657

TABLE 5 Energy e�ciency comparison between ANN ResNet18 and SG

ResNet18.

Network Parameters MACs ACs Energy

ANN ResNet18 11.22M 549.2M 0M 1.7× 109pJ

SG ResNet18 11.25M 1.9M 348.9M 4.1× 107pJ

TABLE 6 Top-1 accuracy comparisons between rate coding method and

our attention spike decoder on CIFAR-100 dataset.

Network Rate coding Attention spike decoder

SG ResNet10 72.68% 73.19%

SG ResNet18 74.62% 74.86%

SG ResNet34 75.01% 75.64%

The bold values indicate the maximum accuracies of the comparison.

TABLE 7 Top-1 accuracy comparisons between SG ResNet and spiking

ResNet on the CIFAR-100 dataset.

Network SG ResNet Spiking ResNet

ResNet10 72.68% 73.00%

ResNet18 74.62% 74.36%

ResNet34 75.01% 32.05%

The bold values indicate the maximum accuracies of the comparison.

5.3.3. Validation on solving the gradient vanishing
problem

The proposed SG ResNet solves the problem of gradient

vanishing in spiking ResNet. Therefore, in this section, we compare

SG ResNet with spiking ResNet in the structures of ResNet10,

ResNet18, and ResNet34. The training setups of the two methods

are the same. The experimental results are shown in Table 7. To

eliminate the impact of the ASDmodule, rate coding is used for the

decoding scheme in both networks.

As is illustrated in Table 7, spiking ResNet has an acceptable

accuracy over two relatively shallow network structures, ResNet10

and ResNet18. However, when the depth reached 34, gradient

vanishing occurs. As the network depth increased from 18 to 34,

the accuracy of spiking ResNet decreases from 74.36 to 32.05%. In

contrast, with increase in depth, an enhancement is observed in

accuracy of SGResNet. Furthermore, our SGResNet has the highest

accuracy of 75.01% on the deepest ResNet34, thus proving that SG

ResNet effectively solves the gradient vanishing problem.

TABLE 8 Ablation study on the relationship between SG ResNet and SEW

ResNet on CIFAR-100 dataset.

Network SG ResNet SEW ResNet
(IAND)

SEW ResNet
(ADD)

ResNet10 72.68% 71.96% 73.02%

ResNet18 74.62% 73.89% 74.90%

ResNet34 75.01% 73.8% 75.93%

Values in the table represents the top-1 accuracy. The bold values indicate the maximum

accuracies of the comparison.

5.3.4. Comparison and discussion on SEW ResNet
Previously, SEW ResNet (Fang et al., 2021a) is also a variant

of spiking ResNet that analyzed and solved the gradient vanishing

problem from the perspective of residual learning. They analyzed

the reason for the gradient vanishing theoretically and proposed

the element-wise function to solve this problem. However, the

most effective one of their proposed element-wise functions is

ADD, which makes the network no longer spiking. In our SG

ResNet, a gate mechanism is introduced to solve gradient vanishing

while ensuring that the network is still spiking. In this section,

we compare SG ResNet with SEW ResNet using IAND and ADD.

Experimental results are shown in Table 8. To avoid the impact

of the ASD module, the decoding scheme used in all methods is

rate coding.

IAND is a binary operator that returns the inverse and of two

inputs. The output of IAND operation with two spiking inputs

remains a spiking signal. Thus, the SEW ResNet with IAND is

a deployable network. Compared with SEW ResNet with IAND,

our SG ResNet performs better at every depth. On the CIFAR-

100 dataset, SG ResNet34 has achieved 1.21% higher accuracy than

SEW ResNet34 (IAND). ADD is a binary operator that returns the

addition of two inputs. However, SEW ResNet with ADD is more

like an ANN rather than an SNN. As is expected, SEW ResNet

(ADD) has the highest accuracy among the three methods.

Based on the above results, the SEW ResNet (ADD) structure,

which is similar to the original ResNet, can achieve the best

performance without considering signal type. However, this does

not necessarily mean that it is the best. Our SG ResNet can be

considered as an better compromise that improves accuracy while

adhering to the spiking signal constraint.

5.3.5. Comparison between BSG and BSG*
As is mentioned in Section 3.3, Eq. 14 is the general expression

for our gate signal, and the module constituted by such Gate
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TABLE 9 Ablation study on the binary selection gate formulations on

CIFAR-100.

Network BSG BSG*

SG ResNet10 72.68% 71.75%

SG ResNet18 74.62% 73.71%

SG ResNet34 75.01% 74.21%

Values in the table represents the top-1 accuracy. The bold values indicate the maximum

accuracies of the comparison.

is BSG*. Furthermore, if the linear transformation in Eq. 14 is

ignored and Gate directly equals H, then the module is of type

BSG. This part compares these two modules, and the experimental

results are shown in Table 9. To avoid the impact of the ASD

module, rate coding is used as the decoding scheme for both

methods. As is seen, both BSG and BSG* solve the gradient-

vanishing problem. A deeper network brings the enhancement

of accuracy. Through a lateral comparison, the network using

BSG is more accurate than BSG*, primarily, for two reasons

accounting. First, to reduce the number of parameters, W and B

are only learnable in the channel dimension, which may lead to

inaccuracy in the linear transformation. Second, we use heaviside

step function to binarize the gate signal. During backpropagation,

we use gradient surrogate functions, which may lead to inaccurate

optimization of the gate signal. In summary, the effect of BSG*

with linear transformation was not as good as that of BSG at

present. We also hope that our research can help realize the

effectiveness of the gate mechanism and further promote the

detailed design.

6. Discussion and conclusion

This study focuses on the issues to be solved during direct

training of high-performance SNNs in object recognition and

detection tasks. We introduced a binary gate mechanism and

presented the spiking gate ResNet to form deep architectures in

SNNs. This is the first time that a widely used gate mechanism

in RNNs is being combined with SNNs in the structural

design. Through gradient analysis, we prove that SG ResNet

can overcome gradient vanishing or explosion problems. An

attention spike decoder is also proposed to address the spiking

signal decoding problem. Using SG ResNet as the backbone

and the ASD module for information decoding, we propose

spiking RetinaNet, which is the first direct-training hybrid SNN-

ANN detector for RGB images. The experimental results show

that SG ResNet with an ASD decoder outperforms most direct-

training SNNs with the surrogate gradient method on the object

recognition task. Furthermore, spiking RetinaNet has achieved a

satisfactory performance in object detection with an energy efficient

spiking backbone.

Regarding the future research topics, the binary gate

mechanism is non-trivial and valuable to be further explored,

including the efficiency-performance trade-off of parameterized

gate mechanism and binarization of gate signals. In addition, it

will be quite helpful and contributive to investigate how to use

gate mechanism in the residual connection of spiking transformer.

Finally, downstream vision applications of spiking neural networks

are also what we consider to be a crucial direction, including

image segmentation, object detection, video recognition, optic flow

estimation, and so on.
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