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Orientation detection is an essential function of the visual system. In our previous

works, we have proposed a new orientation detection mechanism based on

local orientation-selective neurons. We assume that there are neurons solely

responsible for orientation detection, with each neuron dedicated to detecting

a specific local orientation. The global orientation is inferred from the local

orientation information. Based on this mechanism, we propose an artificial

visual system (AVS) by utilizing a single-layer of McCulloch-Pitts neurons to

realize these local orientation-sensitive neurons and a layer of sum pooling

to realize global orientation detection neurons. We demonstrate that such a

single-layer perceptron artificial visual system (AVS) is capable of detecting

global orientation by identifying the orientation with the largest number of

activated orientation-selective neurons as the global orientation. To evaluate

the e�ectiveness of this single-layer perceptron AVS, we perform computer

simulations. The results show that the AVS works perfectly for global orientation

detection, aligning with the majority of physiological experiments and models.

Moreover, we compare the performance of the single-layer perceptron AVS with

that of a traditional convolutional neural network (CNN) on orientation detection

tasks. We find that the single-layer perceptron AVS outperforms CNN in various

aspects, including identification accuracy, noise resistance, computational and

learning cost, hardware implementation feasibility, and biological plausibility.
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1. Introduction

A hyper-complex neural network, consisting of approximately 1011 neurons and over

1015 interconnections, facilitates the timely reception and processing of information from

the eyes, ears, nose, and skin within our brain (Todo et al., 2019). Visual stimuli account

for more than 80 percent of the information received when our eyes are open, and nearly

50 percent of nerve fibers are directly or indirectly associated with the retina (Medina and

Hanlon, 2009; Lee et al., 2020). The visual system primarily focuses on contrast, color, and

movement changes, all of which have the potential to influence human behavior (Vanston

and Strother, 2017). Therefore, studying the visual system is crucial for unraveling the

workings of the brain. Between 1950 and 1980, Canadian neurophysiologist DavidHubel and

Swedish neuroscientist Torsten Wiesel conducted meticulous and scientific investigations

into the visual mechanism. Their research and experiments on cortex cells in rabbits and

monkeys led to the observation of several biological phenomena: (1) visual cortex cells
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exhibit specific responses to rectangular light spots and slits,

and (2) there are simple cortical cells in the visual cortex that

respond exclusively to stimuli of particular angles within their

receptive fields (Hubel and Wiesel, 1959, 1962, 1968; Hubel, 1982).

These neurons possess orientation selectivity, firing preferentially

in response to specific orientations while exhibiting little to no

response to others. Orientation detection constitutes a fundamental

function of the visual system, aiding us in recognizing our

surroundings and making judgments and decisions. However,

our understanding of orientation selectivity and its role in

global orientation detection for objects of various sizes, shapes,

and positions remains limited (Gazzaniga, 2000; Veeser and

Cumming, 2017). To address this issue, we presented a novel and

comprehensive mechanism elucidating global visual orientation

detection in our previous paper (Li et al., 2021). Based on this

mechanism, we introduced a single-layer perceptron Artificial

Visual System (AVS) for global orientation detection. This AVS

implements local orientation-selective neurons using a single-layer

perceptron composed of McCulloch-Pitts neurons. Each neuron

is responsible for detecting a specific orientation angle within

a two-dimensional local receptive field. The design of weights

and thresholds for the single-layer perceptron is straightforward,

drawing upon our knowledge of perceptron and local orientation-

detective neurons. The global orientation of an object can be

inferred by identifying the orientation-selective neuron with

the highest number of activations. To validate the effectiveness

of the single-layer perceptron AVS in determining the global

orientation of objects, we conducted computer simulations using

an image dataset. The results of these simulations demonstrate

that the single-layer perceptron AVS is highly effective, accurately

discerning the global orientation of objects regardless of their

size, shape, or position. These findings align with the majority

of physiological experiments and models. Moreover, to highlight

the superiority of the single-layer perceptron AVS, we compared

its performance with that of a traditional Convolutional Neural

Network (CNN) in global orientation detection tasks. Remarkably,

the single-layer perceptron AVS outperformed the CNN in

all aspects, including identification accuracy, noise resistance,

computational and learning costs, hardware implementation

feasibility, as well as biological soundness and reasonability.

2. System

2.1. Single-layer perceptron

McCulloch-Pitts artificial neuron model was proposed in the

1940s (McCulloch and Pitts, 1943). It is a simplemodel of biological

nerve cells. The structure of the McCulloch-Pitts model is shown

in Figure 1A. In this model, the neuron receives input signals

x1, x2,..., xn from other neurons. The importance of these input

signals is usually represented by the weights of the connections

between neurons, w1, w2,..., wn. The neuron multiplies the received

input values with the corresponding weights, sums them to get

value
∑

wixi, and compares it with a threshold θ . When the sum

exceeds the threshold, the neuron fires to output y = 1; otherwise,

y = 0 (McCulloch and Pitts, 1943). When several such neurons

are combined into a system, as shown in Figure 1B, we call it a

FIGURE 1

(A) McCulloch-Pitts neuron model; (B) a single-layer perceptron.

perceptron, or a single-layer perceptron, which consists of a single

layer of the McCulloch-Pitts neurons connected to a set of inputs

from other neurons with their own weights (Rosenblatt, 1958).

2.2. Local orientation-selective neuron

In this subsection, we use the single-layer perceptron to realize

local orientation-selective neurons. We postulate the existence

of numerous simple neurons that possess orientation detection

capabilities. Each neuron is solely responsible for detecting a

specific orientation within a small area known as the local receptive

field of the overall visual field. For the sake of simplicity, let’s

consider a 3 × 2 local receptive field. Within this field, there are

four possible orientation angles: 0◦, 45◦, 90◦, and 135◦, that can
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FIGURE 2

The perceptrons for the four types of orientation-selective neurons in a 3 × 2 local receptive field. (A) 0◦-selective neuron, (B) 45◦-selective neuron,

(C) 90◦-selective neuron, and (D) 135◦-selective neuron.

be detected. By employing four McCulloch-Pitts neurons, we can

realize four distinct types of orientation-selective neurons that can

detect two-dimensional objects with orientation angles of 0◦, 45◦,

90◦, and 135◦, respectively. In the actual visual system, the primary

pathway for transmitting visual information follows the sequence:

photoreceptor −→ bipolar cell −→ ganglion cell −→ lateral

geniculate nucleus (LGN)−→ primary visual cortex (Kandel et al.,

1991). Considering a two-dimensional visual field, or the receptive

field, we assume that it can be divided into M × N regions. Each

region corresponds to the smallest visually distinguishable area.

When light falls on a region, the corresponding photoreceptor, or a

bunch of photoreceptors, converts the light signals into electrical

signals, which are then transmitted to bipolar cells. To simplify

the neural computation, we focus solely on the ON-response

mechanism. Consequently, if a photoreceptor receives light, its

corresponding ON-response bipolar cell outputs 1; otherwise, it

outputs 0. For the sake of simplicity, we directly connect the

photoreceptors to the orientation-selective ganglion neurons. Each

type of orientation-selective ganglion neuron accepts signals from

the corresponding bipolar cell or photoreceptor, based on its

specific orientation selectivity. By considering x5 as the reference

point, we can establish the corresponding connections for the four

types of orientation-selective neurons within a local receptive field

consisting of six (3× 2) regions, as depicted in Figure 2.

By examining Figure 2, we can determine that the size of the

local receptive field is set as 3 × 2, and the orientation-selective

neurons respond to two inputs. Within the 3 × 2 local receptive

field, the input signals are labeled from x1 to x6, with x5 serving

as the reference point. Consequently, the 0◦-selective neuron only

responds to inputs x5 and x6, the 45
◦-selective neuron exclusively

responds to x3 and x5, the 90
◦-selective neuron solely responds to

x2 and x5, and the 135◦-selective neuron responds solely to x1 and

x5. As the photoreceptors output 1 when they receive light, and 0

otherwise, and the weights (from w1 to w5) are all set to 1, a neuron

will only fire if both of its input signals from the photoreceptors are

1 simultaneously. Thus, we can set the threshold as 1.5 and adopt a

step function as the activation function f :

y =

{

1, (wixi + wjxj ≥ 1.5)

0, (wixi + wjxj < 1.5)
, (1)

where xi and xj represent the two effective inputs, wi and wj are

their corresponding weights. The effective input information varies

for different orientation-selective neurons. As a result, we connect

each corresponding region to four distinct orientation-selective

neurons. Figure 3 illustrates an example of the connections between

the photoreceptors and the four different orientation-selective

neurons within a local receptive field. In Figure 3A, for a 3× 2 local
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receptive field, only one region, the reference region, is connected

to all orientation-selective neurons. The other four photoreceptors

are connected to their corresponding orientation-selective neurons.

Each orientation-selective neuron focuses on specific outputs from

the photoreceptors and accepts the corresponding orientation

information. If we represent the neural connections within a local

receptive field in the form of a perceptron, the perceptron AVS

can be visualized as shown in Figure 3B. It is worth noting that by

considering only four orientations, the system takes advantage of

the symmetrical relationships:

0◦ and 180◦: These orientations aremirror images of each other.

Any pattern or object rotated by 180◦ will look identical to the

original pattern.

45◦ and 225◦: Similarly, these orientations are mirror images of

each other. Any pattern or object rotated by 225◦ will look identical

to the original pattern.

90◦ and 270◦: These orientations are perpendicular to each

other. A pattern or object rotated by 90◦ becomes the same as the

original pattern.

135◦ and 315◦: These orientations are also perpendicular and

mirror images of each other. A pattern or object rotated by 315◦

will look identical to the original pattern.

By considering only one orientation from each symmetrical

pair, the system avoids redundancy and reduces computational

complexity while still being able to capture the essential

information needed for orientation detection.

2.3. Global orientation detection system

In this subsection, we describe the overall process of global

orientation detection using the single-layer perceptron AVS.

The system for two-dimensional global orientation detection

is presented in Figure 4. Let’s consider an object with a 135◦

orientation as an example. In Figure 4, the positions of the

corresponding photoreceptors that are activated by this object are

highlighted. The photoreceptors that receive light are shown in

yellow, while the others are colored gray. This image, divided

into 5×4 regions, can be further divided into 9 independent

local receptive fields of size 3 × 2. Each local receptive field’s

photoreceptors are then connected to four different orientation-

selective neurons. Therefore, there are a total of 36 orientation-

selective neurons connected to the photoreceptors for this 5 ×

4 image. Figure 4 illustrates three local receptive fields and

their corresponding orientation-selective neurons. The three local

regions are enclosed in colored frames. The activated orientation-

selective neurons are depicted in red, while the inactivated ones are

shown in blue. During an orientation detection process, the inputs

in each local receptive field are transmitted to the four orientation-

selective neurons. The local orientation information is computed

independently by the four types of orientation-selective neurons.

The corresponding orientation-selective neurons are activated

based on the effective local orientation information. For example,

in the first local receptive field, only a 0◦-selective neuron and

a 90◦-selective neuron are activated by the inputs. In the last

local receptive field, no neurons are activated. By arranging the

orientation-selective neurons according to their corresponding

FIGURE 3

The neural connections in a local receptive field, (A) the

connections between photoreceptors and orientation-selective

neurons, (B) the perceptron form of the connections between

photoreceptors and orientation-selective neurons.

positions, the arrangements are displayed in the lower part of

Figure 5. This arrangement allows us to easily determine the

positions of activated neurons and the number of different types of

activated neurons. The activations of the four types of orientation-

selective neurons are shown in the bar chart. Since the global

orientation can be determined based on the number of most

activated orientation-selective neurons, the type of neurons with

the highest activation count corresponds to the global orientation

of the object. From the bar chart, we can observe that five 135◦-

selective neurons are activated five times, which is the highest

activation count. Therefore, the detection result is that this object

has a 135◦ orientation. The complete system for two-dimensional

global orientation detection based on the single-layer perceptron

is depicted in Figure 5. It consists of three layers: the photoreceptor

layer, the local orientation-selective neuron layer, and the sum layer.

The connections between the photoreceptor layer and the local

orientation-selective neuron layer are not fully connected. Each

local orientation-selective neuron accepts specific inputs based on

the distribution characteristics of different input groups in the local
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FIGURE 4

The mechanism of the single layer perceptron AVS for two-dimensional global orientation detection.

receptive field. Neurons are defined as four different orientation-

selective neurons. Finally, the outputs from the same type of local

orientation-selective neurons are combined in a summer, where

they are simply summed. This step calculates the sum of effective

inputs, which corresponds to counting the number of activated

neurons of that type. The four final output results represent the

counts of activated neurons for the four types. In this system,

effective connections and active neurons are highlighted in red.

The output value of an active neuron is 1, while that of an inactive

neuron is 0. The four results are consistent with the results shown

in Figure 4.

3. Simulation results

To validate the effectiveness of the single-layer perceptron

AVS for global orientation detection, several computer experiments

were conducted using a dataset consisting of 49,694 binary images.

Each image was 1024 pixels in size (32 × 32) and contained

various numbers of light spots arranged into regular objects with

central or axial symmetry at specific orientation angles. For each

image, we applied the four different orientation-selective neurons

to each local receptive field for local orientation detection. The

activations of each type of neuron were then used to infer the global

orientation. To account for edge information and the 3 × 2 size

of each local receptive field, the 32 × 32 images were padded with

zeros on the boundary (right, left, and top), resulting in image sizes

of 34 × 33. This allowed for the division of each image into 1,024

(32 × 32) local receptive fields. Consequently, a total of 4,096 (4

× 1024) orientation-selective neurons were involved in orientation

detection. In the first experiment, a 1×10 line at a 135◦ orientation

was placed in the images (Figure 6A). The activations of the four

types of orientation-selective neurons were recorded, including the

overall activations (Figure 6B) and individual activations of the 0◦-

selective, 45◦-selective, 90◦-selective, and 135◦-selective neurons

(Figure 6C). As shown in Figures 6B, C, only the 135◦ orientation-

selective neuron was activated, while the others remained inactive.

Therefore, the orientation-selective neuron (135◦) with the highest

activation count could be used to determine the global orientation

of the line. By varying the lengths, angles, and positions of the line,

it was consistently observed that only the 135◦ orientation-selective

neuron was activated, regardless of these variations.
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FIGURE 5

The single-layer perceptron AVS for two-dimensional global orientation detection.

In the next experiment, a 135◦ 4 × 10 pixel bar was used

as the stimulus (Figure 7A). The activations of the four types

of orientation-selective neurons were recorded, including the

overall activations (Figure 7B) and individual activations of the 0◦-

selective, 45◦-selective, 90◦-selective, and 135◦-selective neurons

(Figure 7C). Interestingly, it was observed that 28 0◦-selective

neurons, 20 45◦-selective neurons, 29 90◦-selective neurons, and

36 135◦-selective neurons were activated by the 135◦ 4 × 10

pixel bar. This allowed for the correct determination that the

bar was placed at a 135◦ orientation. Furthermore, by varying

the lengths, widths, angles, and positions of the bar, it was

consistently observed that the 135◦-selective neurons had the

highest activation count, indicating the correct recognition of the

bar’s orientation. These experiments confirmed key experimental

observations from previous studies and provided explanations

for those observations (Hubel and Wiesel, 1959, 1962, 1968;

Kondo et al., 2016). They could prompt neuroanatomists and

neurophysiologists to reexamine their findings or reconsider their

experimental designs.

Additionally, the performance of the single-layer perceptron

AVS for global orientation detection was evaluated using a larger

image dataset, where objects of various sizes (2 to 48 pixels) were

placed at different positions and angles. Each experiment was

repeated 30 times, and the average results are presented in Table 1.

The results demonstrate that regardless of the object’s size and

position, its orientation angle can be accurately recognized by the

single-layer perceptron AVS.

To compare the global orientation detection performance

of the single-layer perceptron AVS with other methods, CNNs

were selected due to their widespread application and success in

object detection, segmentation, and recognition in images. Figure 8

illustrates the architectures of the single-layer perceptron AVS

(a) and the CNN (b) used in the experiments. The CNN used

in the experiments follows a typical architecture for handwritten

character recognition (Saito, 2018). It consists of 7 layers:

1. Convolutional layer: It employs 30 filters of size 3×3 to generate

30 feature maps of size 32× 32.

2. Pooling layer: It performs 2×2maximum pooling on the feature

maps.

3. Affin layer: This layer includes a fully connected network that

maps the inputs from the previous layer (8,192 inputs from the

30×16×16 feature maps) to a hidden layer of size 100, and then

to an output layer of size.
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FIGURE 6

Simulated responses of the local orientation detective neurons to a line stimulus of 1 × 10 at a 135◦ orientation (A), overall activations (B) and

individual activations of 0◦-selective neurons, 45◦-selective neurons, 90◦-selective neurons, and 135◦-selective neurons (C).

4. The activation function of nodes in Affin layer is standard

sigmoid function. The learning was performed on both

convolution layer and Affin layer.

Since the input images are 32 × 32 pixels, the CNN has a total

of 1024 inputs. The convolutional layer produces 30 feature maps

of size 32× 32. After applying 2× 2 maximum pooling, the inputs

to the fully connected network are reduced to 8,192 (30× 16× 16).

The fully connected network then maps these inputs to the hidden

layer of size 100 and finally to the output layer of size 4.

On the other hand, the single-layer perceptron AVS has only

two layers:

1. Perceptron layer: It consists of four types of orientation-selective

neurons, with a total of 4096 (4 × 32 × 32) local orientation

detection neurons. This layer generates four sets of 32× 32 local

orientation feature maps.

2. Summing pooling layer: This layer sums the four sets of local

orientation feature maps to produce four output values.

In comparison to the CNNwith 820,004 parameters, the single-

layer perceptron AVS only has 12 parameters (4 × 3) for the

local orientation detection neurons. This significant reduction in

parameters results in substantial savings in computational cost.

Therefore, the single-layer perceptron AVS offers a simpler

architecture with a smaller number of parameters, making

it computationally efficient compared to the CNN. In the

experiments, the CNN was trained for global orientation detection

using a dataset of 15,000 samples, while 5,000 samples were used for

testing. The objects in the dataset varied in size from 2 pixels to 256
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FIGURE 7

Simulated responses of the local orientation detective neurons to a bar stimulus of 4× 10 at a 135◦ orientation (A), overall activations (B), and

individual activations of 0◦-selective neurons, 45◦-selective neurons, 90◦-selective neurons, and 135◦-selective neurons (C).

pixels, had different shapes, and were randomly placed. The CNN

was trained using back-propagation with the Adam optimizer.

Figure 9 displays the learning results of the CNN, showing the loss

and accuracy during the training process. From the learning curves,

it can be observed that the CNN successfully learned the task

of orientation detection, achieving a high identification accuracy

of 99.997%. This performance indicates that the CNN performed

also well in comparison to the single-layer perceptron AVS, which

achieved 100% accuracy without the need for training.

The single-layer perceptron AVS possesses several advantages

over CNN in various aspects:

Parameter efficiency: The single-layer perceptron AVS requires

fewer parameters compared to CNN. While CNNs become deeper

with millions of parameters that need to be calculated and

optimized, the single-layer perceptron AVS remains compact.

Prior knowledge utilization: The single-layer perceptron AVS

can leverage prior knowledge about the system and task, allowing

for learning from good initial values. In contrast, CNNs typically

start from random initial values and lack the ability to incorporate

prior knowledge directly.

Convergence guarantee: The perceptron is specifically designed

to solve linearly separable binary classification problems. The

perceptron algorithm iteratively updates its weights to find a

linear decision boundary (hyperplane) that can classify linearly

separable binary classification problems correctly. The fact that

the local orientation detection problem can be solved by the

perceptron (Figure 2) means that the local orientation detection

problems are linearly separable and the data points representing

different local orientations can be separated by a hyperplane in

the feature space. Therefore, the single-layer perceptron AVS for
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TABLE 1 Accuracy analysis of orientation detective system.

Object type Orientation angle

0◦ 45◦ 90◦ 135◦

2 pixels No. of samples 992 961 992 961

Correct numbers 992 961 992 961

Accuracy 100% 100% 100% 100%

3 pixels No. of samples 960 960 960 960

Correct numbers 960 960 960 960

Accuracy 100% 100% 100% 100%

4 pixels No. of samples 928 841 928 841

Correct numbers 928 841 928 841

Accuracy 100% 100% 100% 100%

8 pixels No. of samples 1,699 2,249 1,699 2,249

Correct numbers 1,699 2,249 1,699 2,249

Accuracy 100% 100% 100% 100%

12 pixels No. of samples 2,379 3,411 2,379 3,411

Correct numbers 2,379 3,411 2,379 3,411

Accuracy 100% 100% 100% 100%

16 pixels No. of samples 1,319 1,489 1,319 1,489

Correct numbers 1,319 1,489 1,319 1,489

Accuracy 100% 100% 100% 100%

32 pixels No. of samples 1,284 1,645 1,284 1,645

Correct numbers 1,284 1,645 1,284 1,645

Accuracy 100% 100% 100% 100%

≥48 pixels No. of samples 2,515 1,275 2,515 1,275

Correct numbers 2,515 1,275 2,515 1,275

Accuracy 100% 100% 100% 100%

orientation detection is guaranteed to converge within an upper

bound on the number of iterations. CNNs, on the other hand, often

require significant learning time and are prone to getting stuck in

local minima as it is shown in Table 2.

Interpretability and explainability: The learning process

of the single-layer perceptron AVS is more transparent and

understandable compared to CNN. The results and predictions

of the single-layer perceptron AVS are traceable and explainable,

whereas CNN learning is often considered a black box with

non-transparent results.

Simple hardware implementation: The hardware

implementation of the single-layer perceptron AVS is simpler

and more efficient compared to CNN, as it requires only two

layers instead of the hundreds of layers typically found in CNNs.

The single-layer perceptron AVS stays true to the concept of

locally-sensitive, orientation-selective neurons, while CNNs often

overlook this essential concept.

Biological plausibility: The single-layer perceptron AVS aligns

closely with the visual system concepts proposed by Hubel

and Wiesel, making it more biologically sound for orientation

detection and other visual tasks. In contrast, CNNs, despite their

similarities in connecting units to local receptive fields, do not

fully incorporate the concept of orientation-selective neurons and

cannot be regarded as true “neural” networks.

Adding noise to test the noise resistance of CNN and the

single-layer perceptron AVS is a common practice in evaluating

the robustness of these systems to noisy inputs. Noise resistance

is an important characteristic for any image processing or pattern

recognition system as it determines how well the system can handle

inputs with random variations. In our experiments, for each image

in the testing dataset, noise is generated by randomly selecting

a certain percentage of pixels. The percentage of pixels selected

ranges from 5 to 30%. For each selected pixel, if it was originally

0, it is changed to 1, and if it was originally 1, it is changed to 0.

The images with noise were fed to both systems, and their noise

resistance was compared.

Table 3 summarizes the noise resistance results. It can be seen

that when subjected to a 5% noise level, CNN’s identification

accuracy dropped to 90%, while the single-layer perceptron AVS

dropped to 96%. As the noise level increased to 30%, CNN’s

identification accuracy dramatically decreased to 35%, whereas the

single-layer perceptron system maintained a 43% identification

accuracy, demonstrating superior noise resistance. In summary,

the single-layer perceptron AVS exhibits advantages in parameter

efficiency, utilization of prior knowledge, convergence guarantee,

interpretability, and hardware implementation efficiency compared

to CNN. It also shows higher noise resistance in the presence of

noisy inputs.

4. Conclusion and discussion

This paper proposed a novel orientation detection mechanism-

based single-layer perceptron AVS. By introducing the concept of

local receptive fields and implementing local orientation detective

neurons with a single-layer perceptron, the system achieved

global orientation detection by determining the most activated

orientation detective neuron. The effectiveness of the system was

demonstrated through extensive computer experiments, showing

excellent recognition accuracy regardless of object size, location,

and orientation. The mechanism and the mechanism-based AVS

exhibit desirable properties that can be applied to various artificial

visual perception systems and are reminiscent of the human

visual system. They can serve as a framework for understanding

fundamental phenomena in visual perception, such as direction

perception, movement direction perception, movement speed

perception, and binocular vision perception. Additionally, they

provide a functional framework for visual computing in the

primary visual cortex, shedding light on how visual input is

processed and organized across different stages of the visual system.

Furthermore, the mechanism and the mechanism-based AVS

offer insights into encoding sensory information in cortical

circuits, which can extend to other sensor systems like smell,

taste, and touch. Although the mechanism and AVS are based

on simplified models and overlook certain detailed functions

of the visual system and the brain, they provide a quantitative

explanation for many known neurobiological visual phenomena

and experiments. They may also prompt neuroanatomists and
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FIGURE 8

The architecture of the single-layer perceptron AVS (A) and CNN (B) used in experiments.
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FIGURE 9

Learning results of loss (A) and accuracy (B) of the CNN.

TABLE 2 Comparison between CNN and the single-layer perceptron AVS.

Layer Parameters Learning cost Reasoning Bio-soundness Noise resistance

CNN ≥7 820.004 High Black Box Low Low

AVS 2 12 No Reasonable High High

TABLE 3 Accuracy of CNN and AVS.

Noise 0% 5% 10% 15% 20% 25% 30%

CNN 99.887% 90.783% 74.441% 59.108% 47.547% 39.866% 35.343%

AVS 100% 96.571% 85.562% 71.490% 59.716% 49.924% 43.452%

neurophysiologists to reevaluate their observations or conduct new

experiments to uncover corresponding structures and functions.

Conversely, advancements in biological sciences can contribute

to further modifications of the mechanism and the mechanism-

based AVS. The paper also compared the performance of the

single-layer perceptron AVS with traditional CNNs for orientation

detection tasks, demonstrating the superiority of the single-layer

perceptron AVS in terms of recognition accuracy, noise immunity,

computation and learning costs, hardware implementation,

reasoning, bio-soundness, and other aspects. Overall, the proposed

mechanism and the mechanism-based AVS offer a promising

approach to orientation detection and lay the foundation for future

research and advancements in the field of visual perception. But,

we must point out that the proposed system lacks generality, which

means it is limited in its application to only visual perceptions,

such as orientation perception, movement direction perception,

movement speed perception, binocular vision perception and other

sensor systems like smell, taste, and touch.
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