
TYPE Original Research

PUBLISHED 13 September 2023

DOI 10.3389/fnins.2023.1225871

OPEN ACCESS

EDITED BY

Anup Das,

Drexel University, United States

REVIEWED BY

Shuangming Yang,

Tianjin University, China

Xuchong Zhang,

Xi’an Jiaotong University, China

Sen Lu,

The Pennsylvania State University (PSU),

United States

*CORRESPONDENCE

Changqing Xu

cqxu@xidian.edu.cn

†These authors share first authorship

RECEIVED 20 May 2023

ACCEPTED 24 August 2023

PUBLISHED 13 September 2023

CITATION

Pei Y, Xu C, Wu Z, Liu Y and Yang Y (2023)

ALBSNN: ultra-low latency adaptive local binary

spiking neural network with accuracy loss

estimator. Front. Neurosci. 17:1225871.

doi: 10.3389/fnins.2023.1225871

COPYRIGHT

© 2023 Pei, Xu, Wu, Liu and Yang. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

ALBSNN: ultra-low latency
adaptive local binary spiking
neural network with accuracy loss
estimator

Yijian Pei1†, Changqing Xu1,2*†, Zili Wu3, Yi Liu2 and Yintang Yang2

1Guangzhou Institute of Technology, Xidian University, Xi’an, China, 2School of Microelectronics, Xidian

University, Xi’an, China, 3School of Computer Science and Technology, Xidian University, Xi’an, China

Spiking neural network (SNN) is a brain-inspiredmodel withmore spatio-temporal

information processing capacity and computational energy e�ciency. However,

with the increasing depth of SNNs, the memory problem caused by the weights

of SNNs has gradually attracted attention. In this study, we propose an ultra-

low latency adaptive local binary spiking neural network (ALBSNN) with accuracy

loss estimators, which dynamically selects the network layers to be binarized to

ensure a balance between quantization degree and classification accuracy by

evaluating the error caused by the binarized weights during the network learning

process. At the same time, to accelerate the training speed of the network, the

global average pooling (GAP) layer is introduced to replace the fully connected

layers by combining convolution and pooling. Finally, to further reduce the error

caused by the binary weight, we propose binary weight optimization (BWO), which

updates the overall weight by directly adjusting the binary weight. This method

further reduces the loss of the network that reaches the training bottleneck.

The combination of the above methods balances the network’s quantization and

recognition ability, enabling the network to maintain the recognition capability

equivalent to the full precision network and reduce the storage space bymore than

20%. So, SNNs can use a small number of time steps to obtain better recognition

accuracy. In the extreme case of using only a one-time step, we still can achieve

93.39, 92.12, and 69.55% testing accuracy on three traditional static datasets,

Fashion- MNIST, CIFAR-10, and CIFAR-100, respectively. At the same time, we

evaluate our method on neuromorphic N-MNIST, CIFAR10-DVS, and IBM DVS128

Gesture datasets and achieve advanced accuracy in SNN with binary weights. Our

network has greater advantages in terms of storage resources and training time.

KEYWORDS

spiking neural networks, binary neural networks, neuromorphic computing, sparsity,

visual recognition

1. Introduction

Courbariaux et al. (2015) proposed Binary Connect, which pioneered the study of

binary neural networks. Binarization can not only minimize the model’s storage usage

and computational complexity but also reduce the storage resource consumption of model

deployment and greatly accelerate the inference process of the neural network. In the

field of convolution neural networks (CNNs), many algorithms have been proposed and

satisfactory progress has been made. However, conventional quantization techniques end up

in either lower speedup or lower accuracy because these works fail to dynamically capture

the sensitivity variability in the input feature map values. Therefore, we are motivated to

apply different levels of quantization for different feature map values. Some researchers have

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1225871
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1225871&domain=pdf&date_stamp=2023-09-13
mailto:cqxu@xidian.edu.cn
https://doi.org/10.3389/fnins.2023.1225871
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1225871/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

embarked on the study of mixed-precision algorithms, which

has led to many hardware accelerator designs. Chang et al.

(2021) designed a reconfigurable CNN processor, which can

reconstruct the computing unit and the on-chip buffer according

to the computing characteristics of the model with mixed-

precision quantization. Jiang et al. (2020) designed the PRArch

accelerator architecture which support both conventional dense

convolution and aggregated sparse convolution and implement

mixed-precision convolution on fix-precision systolic arrays. Song

et al. (2020) proposed an architecture that utilizes a variablespeed

mixed-precision convolution array. It can achieve a significant

improvement in performance with a small loss of accuracy.

Spiking neural networks, as the third generation of neural

networks, is a computational paradigm that simulates the biological

brain based on the dynamic activation of binary neurons and

event-driven (Illing et al., 2019; Tavanaei et al., 2019). Using

the time sparsity of binary time series signals can improve the

computational energy efficiency on special hardware (Mead, 1990;

Xu et al., 2020). The combination of SNNs and binary networks

has gradually attracted more and more attention (Srinivasan and

Roy, 2019; Lu and Sengupta, 2020; Kheradpisheh et al., 2022).

However, it is still a great challenge to train SNNs due to

their non-differentiable activation function. In order to maintain

good accuracy, some researchers choose to use pre-training to

obtain parameters from artificial neural networks (ANNs) (Cao

et al., 2015; Lu and Sengupta, 2020; Wang et al., 2020; Xu

et al., 2022b). The pre-training of ANN gives up the advantage

of SNNs in temporal and spatial information processing. In

recent years, some studies have successfully trained binarized

SNNs (BSNNs) directly. For example, Jang et al. (2021) used the

Bayesian rule to train BSNNs directly, and Kheradpisheh et al.

(2022) used time-to-first-spike coding in the direct training of

the network.

To maintain the energy efficiency and reasonable recognition

accuracy of BSNNs, we propose accuracy loss estimators (ALE)

and binary weight optimization (BWO). We use them to

construct an ultra-low latency adaptive local binary spiking neural

network. In addition, we apply global average pooling (GAP)

structures to improve the speed of the networks further. To

illustrate the superiority of our model, we conduct experiments

on several datasets, our model dramatically improves the

performance of BSNNs, and our contributions can be summarized

as follows:

• Inspired by the mixed weight training, we design the ALE.

When the network is trained, ALE will automatically select

binary weight or full precision weight for training to solve

the problem of large precision loss in the full binary weight

training.

• We use the GAP layer instead of the fully connected layer to

reduce the amount of calculation and change the output layer

of SNNs to alleviate the phenomenon that it takes a long time

to train BSNNs directly.

• To reduce the error caused by the binary weight in the

backpropagation, we propose the BWO, which can directly

adjust the binary weight based on the error. This method

further reduces the error of networks and improves their

performance.

2. Related works

2.1. Binary spiking neural networks

Generally, when choosing the quantization of the network, we

can consider the following two aspects: weight and input (Qin

et al., 2020). However, due to the characteristics of SNNs, there

is no need to apply extra additional quantization of the network

input. Recently, the idea of combining SNN and binarization has

been proposed. Lu and Sengupta (2020) proposed B-SNN, which

is transformed into BSNNs by pre-training binarized convolution

neural network (BCNN). Roy et al. (2019) analyzed the results

of combining different binary neurons with various binarized

weight methods. Kheradpisheh et al. (2022) proposed BS4NN

and explored the adaptation of simple non-leaky integrate-and-

fire neurons, time-to-first-spike coding, and binarized weight

in backpropagation. Jang et al. (2021) proposed BISNN, which

combined Bayesian learning to train SNNs with binarized weights.

Guo et al. (2022) proposed a hardware-friendly local training

algorithm. Binary random weights in the local classifiers were

demonstrated to be effective in training without accuracy

loss, which simplifies the algorithm for low-cost hardware

implementation.

However, a lot of studies have focused on approximating full

precision weights or reducing gradient errors to learn discrete

parameters. For BSNN, it is usually to keep the first and last

layers not binarized to reduce the accuracy drop based on the

experimental experience (Deng et al., 2021). This method usually

works, but there is still room for improvement.

2.2. Training of binary spiking neural
networks

The trainingmethods of BSNNs are also gettingmore andmore

attention. Recently, Mirsadeghi et al. (2021) proposed the STiDi-

BP algorithm to avoid reverse recursive gradient computation

while using binarized weights to obtain good performance. Wang

et al. (2020) proposed the weights-thresholds balance conversion

method to scale the full precision weights into binarized weights

through changing the corresponding thresholds of spiking neurons

and then effectively obtain BSNNs. Roy et al. (2019) trained

ANNs with constrained weights and activations and deployed

them into SNNs with binarized weights. The BS4NN proposed by

Kheradpisheh et al. (2022) takes the advantage of the temporal

dimension and performs better than a simple binary neural

network with the same architecture.

Che et al. (2022) developed a differentiable hierarchical search

framework for spiking neurons, where spike-based computation

is realized on both the cell and the layer level search space.

Guo et al. (2023) has studied what roles the temporal truncation

and local training play in affecting accuracy and computational

cost including GPU memory cost and arithmetic operations.

Zhao et al. (2022) proposed a more biologically plausible spike

timing dependent plasticity routing mechanism. Yang et al. (2022)

proposed a novel spike-based framework with minimum error

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

entropy and used the entropy theory to establish the gradient-based

online meta-learning scheme in a recurrent SNN architecture.

The current BSNNs training method mainly uses all binarized

weights, which fails to achieve a balance between accuracy and

spatial quantization. Furthermore, SNNs usually require sufficient

time steps to simulate neural dynamics and encode information and

also take a long time to converge, which brings huge computational

costs (Sengupta et al., 2019).

3. Methods

In this section, we will first introduce the neuron model, binary

spiking neural network learning method, and GAP Layer and

binarization method. Then, we will also introduce our proposed

accuracy loss estimator and binary weight optimization.

3.1. Iterative leaky integrate-and-fire neural
model

In this study, we use the iterative leaky integrate-and-fire (LIF)

neuron model to construct networks. First, we will introduce the

classic leaky integrate-and-fire model, which is defined as

τ
du(t)

dt
= −u(t)+ I(t), u < Vth, (1)

where u(t) is the membrane voltage of the neuron at time t, τ

is the decay constant of the membrane potential, and I(t) is the

input from the presynaptic neuron. The membrane potential u

exceeds the threshold Vth and then returns to the resting potential

after firing a spike. Then, the LIF neuron model is converted

into an iterative version that is easy to program. Specifically, an

iterative version can be obtained by the last spiking moment and

the presynaptic input:

u(ti) = u(ti−1)e
ti−1−t

τ + I(ti), (2)

where u(ti−1) is the membrane voltage at time step ti−1 and the I(ti)

is the input from the presynaptic neuron at time step ti.

When the neuron output is zero before the last moment,

the membrane voltage leaks. This process can be expressed

mathematically simply:

ul+1
p (ti+1) = τul+1

p (ti)(1− ol+1
p (ti))+

lmax
∑

q=1

wpqo
l
q(ti+1), (3)

where ul+1
p (ti+1) is the membrane voltage of pth neuron of (l+1)th

layer at time step ti+1, o
l+1
p (ti) is the output of pth neuron of (l+1)th

layer at time step ti, τ is the decay factor, wpq represents the weight

of the qth synapse to the pth neuron, and lmax is the total number

of neurons at the lth layer.

Finally, a step function f (x) is used to represent whether the

neuron’s membrane voltage reaches a threshold voltage Vth and

fires a spike:

ol+1
p (ti+1) = f (ul+1

p (ti+1)), (4)

TABLE 1 Accuracies from di�erent methods.

Dataset Network
architecture

High precision
layer

Acc(%)

Fashion-MNIST Structure-1 Scheme 1 92.42

Fashion-MNIST structure-1 Scheme 2 93.01

CIFAR-10 Structure-2 Scheme 1 85.91

CIFAR-10 Structure-2 Scheme 2 86.43

where the step function is f (x) =

{

1 x ≥ Vth

0 x < Vth

3.2. Accuracy loss estimator for weight
binarization

To reduce the accuracy drop of BSNNs, it is usually to keep the

first and last layers non-binarized based on engineering experience,

which means that the weight precision of the first and last layers

plays an important role in the inference of the neural network

(Deng et al., 2021). However, according to our study, which

layer should be binarized depends on the structure of the neural

networks and the characteristics of the datasets, and it is not always

the best solution to keep the first and last layers with full precision.

As shown in Table 1, under the same binary network structure

of Fashion-MNIST and CIFAR-10, scheme 1: keep the first and last

layers with full precision, and scheme 2: keep the weights of the first

two layers of the network as full precision. The result of scheme 2 is

better than that of scheme 1.

Therefore, we propose ALE, which automatically selects

binarized and non-binarized network layers during network

training by estimating the effect of different network layers on

network accuracy.

First of all, we used the Manhattan distance between

approximate binarized weights and full precision weights as the

error estimation of binarized weight wl
loss

, and its calculation

formula is shown below:

wl
loss =

n
∑

i=1

|wl
i − bwl

i|, l = 1, 2, 3...L, (5)

where wl
i is the ith full precision weight of the lth layer and bwl

i is

the ith approximate weight of the lth layer.

For a BSNN, each output channel of the spiking convolution

layer corresponds to one feature extraction. So, we used the average

error of feature extraction Al to estimate the error caused by the

binarized weights. The formula is shown below.

Al =
wl
loss

clout
, (6)

where clout is the number of output channels of the lth layer.

There is a situation that is worth noting. If the error values Al

of the two layers in the network are similar and there is a significant

difference in the number of weights, we certainly want to choose the

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

one with more weights for binarization because it will save more

space. Therefore, in addition to the error caused by binarization,

we also consider the size of weight storage space as the criteria

for selecting binarized layers, and the layer with a more significant

number of weights will have a greater probability of being chosen

for binarization.

Because error estimationAl caused by binarization is calculated

based on wloss and cout , we tried to use them to estimate the

difference in the weight storage space of different layers, the

formula is as follows:

Ml =
θ lmax − θ l1

2
(7)

θ lmax is the Al obtained when the number of output channels of

the lth layer is equal to 1 and θ l1 is the obtained Al when the

number of output channels of the lth layer equal to the total

number of weights. For example, for a weight in the shape of

[output channel, input channel, kernel size, kernel size]

= [10, 10, 3, 3] its θmax is equal to Al in the shape of [1, 100, 3, 3],

and θ1 is equal to Al in the shape of [100, 1, 3, 3]. These Al can be

obtained quickly by using the Equations (5), (6).

To simplify the calculation of M, we used the Al to estimate θ l1
and θ lmax based on the relationship between the error estimation

of binarization weights with different shapes, which is obtained by

experiments. The relationship is shown below.

wl
loss

wl′

loss

≈
2

√

√

√

√(
clout

cl
′

out

)2 ∗
clin

cl
′

in

, (8)

where wl
loss

, clout , and clin are the weight error of lth layer, the

number of output channels, and the number of input channels,

respectively. wl′

loss
, cl

′

out , and cl
′

in are the weight error of lth layers

reshaped weights, the corresponding number of output channels,

and the corresponding number of input channels, respectively.

Furthermore, we consider the influence of binarized weights at

different layers in the forward pass and backpropagation.We set the

same number of weights in each layer and carried out binarization

layer by layer, and the network structure (structure-3,4,5,6) is

shown in Table 2. At the same time, we observe the impact of the

binary weights of each layer on the network recognition accuracy.

Due to the first and second layers having been proven to have a

significant influence on the accuracy of networks (Qin et al., 2020),

we only study the weights of other layers. As shown in Figure 1, the

network accuracy decreases evenmore when the layers at both ends

of the network use binary weights.

We can take the subscript of the middle layer as the central

axis, set the importance of the first and last layers to η, and use an

approximate parabola to describe this phenomenon:

F(x) = ǫ(x−
sumL+ 1

2
)2, (9)

where x is the index of layer, ǫ is a facter which is equal to 4∗η
(sumL−1)2

,

sumL represents the total number of layers, η is a variable, and we

set it to 1 by default.

TABLE 2 Network structure of di�erent methods.

Name Network architecture

Structure-1 16C3-16C3-AP2-64C3-64C3-AP2-256C3-1024C3-10

Structure-2 16C3-32C3-AP2-512C3-AP2-512C3-1024C3-10

Structure-3 10C3-10C3-10C3-10C3-10C3-10C3-10

Structure-4 16C3-16C3-16C3-16C3-16C3-16C3-10

Structure-5 30C3-30C3-30C3-30C3-30C3-30C3-10

Structure-6 50C3-50C3-50C3-50C3-50C3-50C3-10

FIGURE 1

Influence of di�erent binary layers on accuracy. On Cifar10, based

on structure-3, we translate the precision curves under other

structures (structure-4,5,6). Abscissa is the subscript of the

binarization layer (the weights of other layers keep high precision),

the first subscript is 1, and the ordinate is result accuracy.

We combine Al, Ml, and F(x) together to get the criteria R(x)

for selecting binarized layers, which is shown below.

R(x) =

{

(1
Al+Ml)F(x) , x ≤ sumL+1

2

(1
Al+Ml)log10(K)F(x) , x > sumL+1

2 ,
(10)

where K represents the number of classes in the dataset. We can

make different selection strategies according to the value of R(x) to

satisfy different applications. We will discuss the strategies in detail

in the experiment section.

3.3. GAP layer

Because of the binary output of spiking neurons, it is extremely

sensitive to noise when the results of a few time steps are directly

used for classification. Therefore, it is usually to use the spiking

trains for a long period of time to indicate the degree of response to

the category, which causes extra computational consumption. To

address this problem, we learn from CNN’s global average pooling

(Lin et al., 2013) and apply it in SNNs to reduce the time steps.

The GAP layer consists of a convolutional layer and a global

average pooling layer (GAP) (Lin et al., 2013). The convolution

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

layer adjusts output channels to the number of classifications of

the dataset. The global average pooling layer converts the feature

map into a classification vector, which is directly related to the

final classification result. The overall structure of the GAP layer is

shown in Figure 2. The number of output channels is first adjusted

to the number of dataset classes by convolution calculation. Then,

a global average pooling is used to transform the spatial average of

the feature maps from the last layer to the confidence of categories.

The obtained confidence is used as the probability of recognition.

Just as GAP plays a role in CNNs, it can enforce correspondence

between feature maps and categories and integrates global spatial

information of SNNs.

3.4. Backpropagation with adaptive local
binarization

For the binarization of the weights, we use three binarized

weight blocks for the binarization approximation of the full

precision weights. That is, a linear combination of three binary

filters α is used to represent the full precision weightW.

W ≈ α1B1 + α2B2 + α3B3. (11)

In this way, ALE’s formula 5 for calculating wloss, in which bw is

transformed into bw =
∑3

i=1 |αiWi|.

Then, we calculate the value of each binarized weight B

referring to Lin et al. (2017). The equations are given as follows:

Bi = sign(W −mean(W)+ (i− 2)std(W)), i = 1, 2, 3, (12)

where mean(W) and std(W) are the mean and standard deviation

ofW, respectively.

Once B is obtained, we can get α easily according to

min
α

J(α) = ||w− Bα||2 (13)

For the forward pass, the forward calculation rule of

approximate convolution in Lin et al. (2017) is still used, but the

network needs to choose whether to binarize the weight of which

layer according to ALE, instead of artificially fixing the binarization

layer. The forward propagation formula is as follows:

O =

{

∑3
m=1 αmConv(Bm,A) Binarization

Conv(W,A) else
(14)

where Conv() represents convolution function and A and O are the

input and output tensor of a convolution, respectively.

BSNNs are affected by binarized weight and binary input,

so the backpropagation process must be reconsidered. We use

the Dirac function to generate the spikes of SNNs. Due to

the non-differentiability of the Dirac function, the approximate

gradient function is used instead of the derivative function in

backpropagation (Wu et al., 2018; Neftci et al., 2019; Xu et al.,

2022a), the approximate gradient function is defined as follows:

h(u) =
1

a
sign(|u− Vth <

a

2
|), (15)

where u represents the membrane voltage, Vth represents the

threshold, and a is the parameter that determines the sharpness of

the curve.

Using the chain rule, the error gradient with respect to the

presynaptic weight W is

∂L

∂W
=

∂L

∂O

∂O

∂W
=

∂L

∂O
(
1

a
sign(|u− Vth <

a

2
|)), (16)

where L is the loss function and sign is signum function.

Moreover, the binarization function of weight is also a typical

step function, and a straight-through estimator (STE) (Bengio et al.,

2013) is usually used to solve this problem.

∂L

∂W

STE
=

∂L

∂O

∂O

∂B

∂Htanh

∂W
=

∂L

∂O

∂O

∂B
=

∂L

∂B
(17)

where O and Htanh as the output tensor of a convolution and

hard-tanh function, respectively.

In Figure 3, we show the network layer with ALE and its

workflow. First, the network can use the Flag obtained from “Box”

to determine whether this layer uses binarized weights. Then, the

selected weights are convolved with the input. For the current

training step, “Box” stores the selection result of the last training

step, and these results will be used to select whether the binarized

weight will be used. ALE will recalculate the value of R and update

the selection results in the “Box” simultaneously. Next, the process

for ALE to recalculate the value of R is as follows. It calculates the

binarized weight BW according to the original weightW1, and then

they work together to get R. Finally, the selection result depends on

the value of R and the selection criteria, and the results are updated

to the ‘Box’.

Therefore, the overall structure of the adaptive local binary

Spiking Neural Network (ALBSNN) structure is illustrated

in Figure 4. The network consists of N end-to-end spiking

convolution blocks and a GAP layer block. The spiking convolution

block consists of an ALE, a spiking convolution layer, a batch

normalization layer, and an average pooling layer. ALE decides

whether the weight is binarized or not, and the spiking convolution

layer extracts the features of the image. The GAP layer is used to

alleviate the excessive cost of the time steps.

3.5. Binary weight optimization

We use three binarized weight blocks for the binarization

approximation of full precision weights, and it is classified as the

problem of solving the optimal weight coefficient. When the neural

network training tends to be stable, the binary weight processed

by the sign function is almost difficult to change. For the network

that reaches the training bottleneck, coefficient optimization can

no longer meet the demand for improving accuracy. However, the

accuracy can be further improved by adjusting the binary weight.

To keep the degree of adjustment controllable, we modify only

one binary weight tomeet the demand for weight change. As shown

in Figure 5, when the network training is stable, L is the gradient

calculated according to the chain rule, and its product with the

learning rate lr is the adjustment on a single weight. Because the

weight is composed of three binary weights, we choose one of the

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

FIGURE 2

Overall structure of the GAP layer.

FIGURE 3

Network layers with ALE. The box records the index of layers that need to be binarized. The flag determines whether the binarized weights are used

for convolution calculation. W1, BW, and W2 represent the original weight, the binarized weight, and the weights selected for convolution

calculation, respectively. Conv is the convolution function.

FIGURE 4

Overall structure of adaptive local binary spiking neural network.

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

FIGURE 5

Overall structure of binary weight optimization.

binary weights, which needs tomeet the condition that among these

binary weights BWi(i = 1, 2, 3), BWi × αi is the closest to the

adjustment (L × lr). Then, delete this binary weight BW and its

coefficient α, that is, the weight is only composed of the remaining

two binary weights.

Two more restrictions are required for the above methods: (1)

There is a situation in which we do not update the binary weight.

If BW × α is much larger than L × lr, the update of the binary

weight will cause more errors resulting in accuracy degradation of

the network. Therefore, the selected “closest” binary weights need

a restriction to determine whether the weights are adjusted. In this

article, we stipulate that the difference between L× lr and BW × α

must not exceed L 100 times. Otherwise, the selected “closest”

binary weight will not be adjusted. (2) Only adjust the network layer

using binary weights.

Finally, as shown in Figure 5, the adjusted binary weights will

be recombined into full precision weights, and it needs to be trained

again tomake the weight better adapted to the network. A profit can

be obtained by doing a small amount of binary weight optimization.

4. Experiments

In this section, we evaluate our proposed adaptive local binary

spiking neural network (ALBSNN) on both traditional static

Fashion-MNIST (Xiao et al., 2017), CIFAR-10, and CIFAR-100

(Krizhevsky et al., 2009) datasets and neuromorphic N-MNIST

(Orchard et al., 2015), CIFAR10-DVS (Li et al., 2017), and DVS128

Gesture datasets (Amir et al., 2017). Fashion-MNIST is a fashion

product image dataset with 10 classes, 70,000 grayscale images

in the size of 28 × 28. CIFAR-10 and CIFAR-100 are composed

of three channel RGB images of size 32 × 32. CIFAR-10 has

10 classes, while CIFAR-100 has 100 classes, and all images are

divided equally by class. The neuromorphic-MNIST (N-MNIST)

dataset is a spiking version of the MNIST dataset recorded by

the neuromorphic sensor. It consists of 60,000 training examples

and 10,000 test examples. CIFAR10-DVS is composed of 10,000

examples in 10 classes, with 1,000 examples in each class. DVS128

Gesture dataset contains 11 kinds of hand gestures from 29 subjects

under three kinds of illumination conditions.

4.1. Experimental setup

All reported experiments below are conducted on an NVIDIA

Tesla V100 GPU. The implementation of our proposed ALBSNN is

on the Pytorch framework (Paszke et al., 2019). Only one timestep

is used to demonstrate the advantage of our proposed ALBSNN on

ultra-low latency. Adam is applied as the optimizer (Kingma and

Ba, 2014). The results shown in this study refer to the average results

obtained by repeating five times.

In this study, we apply several data augmentation during

training processing as follows: (1) padding the original figure, and

the padding size is 4, (2) crop pictures with a size of 32 pixels

randomly, (3) flip the image horizontally with half probability, and

(4) normalized image, the standard deviation is 0.5. For the testing

process, only normalization is applied (Shorten and Khoshgoftaar,

2019).

We use an iterative LIF model and approximate gradient

for network training. The first convolutional layer acts as an

encoding layer and network structures for Fashion-MNIST, CIFAR-

10, CIFAR-100, N-MNIST, DVS128 Gesture, and CIFAR10-DVS

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

TABLE 3 Network structures.

Dataset Structure

*MNIST
16C3-16C3-AP2-64C3

-64C3-AP2-256C3-1024C3-GAP

*CIFAR-10
128C3-256C3-AP2

-512C3-AP2-1024C3-512C3-GAP

CIFAR-100
128C3-256C3-AP2-512C3

-AP2-1024C3-512C3-512C3-GAP

*MNIST represents Fashion-MNIST and N-MNIST datasets. *CIFAR-10 represents CIFAR-

10, DVS128 Gesture and CIFAR10-DVS datasets.

datasets are shown in Table 3. Between the convolution calculation

and the activation function, batch-normalization(BN) (Ioffe and

Szegedy, 2015) is applied. All convolution operations used in the

experiment are based on the operations provided by Pytorch.

The hyperparameters of networks we used in our experiments

are shown in Table 4. The learning rate uses the cosineanealing

strategy (Loshchilov and Hutter, 2016). Unless otherwise specified,

our experiments report the testing accuracy of Fashion-MNIST,

N-MNIST, CIFAR-10, CIFAR10-DVS, and DVS128 Gesture after

training 50 epochs. For CIFAR-100, 400 epochs are applied for

training.

4.2. E�ectiveness of ALE and BWO

To validate the effectiveness of ALE and BWO, we compare

ALBSNN, SNN with full precision weights (FPSNN), SNN with

binarization of all weights (BSNN), and BSNNwhose first layer and

last layer are non-binarized (FLNBSNN) on each dataset. For the

fairness of comparison, ALBSNN is designed to select two layers

to maintain full precision. Table 5 shows the accuracy of different

methods. We obtain FPSNN and BSNN results by STBP (Wu et al.,

2018) and ABC-NET (Lin et al., 2017). Compared with FPSNN,

BSNN, FLNBSNN, and ALBSNN will drop some accuracy due to

binarization. ALBSNN achieves better results in accuracy because

the ALE block can help network select more suitable layers based on

the network structure and dataset. In some datasets, the selection

result of ALBSNN is the same as that of FLNBSNN, which is

affected by the network structure. We will discuss it in the next

section.

To validate the effectiveness of binary weight optimization

(BWO). Tables 5, 6 make a comparison of a binary network with

and without BWO. We maintain the training environment of

ALBSNN here without additional parameter adjustment. At the

same time, we only use BWO to train the network 20 times on

all datasets to avoid excessive consumption of network resources.

On these datasets, binary weights are optimized further by the

proposed BWO. The accuracy of the network on Fashion-MNIST,

N-MNIST, DVS128 Gesture, and CIFAR-10 has almost reached

the level of the full-precision network, so the improvement in

accuracy is not particularly significant. For larger and more

complex datasets, such as the CIFAR-100 and CIFAR10-DVS, our

method has greater potential to improve accuracy.

TABLE 4 Parameters setting.

Parameter *MNIST *CIFAR-10 CIFAR-100

Vth 0.5 0.5 0.5

τ 0.25 0.25 0.25

a 1 1 1

Learning rate 0.001 0.001 0.001

Batch size 16 16 16

Time step 1 1 1

Optimizer Adam Adam Adam

Criterion MSE MSE Cross-Entropy

*MNIST represents Fashion-MNIST, and N-MNIST datasets. *CIFAR-10 represents CIFAR-

10, DVS128 Gesture and CIFAR10-DVS datasets.

TABLE 5 Accuracy of di�erent methods static datasets.

Dataset Method Full precision
layer

Acc(%)

Fashion-MNIST BSNN - 92.38

FLNBSNN 1,7 92.92

ALBSNN 1,2 93.10

ALBSNN + BWO 1,2 93.39

FPSNN all 93.48

CIFAR-10 BSNN - 89.65

FLNBSNN 1,6 91.01

ALBSNN 1,6 91.64

ALBSNN + BWO 1,6 92.12

FPSNN all 92.37

CIFAR-100 BSNN - 59.98

FLNBSNN 1,7 68.19

ALBSNN 1,7 68.65

ALBSNN + BWO 1,7 69.55

FPSNN all 70.00

4.3. Rethink about local binarization

Compared with the selection results on each dataset, we find

these selection results are related to the complexity of the dataset

and the network structure. As shown in Tables 5, 6, ALBSNN

chooses the same layers as FLNSNN to keep full precision when

the structure used by the dataset is the *CIFAR-10 in Table 4. If

we change the network structure so that the difference between the

weights of the head layer and the tail layer is larger, then we will get

different results from FLNBSNN. The network structure is shown

in Table 7. ALBSNN chooses to keep the weight accuracy of the first

and second layers to the full precision (weight binarization of other

layers), and the network accuracy is higher than that of FLNBSNN.

If the final output channel is relatively small and the size

of weights between adjacent network layers is relatively large,

ALBSNN may obtain a better binarization scheme by ALE.

However, if the size of weights in the network increases or decreases

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

gradually, FLNBSNN is a good solution. As the weights of common

networks generally conform to the rule of flat change layer by layer,

the selection of ALE tends to be similar to FLNB. Of course, if the

non-binarized layers are not limited to two, ALE still can obtain

a better binarization scheme by evaluating the error caused by the

binarized weights. To sum up, the selection result of ALE is mainly

related to the complexity of the dataset and the structure of the

neural network.

4.4. Impact of selection criteria

In the previous section, in order to make a fair comparison with

FLNBSNN, we select the two layers with the largest value R as full

precision layers. In this section, we choose four different selection

criteria SC1, SC2, SC3, and SC4 to show the impact of the selection

criteria on the accuracy of ALBSNN. SC1 applies the mean value R

of all layers as the baseline. When the value R of a layer is greater

than the mean value, this layer is selected as the full precision layer.

SC2 uses the R of the last layer as the baseline. If the R of a layer is

greater than the baseline, and the layer is non-binarized. For SC3,

the first and last layers are selected as full precision layers, and the

TABLE 6 Accuracy of di�erent methods on neuromorphic datasets.

Dataset Method Full precision
layer

Acc(%)

N-MNIST BSNN - 98.38

FLNBSNN 1,7 99.13

ALBSNN 1,2 99.19

ALBSNN + BWO 1,2 99.33

FPSNN all 99.40

DVS128 Gesture BSNN - 92.32

FLNBSNN 1,6 94.55

ALBSNN 1,6 94.77

ALBSNN + BWO 1,6 95.33

FPSNN all 95.68

CIFAR10-DVS BSNN - 58.38

FLNBSNN 1,6 68.01

ALBSNN 1,6 68.31

ALBSNN + BWO 1,6 68.98

FPSNN all 71.38

mean of R of the other layers is set as the baseline; R of other layers

exceeds the baseline, the layer is selected as the full precision layer.

For SC4, the first and last layers are selected as full precision layers,

and the layer closest to the average value of R excluding these two

layers is also regarded as the full precision layer.

As Table 8 is shown, a different binarization scheme is obtained

based on the network structure and dataset by ALE with the

different selection criteria. It is obvious that the accuracy is

positively correlated with the number of layers using full-precision

weights. Among them, SC2 has a significant improvement in

accuracy and takes up less resources, which is the most cost-

effective. In practice, we can choose the appropriate selection

criteria according to the requirements of accuracy and weight

storage space.

4.5. Compared with other methods

In this section, we compare our ALBSNN with several

previously reported state-of-the-art methods with the same or

similar binarization SNN network. For a fair comparison, we

replace the fully connected layer with the GAP Layer and build

an ALBSNN based on a similar network structure for discussion.

For the Fashion-MNIST, BS4NN (Kheradpisheh et al., 2022) is

trained with a simple fully connected network, and Mirsadeghi

et al. (2021) uses a higher-performance convolutional network

TABLE 8 Accuracy of di�erent selection criteria.

Dataset Selection
criteria

Full precision
layer

Acc(%)

Fashion-MNIST SC1 1 92.81

SC2 1,6 93.10

SC3 1,2,7 93.26

SC4 1,3,7 93.21

CIFAR-10 SC1 1 90.36

SC2 1,6 91.64

SC3 1,2,6 91.71

SC4 1,5,6 91.69

CIFAR-100 SC1 1 65.68

SC2 1,6 68.65

SC3 1,2,6 68.88

SC4 1,5,6 68.89

TABLE 7 Di�erent results of ALBSNN and FLNBSNN.

Dataset Network architecture Method Full precision layer Acc(%)

CIFAR-10 16C3-32C3-AP2-512C3-AP2

-512C3-1024C3-GAP

FLNBSNN 1,6 85.91

CIFAR-10 ALBSNN 1,2 86.43

DVS128 Gesture FLNBSNN 1,6 89.15

DVS128 Gesture ALBSNN 1,2 89.89

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

TABLE 9 Comparison of di�erent methods.

Dataset Method Learning Epoch Timestep
Weight storage space

(Normalized)
Acc(%)

Fashion-MNIST

BS4NN Spike-based BP 500 100 1.85 87.50

SSTiDi-BP Spike-based BP - 100 3.09 92.00

ALBSNN + BWO Spike-based BP 20 1 1 92.04

CIFAR-10

Roy-SVGG10 ANN2SNN 150 - 1.26 88.27

Wang-SVGG10 ANN2SNN 500 100 1.26 90.19

ALBSNN + BWO Spike-based BP 50 1 1 92.12

CIFAR-100

Roy-SVGG100 ANN2SNN 400 - 2.76 54.44

Wang-SVGG100 ANN2SNN 500 300 1.18 62.02

ALBSNN + BWO Spike-based BP 400 1 1 69.55

N-MNIST

LISNN Spike-based BP 20 100 5.86 99.45

TDNNA-BP Spike-based BP 100 50 2.92 99.09

ALBSNN + BWO Spike-based BP 50 10 1 99.27

DVS128 Gesture

CSRN Spike-based BP 100 60 5.69 93.40

ALBSNN + BWO Spike-based BP 50 20 1 94.63

CIFAR10-DVS

NeuNormSNN Spike-based BP 200 100 8.59 60.50

ASF-BP Spike-based BP - - 1.62 62.50

ALBSNN + BWO Spike-based BP 50 10 1 68.98

for recognition (we denote this network by SSTiDi-BP). Both

networks use temporal backpropagation for learning. For CIFAR-

10 and CIFAR-100 datasets, the network structures used by Roy

et al. (2019) and Wang et al. (2020) are both modified VGG

network (Simonyan and Zisserman, 2014); we used Roy-SVGG10

and Wang-SVGG10 to denote these two networks, respectively.

They do not train the SNN directly but instead use the method of

ANN-to-SNN conversion.

For neuromorphic datasets, the SNN train with binary weights

is relatively scarce, so we used high-precision SNN for comparison

here. LISNN (Cheng et al., 2020) and TDNNA-BP (Lee et al., 2020)

carried out experiments on N-MNIST. CSRN (He et al., 2020)

carried out experiments on DVS128 Gesture. NeuNormSNN (Wu

et al., 2019) and ASF-BP (Wu et al., 2021) carried out experiments

on CIFAR10-DVS. Table 9 shows the corresponding experimental

results.

The weight storage space is normalized with respect to the

baseline(ALBSNN). For traditional static datasets, our recognition

accuracy is on the same level as state-of-the-art SNN networks

with binary weights, but we use less training time and save more

storage resources. Compared with Wang-SVGG10, our ALBSNN

achieves 1.93 and 7.53% average testing accuracy improvement

with only one-time steps and fewer epochs. For the weight

storage space, our ALBSNN can obtain more than 20 and

15% reduction on the CIFAR-10 and CIFAR-100, respectively.

For neuromorphic datasets, compared with the SNN network

with high precision weights, our network still achieves advanced

results, uses less training time, and saves more than 50% storage

resources.

5. Conclusion

This study proposes a construction method of ultra-low latency

adaptive local binary spiking neural network with an accuracy loss

estimator, which balances the pros and cons between full precision

weights and binarized weights by choosing binarized or non-

binarized weights adaptively. Our network satisfies the requirement

of network quantization while keeping high recognition accuracy.

At the same time, we find the problem of long training time

for BSNNs. Therefore, we propose the GAP Layer, in which a

convolution layer is used to replace the fully connected layer, and

a global average pooling layer is used to solve the binary output

problem of SNN. Because of the binary output, SNN usually needs

to run multiple time steps to get reasonable results. Finally, we

find that when the BSNN is stable, the binary weight processed

by the sign function is difficult to change, which leads to the

bottleneck of network performance. Therefore, we propose binary

weight optimization to reduce the loss by directly adjusting the

binary weight, which makes the network performance close to

the full-precision network. Experiments on traditional static and

neuromorphic datasets show that our method saves more storage

resources and training time and achieves competitive classification

accuracy compared with existing state-of-the-art BSNNs.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: data openly available in the public repository.

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

The data that support the findings of this study are openly available

in Fashion-MNIST at https://doi.org/10.48550/arXiv.1708.07747,

CIFAR-10 at http://www.cs.utoronto.ca/~kriz/cifar.html, CIFAR-

100 at http://www.cs.utoronto.ca/~kriz/cifar.html, CIFAR10-DVS

at https://doi.org/10.3389/fnins.2017.00309, DVS128Gesture at

https://research.ibm.com/interactive/dvsgesture/, and N-MNIST at

https://doi.org/10.3389/fnins.2015.00437.

Ethics statement

The studies were conducted in accordance with the

local legislation and institutional requirements. Written

informed consent for participation was not required from

the participants or the participants’ legal guardians/next of kin

in accordance with the national legislation and institutional

requirements because all the data in the study came from public

datasets.

Author contributions

YP, CX, and ZW contributed to conception and design of the

study. YP and CXwrote the first draft of themanuscript. YY and YL

use statistical, mathematical or other forms of techniques to analyze

or synthesize research data. All authors contributed to manuscript

revision, read, and approved the submitted version.

Funding

This study was supported by the National Natural Science

Foundation of China under Grant 62004146, by the China

Postdoctoral Science Foundation funded project under Grant

2021M692498, by the Fundamental Research Funds for

the Central Universities under Grant XJSJ23106, and by

Science and Technology Projects in Guangzhou under Grant

SL2022A04J00095.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al.
(2017). “A low power, fully event-based gesture recognition system,” in Proceedings
of the IEEE conference on computer vision and pattern recognition 7243–7252.
doi: 10.1109/CVPR.2017.781

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432.

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural
networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.
doi: 10.1007/s11263-014-0788-3

Chang, L., Zhang, S., Du, H., Wang, S., Qiu, M., and Wang, J. (2021).
“Accuracy vs. efficiency: Achieving both through hardware-aware quantization
and reconfigurable architecture with mixed precision,” in 2021 IEEE
International Conference on Parallel Distributed Processing with Applications,
Big Data Cloud Computing, Sustainable Computing Communications, Social
Computing Networking (ISPA/BDCloud/SocialCom/SustainCom) (IEEE)
151–158. doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.
00033

Che, K., Leng, L., Zhang, K., Zhang, J., Meng, Q., Cheng, J., et al. (2022).
“Differentiable hierarchical and surrogate gradient search for spiking neural networks,”
in Advances in Neural Information Processing Systems 35, 24975–24990.

Cheng, X., Hao, Y., Xu, J., and Xu, B. (2020). “Lisnn: Improving spiking neural
networks with lateral interactions for robust object recognition,” in IJCAI 1519–1525.
doi: 10.24963/ijcai.2020/211

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in Advances in Neural
Information Processing Systems 28.

Deng, L., Wu, Y., Hu, Y., Liang, L., Li, G., Hu, X., et al. (2021). “Comprehensive
SNN compression using admm optimization and activity regularization,” in IEEE
Transactions on Neural Networks and Learning Systems.

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2022). “Efficient hardware
implementation for online local learning in spiking neural networks,” in 2022 IEEE 4th
international conference on artificial intelligence circuits and systems (AICAS) (IEEE)
387–390. doi: 10.1109/AICAS54282.2022.9869946

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2023). Efficient training
of spiking neural networks with temporally-truncated local backpropagation through
time. Front. Neurosci. 17, 1047008. doi: 10.3389/fnins.2023.1047008

He, W., Wu, Y., Deng, L., Li, G., Wang, H., Tian, Y., et al. (2020). Comparing snns
and rnns on neuromorphic vision datasets: Similarities and differences. Neur. Netw.
132, 108–120. doi: 10.1016/j.neunet.2020.08.001

Illing, B., Gerstner, W., and Brea, J. (2019). Biologically plausible deep learning
but how far can we go with shallow networks? Neur. Netw. 118, 90–101.
doi: 10.1016/j.neunet.2019.06.001

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International Conference on Machine
Learning (PMLR) 448–456.

Jang, H., Skatchkovsky, N., and Simeone, O. (2021). “Bisnn: Training spiking neural
networks with binary weights via bayesian learning,” in 2021 IEEE Data Science and
Learning Workshop (DSLW) (IEEE) 1–6. doi: 10.1109/DSLW51110.2021.9523415

Jiang, Z., Song, Z., Liang, X., and Jing, N. (2020). “Prarch: Pattern-based
reconfigurable architecture for deep neural network acceleration,” in 2020
IEEE 22nd International Conference on High Performance Computing and
Communications; IEEE 18th International Conference on Smart City; IEEE 6th
International Conference on Data Science and Systems (HPCC/SmartCity/DSS)
122–129. doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00016

Kheradpisheh, S. R., Mirsadeghi, M., and Masquelier, T. (2022). Bs4nn: Binarized
spiking neural networks with temporal coding and learning. Neural Process. Lett. 54,
1255–1273. doi: 10.1007/s11063-021-10680-x

Kingma, D., and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv:1412.6980.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images. Toronto, ON.

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-
based backpropagation for training deep neural network architectures. Front Neurosci.
14, 119. doi: 10.3389/fnins.2020.00119

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). Cifar10-dvs: an event-stream dataset
for object classification. Front. Neurosci. 11, 309. doi: 10.3389/fnins.2017.00309

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225871
https://doi.org/10.48550/arXiv.1708.07747
http://www.cs.utoronto.ca/~kriz/cifar.html
http://www.cs.utoronto.ca/~kriz/cifar.html
https://doi.org/10.3389/fnins.2017.00309
https://research.ibm.com/interactive/dvsgesture/
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00033
https://doi.org/10.24963/ijcai.2020/211
https://doi.org/10.1109/AICAS54282.2022.9869946
https://doi.org/10.3389/fnins.2023.1047008
https://doi.org/10.1016/j.neunet.2020.08.001
https://doi.org/10.1016/j.neunet.2019.06.001
https://doi.org/10.1109/DSLW51110.2021.9523415
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00016
https://doi.org/10.1007/s11063-021-10680-x
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2017.00309
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Pei et al. 10.3389/fnins.2023.1225871

Lin, M., Chen, Q., and Yan, S. (2013). Network in network. arXiv preprint
arXiv:1312.4400.

Lin, X., Zhao, C., and Pan, W. (2017). “Towards accurate binary convolutional
neural network,” Advances in Neural Information Processing Systems 30.

Loshchilov, I., and Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983.

Lu, S., and Sengupta, A. (2020). Exploring the connection between binary and
spiking neural networks. Front. Neurosci. 14, 535. doi: 10.3389/fnins.2020.00535

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.
doi: 10.1109/5.58356

Mirsadeghi, M., Shalchian,M., Kheradpisheh, S. R., andMasquelier, T. (2021). Stidi-
bp: Spike time displacement based error backpropagation in multilayer spiking neural
networks. Neurocomputing 427, 131–140. doi: 10.1016/j.neucom.2020.11.052

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient
learning in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Process. Magaz. 36, 51–63.
doi: 10.1109/MSP.2019.2931595

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting static
image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9,
437. doi: 10.3389/fnins.2015.00437

Paszke, A., Gross, S., Massa, F., Lerer, A., and Chintala, S. (2019). “Pytorch: An
imperative style, high-performance deep learning library,” in 33rd Conference onNeural
Information Processing Systems (NeurIPS 2019) (Vancouver, Canada).

Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and Sebe, N. (2020). Binary neural
networks: A survey. Patt. Recogn. 105, 107281. doi: 10.1016/j.patcog.2020.107281

Roy, D., Chakraborty, I., and Roy, K. (2019). “Scaling deep spiking neural networks
with binary stochastic activations,” in 2019 IEEE International Conference on Cognitive
Computing (ICCC) (IEEE) 50–58. doi: 10.1109/ICCC.2019.00020

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: Vgg and residual architectures. Front. Neurosci. 13, 95.
doi: 10.3389/fnins.2019.00095

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. J. Big Data 6, 1–48. doi: 10.1186/s40537-019-0197-0

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Song, Z., Fu, B., Wu, F., Jiang, Z., Jiang, L., Jing, N., et al. (2020). “DRQ:
dynamic region-based quantization for deep neural network acceleration,” in 2020

ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)
(IEEE) 1010–1021. doi: 10.1109/ISCA45697.2020.00086

Srinivasan, G., and Roy, K. (2019). Restocnet: Residual stochastic binary
convolutional spiking neural network for memory-efficient neuromorphic computing.
Front. Neurosci. 13, 189. doi: 10.3389/fnins.2019.00189

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida,
A. (2019). Deep learning in spiking neural networks. Neur. Netw. 111, 47–63.
doi: 10.1016/j.neunet.2018.12.002

Wang, Y., Xu, Y., Yan, R., and Tang, H. (2020). Deep spiking neural networks
with binary weights for object recognition. IEEE Trans. Cogn. Dev. Syst. 13, 514–523.
doi: 10.1109/TCDS.2020.2971655

Wu, H., Zhang, Y., Weng, W., Zhang, Y., Xiong, Z., Zha, Z.-J., et al. (2021).
“Training spiking neural networks with accumulated spiking flow,” in Proceedings of
the AAAI conference on artificial intelligence 10320–10328. doi: 10.1609/aaai.v35i12.
17236

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct training for
spiking neural networks: Faster, larger, better,” in Proceedings of the AAAI Conference
on Artificial Intelligence 1311–1318. doi: 10.1609/aaai.v33i01.33011311

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xu, C., Liu, Y., Chen, D., and Yang, Y. (2022a). Direct training via backpropagation
for ultra-low-latency spiking neural networks with multi-threshold. Symmetry 14,
1973. doi: 10.3390/sym14091933

Xu, C., Liu, Y., and Yang, Y. (2022b). Ultra-low latency spiking neural networks
with spatio-temporal compression and synaptic convolutional block. arXiv preprint
arXiv:2203.10006. doi: 10.1016/j.neucom.2023.126485

Xu, C., Zhang, W., Liu, Y., and Li, P. (2020). Boosting throughput and efficiency
of hardware spiking neural accelerators using time compression supporting multiple
spike codes. Front. Neurosci. 14, 104. doi: 10.3389/fnins.2020.00104

Yang, S., Tan, J., and Chen, B. (2022). Robust spike-based continual meta-
learning improved by restricted minimum error entropy criterion. Entropy 24, 455.
doi: 10.3390/e24040455

Zhao, D., Li, Y., Zeng, Y.,Wang, J., and Zhang, Q. (2022). Spiking capsnet: A spiking
neural network with a biologically plausible routing rule between capsules. Inf. Sci. 610,
1–13. doi: 10.1016/j.ins.2022.07.152

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225871
https://doi.org/10.3389/fnins.2020.00535
https://doi.org/10.1109/5.58356
https://doi.org/10.1016/j.neucom.2020.11.052
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1109/ICCC.2019.00020
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/ISCA45697.2020.00086
https://doi.org/10.3389/fnins.2019.00189
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1109/TCDS.2020.2971655
https://doi.org/10.1609/aaai.v35i12.17236
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.3390/sym14091933
https://doi.org/10.1016/j.neucom.2023.126485
https://doi.org/10.3389/fnins.2020.00104
https://doi.org/10.3390/e24040455
https://doi.org/10.1016/j.ins.2022.07.152
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	ALBSNN: ultra-low latency adaptive local binary spiking neural network with accuracy loss estimator
	1. Introduction
	2. Related works
	2.1. Binary spiking neural networks
	2.2. Training of binary spiking neural networks

	3. Methods
	3.1. Iterative leaky integrate-and-fire neural model
	3.2. Accuracy loss estimator for weight binarization
	3.3. GAP layer
	3.4. Backpropagation with adaptive local binarization
	3.5. Binary weight optimization

	4. Experiments
	4.1. Experimental setup
	4.2. Effectiveness of ALE and BWO
	4.3. Rethink about local binarization
	4.4. Impact of selection criteria
	4.5. Compared with other methods

	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

