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Action recognition is an important component of human-computer interaction,

and multimodal feature representation and learning methods can be used to

improve recognition performance due to the interrelation and complementarity

between di�erent modalities. However, due to the lack of large-scale

labeled samples, the performance of existing ConvNets-based methods are

severely constrained. In this paper, a novel and e�ective multi-modal feature

representation and contrastive self-supervised learning framework is proposed

to improve the action recognition performance of models and the generalization

ability of application scenarios. The proposed recognition framework employs

weight sharing between two branches and does not require negative samples,

which could e�ectively learn useful feature representations by using multimodal

unlabeled data, e.g., skeleton sequence and inertial measurement unit signal

(IMU). The extensive experiments are conducted on two benchmarks: UTD-MHAD

and MMAct, and the results show that our proposed recognition framework

outperforms both unimodal and multimodal baselines in action retrieval,

semi-supervised learning, and zero-shot learning scenarios.

KEYWORDS

human action recognition, multimodal representation, feature encoder, contrastive self-

supervised learning, Transformer

1. Introduction

Automatic recognition framework is a research field that aims to develop systems capable

of identifying and classifying human actions or behaviors, which is to enable machines

to understand and interpret human behavior, with applications in areas including video

surveillance, healthcare, sports analysis, and human-computer interaction (Li et al., 2016a,b;

He et al., 2023). Different techniques in real life adopt different types of data inputs, but each

modality has its own advantages and limitations ( Sun et al., 2023). To achieve more robust

and accurate feature extraction, some approaches improve the performance of models by

aggregating the advantages of various modalities in a reasonable manner. Due to the success

of deep learning in the past decades, a large number of ConvNets-based frameworks have

made impressive achievements in the field of multimodal visual tasks (Grillini et al., 2021;

Mughal et al., 2022; Li et al., 2023). However, most of them require many large amounts of

labeled data, especially for multimodal data (Zhang et al., 2019, 2020), and labeling the data

requires exponentially more time and effort (Li et al., 2009).
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Recently, self-supervised representation learning has made

significant progress on visual tasks, which is mainly divided

into the pre-training and fine-tuning stages (Chen et al., 2020;

Grill et al., 2020). In the pre-training stage, it focuses on

constructing feature representations of different views by unlabeled

samples. In the fine-tuning stage, these representations are used as

inputs and fed into a small-scale linear classifier, which requires

only a small amount of labeled data. Moreover, contrastive

learning is one of the self-supervised learning, where the core

concept is to pull the representation distance between positive

samples closer and push the distance away from other negative

samples. For example, the CMC framework (Tian et al., 2020)

is mainly to form positive samples between different data

modalities, and consider other different samples as negative

sample pairs. Due to the problem of relying too much on

negative sample pairs, it is necessary to set a large batch

size or a queue for storing negative samples in the learning

process, therefore leads to a complex model and is vulnerable to

information collapse.

In order to overcome the above shortcomings, inspired by

Barlow Twins and VICReg (Zbontar et al., 2021; Bardes et al.,

2022), we propose a contrastive self-supervised learning framework

for unimodal and multimodal without relying on negative

samples. Our proposed method employs multimodal samples

as input data, e.g., skeleton sequence and inertial measurement

unit signal (IMU). The main contributions of this paper are

as follows:

• A unimodal contrastive self-supervised framework is

proposed to encode and learn feature representations for

multimodal action recognition with skeleton sequence and

IMU data.

• The proposed recognition framework is extended to

multimodal contrastive self-supervised learning. The model is

designed to obtain simple and efficient feature representations

without negative samples.

The remainder of this paper is organized as follows. Section 2

presents an overview of related works. In Section 3, we provided a

detailed introduction to the proposed method. Section 4 provides

experimental results for benchmark datasets and comparisons with

state-of-the-art. Section 5 concludes this paper and look forward to

future work.

2. Related works

In this section, we discuss unimodal, multimodal, and

contrastive learning methods for human action recognition from

the perspective of input data modality.

2.1. Unimodal human action recognition

Unimodal human action recognition primarily focuses

on classifying and recognizing actions by using a single

modality, including RGB videos, depth and skeleton sequences,

IMU data, etc. This field encompasses tasks such as feature

extraction, feature representation, and the construction of

deep learning models, including convolution neural networks

(CNNs) (Andrade-Ambriz et al., 2022; Islam et al., 2022;

Xu et al., 2022), recurrent neural networks (RNNs) (Shu

et al., 2021; Shen and Ding, 2022; Wang et al., 2022), graph

convolution networks (GCNs) (Cheng et al., 2020; Chi et al.,

2022; Feng et al., 2022; Tu et al., 2022) and Transformer

models (Chen and Ho, 2022; Mazzia et al., 2022; Ahn et al.,

2023).

Since the skeleton sequence would not be sensitive to

viewpoint variation and circumstance disturbance, there are

numerous skeleton-based methods is developed for human action

recognition. In CNN-based methods, Li et al. (2018) proposed

an end-to-end convolutional co-occurrence feature learning

framework from the perspectives of intra-frame representation and

inter-frame representation of skeleton temporal evolutions, which

introduced a global spatial aggregation method and discarded

the local aggregation approach. In RNN-based methods, Xie

et al. (2018) aimed to address the issue of skeleton variations

in 3D spatiotemporal space, which proposed a spatiotemporal

memory attention network based on RNN and CNN to perform

frame recalibration of skeleton data in the temporal domain.

Regarding GNN-based methods, Yan et al. (2018) emerged as

a classic approach based on spatial-temporal graph convolution

networks. The core idea was to model human body joints

as graph nodes and the connections between joints as graph

edges, and the multiple graph convolutional layers were stacked

to extract high-level spatial-temporal features. In Transformer-

based methods, Plizzari et al. (2021) model employed a spatial

self-attention module to capture intra-frame interactions among

different body parts and a temporal self-attention module to model

inter-frame correlations.

For IMU data, due to its ability to provide good complementary

features and better privacy protection, it is gradually being used for

human action recognition tasks. Through convolutional layers and

pooling layers, CNN (Yi et al., 2023) were able to capture local and

global features in IMU data, extract relationships between skeleton

body parts, and achieve accurate classification of different actions.

In IMU-based human action recognition, RNN (Al-qaness et al.,

2022) utilized their memory units (e.g., Long Short-Term Memory

Units or Gated Recurrent Units) to capture the temporal evolution

of skeleton sequence, extracting crucial motion patterns and action

features from it. Additionally, there have been research efforts that

combined the strengths of CNNs and RNNs to comprehensively

utilize the spatiotemporal information in IMU data for human

activity recognition (Challa et al., 2022; Dua et al., 2023). It is

worth noting that, with the progress of research, other IMU-

based human action recognition methods have emerged, such as

those based on Transformers (Shavit and Klein, 2021; Suh et al.,

2023).

2.2. Multimodel human action recognition

Due to the limitation of single modal, it is difficult

to further improve the performance of recognition model.
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FIGURE 1

The feature encoder for IMU data. “BN” denotes batch normalization, “LN” indicates layer normalization, and N× represents that there are multiple

multi-head self-attention modules.

FIGURE 2

The feature encoder for skeleton sequence. The output channels of the 6 blocks 2D convolution layer are [64, 32, 32, 64, 128, 256]. The transpose

layer transposes the dimensions of the input tensor according to the sequential parameters.

A B

FIGURE 3

Contrastive learning framework for unimodal recognition. (A) Pre-training stage: for a skeleton sequence, the embedding representation z is

generated by the same encoder f and projection head g after data augmentation using contrast loss Lc, respectively. (B) Fine-tuning stage: the

labeled skeleton sequence is passed through the frozen encoder f, and then processed through the classifier to obtain the action recognition label.

Since the complementary information provided by different

modalities, researchers have become interested in combining

multimodal features to improve recognition performance, such

as skeleton and IMU data (Das et al., 2020; Khaertdinov and

Asteriadis, 2022). There are many excellent recognition models

are developed to leverage the strengths of different modalities

and achieve more robust and accurate action recognition.

However, the main challenge in executing multimodal recognition
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FIGURE 4

Contrastive learning framework for multimodal recognition. (A) Pre-training stage: the non-labeled skeleton sequences and IMU data were passed

through modality-specific encoders f and projection heads g to generate embeddings representing z using contrasting loss. (B) Fine-tuning phase:

the skeleton sequences with labels and the IMU data with labels were passed through frozen modality-specific encoders f, respectively, and then

obtained action recognition label via fusion layer and classifier.

lies in effectively fuse the feature information from different

modalities. Based on the above statement, the related work

in multi-modal human action recognition can be roughly

categorized into modality fusion and feature fusion, and we

focus on the fusion method of skeleton sequence and IMU

signal features.

Skeleton data provides precise positional information of

human joints, while IMU data provides measurements from

sensors such as accelerometers and gyroscopes (Das et al., 2020).

By fusing skeleton and IMU data, more comprehensive and rich

action features can be obtained. From the perspective of modality

fusion, Fusion-GCN (Duhme et al., 2022) directly integrates IMU

data into existing skeletons in the channel dimension during

data preprocessing. Furthermore, RGB modality is processed

to extract high-level semantic features, which are then fed into

the GCNs as new nodes for fusion with other modalities. From

the perspective of feature fusion (Khaertdinov and Asteriadis,

2022), features from different modalities are combined and

integrated to achieve more representative and discriminative

representations. In addition, cross-modal contrastive learning

networks through knowledge distillation are also an effective

identification method. Liu et al. (2021) proposed a Semantics-

aware Adaptive Knowledge Distillation Network (SAKDN) that

utilizes IMU data and RGB videos as inputs for the teacher

and student model, respectively. The SAKDN adaptively fuses

knowledge from different teacher networks and transfers the

trained knowledge from the teacher network to the student

network. The CMC (Tian et al., 2020) framework proposed

a multi-modal learning architecture based on contrastive

representation learning, which extended the representation

learning to multiple modalities for improving the quality of the

learned features with the number of modalities increased. It

demonstrated the subtle relationship between mutual information

across multiple modalities and multiple viewpoints. Similarly,

CMC-CMKM (Brinzea et al., 2022) employed cross-modal

knowledge distillation to perform feature-level fusion of IMU

data and Skeleton information, which has achieved good

recognition performance.

2.3. Contrastive learning for human action
recognition

Recently, several advanced self-supervised learning methods

have been proposed with excellent results in image and video

tasks. Self-supervised contrast learning focuses on the variation

between different views of the same or different samples, and better

robust and transferable feature representations can be learned

through contrast loss. SimCLR (Chen et al., 2020) incorporated

a new contrastive loss function called Normalized Temperature-

Scaled Cross-Entropy Loss (NT-Xent) into the network, which

is a simple and effective contrastive learning framework. In

contrast, BYOL (Grill et al., 2020) designed a more scalable and

easily trainable self-supervised learning approach by contrasting

the hidden representations in the network. Furthermore, to

obtain more distinctive representations without requiring negative

samples, Barlow Twins (Zbontar et al., 2021) minimized the

correlation between features by employing the Barlow Twins loss.

In addition, the biggest advantage of VICReg (Bardes et al.,

2022) is its simplicity and effectiveness, which only necessary to

compare along the batch dimension by invariance, variance and

covariance, and does not require the weights of two branches to

be shared.

In the case of action recognition tasks, most of the self-

supervised contrastive learning is mainly applied to individual

modalities, such as sensor data, skeleton sequence, or RGB video.

To date, there has been a large number of works on fully

supervised learning for multimodal human action recognition,

and the disadvantage of these methods is that they require a

large number of labeled samples for training. In contrary, to

our knowledge, self-supervised contrastive learning frameworks
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# f: encoder network

# lambda, mu, nu: coefficients of the

invariance, variance and covariance

losses

# N: batch size

# D: dimension of the representations

# mse_loss: Mean square error loss function

# off_diagonal: off-diagonal elements

of a matrix

# relu: ReLU activation function

for xsj , x
i
j in loader : # load a batch with

N samples

# obtain augmented skeleton and

# IMU samples

x̃sj = T (xsj )

x̃ij = T (xij)

# compute representations

hsj =
(

fθs

(

x̃
s
j

))

# hidden layer feature

hij =
(

fθs

(

x̃
i
j

))

# hidden layer feature

zsj = gθs
(

hθi

)

# embeddings for skeleton [N × D]

zij = gθi
(

hθi

)

# embeddings for IMU [N × D]

# variance loss

zsj = zsj − zsj .mean(dim = 0)

zij = zij − zij .mean(dim = 0)

std_zsj = torch.sqrt(zsj .var(dim = 0)+ 1e− 04)

std_zij = torch.sqrt(zij .var(dim = 0)+ 1e− 04)

std_loss = torch.mean(relu(1− std_zsj ))

+torch.mean(relu(1− std_zij))

# invariance loss

sim_loss = mse_loss(zsj , z
i
j)

# covariance loss

cov_zsj = (zsj .T @ zsj )/(N − 1)

cov_zij = (zij .T @ zij)/(N − 1)

cov_loss = off_diagonal(cov_zsj ).pow_(2).sum()/D

+off_diagonal(cov_zij).pow_(2).sum()/D

# total loss

loss = lambda ∗ sim_loss+mu ∗ std_loss

+nu ∗ cov_loss

# optimization step

loss.backward()

optimizer.step()

Algorithm 1. Multimodal pre-training pytorch pseudocode.

are rarely used in the field of multimodal human action

recognition. Akbari et al. (2021) adopted a convolution-free

Transformer architecture to train unlabeled video, audio, and

text data end-to-end, and evaluated the model performance

through downstream tasks such as video action recognition,

audio event classification, image classification, and text-to-video

retrieval. Inspired by VicReg (Bardes et al., 2022) and multimodal

framework CMC, we propose a simple and effective self-supervised

contrastive learning framework based on VICReg to address

the multimodal human action recognition problem of IMU and

skeleton data.

3. Methodology

3.1. Problem definition

Multimodal-based action recognition is defined as the fusion

of different data modalities to obtain more comprehensive human

pose and more precise action information. Specifically, for a given

input {Xm|m ∈ M} from a multimodal setM, the goal is to predict

the label y ∈ Y with the associated input X. In our work, we

focus on IMU signal data and Skeleton sequences. IMUs could

be used to measure the pose and acceleration of the human body

with multivariate time series on the x, y and z axes for human

motion recognition and analysis. Specifically, for S wearable sensors

with S signal channels acquired at any t time stamp, we can

define the input signal as xt =
[

x1t , x
2
t , . . . , x

S
t

]

∈ R
S. Therefore,

the IMU modal inputs are represented in matrix form as Xi =

[x1, x2, ..., xT] ∈ R
T×S for any T time stamp. Furthermore, skeleton

sequences can be collected by a pose estimation algorithm or a

depth camera, which contain several joints of a human body, and

each joint has multiple position coordinates. For a given skeleton

sequence Xs ∈ R
C×T×V , as 2D coordinates are used, the input

channel C = 2, T denotes the number of frames in a sequence,

and V means that the number of joints with respect to the dataset

collection method.

3.2. Feature encoder

In order to obtain more effective features, we designed two

feature encoders to handle IMU data and skeleton sequence,

respectively, as shown in Figures 1, 2. In IMU data feature encoder,

inspired by CSSHAR (Khaertdinov et al., 2021), we first employ a

1D convolution layer with 3 blocks for modeling in the temporal

dimension, which includes a convolution kernel size of 3 and a

feature map with channels of [32,64,128]. Furthermore, we employ

a Transformer with a Multi-head self attention (heads N = 2) as

the backbone to capture long-range dependencies from IMU data.

Besides, inspired by hierarchical co-occurrence feature learning

strategy, a two-stream framework is designed to learn and fuse the

“joint” and “motion” features of skeleton sequences. Specifically,

a skeleton sequence is divide into spatial joints and temporal

motions. Then, they are fed into each of the four 2D CNNmodules

and assembled into semantic representations in both spatial and

temporal domains, and point-level information of each joint is

encoded independently.

3.3. Contrastive learning for unimodal
recognition

As shown in Figure 3, given a skeleton sample in the pre-

training, a positive sample pair Xs
n and Xs,

n could be obtained in a

small batch by normal data augmentation. Then, they are fed into

an encoder fθs with HCN to yield the hidden layer features as

hsi = fθs (X
s
n) (1)

hsj = fθs (X
s,

n ) (2)
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TABLE 1 Pre-training hyperparameter settings.

Modality
UTD-MHAD MMAct

Learning rate Training scale Batch size Learning rate Training scale Batch size

IMU 1e-2 100 epochs 128 1e-3 100 epochs 96

Skeleton 1e-2 100 epochs 128 1e-3 100 epochs 96

IMU+Skeleton 1e-3 200 epochs 256 1e-4 200 epochs 128

TABLE 2 The performance of action recognition for accuracy (%) and F1 score (%) is compared with the baseline methods.

Method Modality
UTD-MHAD MMAct cross-subject MMAct cross-scene

Accuracy F1-score Accuracy F1-score Accuracy F1-score

Supervised_transformer IMU 79.77 79.59 62.15 62.32 78.27 71.86

Supervised_cooccurrence Skeleton 93.49 93.43 80.53 81.93 78.61 74.30

SimCLR IMU 64.65 64.64 52.32 51.94 66.16 60.28

SimCLR Skeleton 92.09 91.87 75.97 76.75 72.62 62.04

Barlow Twins IMU 58.60 57.69 45.17 44.11 59.96 51.77

Barlow Twins Skeleton 88.84 88.24 67.86 69.24 60.68 52.34

Barlow Twins IMU+Skeleton 91.63 91.72 82.17 81.98 82.70 80.05

CMC IMU+Skeleton 95.12 95.08 82.05 83.06 84.01 82.41

CMC-CMKM§ IMU+Skeleton 95.81 95.74 82.34 82.69 85.24 83.60

Ours IMU 75.58 75.93 49.04 47.08 60.81 53.80

Ours Skeleton 86.05 86.23 73.78 75.66 74.94 73.29

Ours IMU+Skeleton 96.06 96.96 82.95 83.62 87.06 85.78

Supervised IMU+Skeleton 96.51 96.36 81.78 82.86 89.47 87.94

Bolded data indicate the best results, underlined data the second best. § represents the reproduced results.

Inspired by the Barlow Twins, the feature representations zsi
and zsj are obtained by an MLP projection layer, which are denoted

as

zsi = gθs (h
s
i) (3)

zsj = gθs (h
s
j ) (4)

Finally, to explore the relationship between the two views Xs
n

and Xs,
n , the cross-correlation matrix C between embedding zsi and

zsj can be computed as follows

Cij =

∑

b zb,iz
′
b,j

√

∑

b

(

zb,i
)2

√

∑

b

(

z′
b,j

)2
, (5)

where b denotes the batch dimension, i and j represent the

embedding dimension. Finally, by enforcing the empirical cross-

correlation matrix between the embeddings Zs of variations to

be an identity matrix, the encoder could be used to capture

the relationship between the two-stream siamese networks. The

contrastive loss function is formulated as follows

Lc(Z
s) =

∑

i

(

1− C
′
ii

)2
+ β

∑

i

∑

j6=i

C
′2
ij (6)

Intuitively, the first term encourages the diagonal

elements of C to converge to 1, so that the embedding is not

subject to variation. The second term is intended to drive

the different embedding components to be independent

of each other, minimizing the redundancy of the output

units and avoiding becoming a constant. β is a positive

constant used to weigh the first term and against the

second term.

3.4. Contrastive learning for multimodal
recognition

Our proposed VICReg-based multimodal recognition

framework focuses on generating and contrasting embeddings

from the IMU data and skeleton sequence branches,

which eventually form a joint embedding architecture

with variance, invariance and covariance regularization.

It is a self-supervised learning method that incorporates

two different modality training architectures based on

the principle of preserving the content of the embedding

information.

As shown in Figure 4, given a multimodal training

sample {xsj , xij}, where s and i refer to skeleton and IMU

data modalities respectively. The augmented inputs are
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FIGURE 5

Average accuracy and F1 score with 95% confidence intervals for the semi-supervised learning scenario. (A) UTD-MHAD. (B) MMAct (cross-subject).

(C) MMAct (cross-scene). (D) UTD-MHAD. (E) MMAct (cross-subject). (F) MMAct (cross-scene).

generated by modality-specific data augmentation in accordance

with

xsj = T (xsj ) (7)

x̃ij = T (xij) (8)

In details, for the skeleton sequence augmentation methods are

jittering, scaling, rotation, shearing, cropping and resizing, whereas

the IMU data augmentationmethods are jittering, scaling, rotation,

permutation, shuffle of channel. Then, the feature representation

of the two modalities are computed. Specifically, two modality-

specific encoders fθs and fθi perform feature extraction to obtain the

high-dimensional hidden layer features.

hsj =
(

fθs

(

x̃
s
j

))

(9)

hij =
(

fθs

(

x̃
i
j

))

(10)

Both of these are passed through projection heads gθs and

gθi , implemented by a multilayer perceptron, and finally generate

mode-specific embeddings representations of the two modalities

which are zsj = gθs
(

hθi

)

and zij = gθi
(

hθi

)

. The loss function

is calculated at the embedding level with respect to zsj and

zij . We describe the three components of variance, invariance

and covariance that constitute our loss function in the pre-

training process.

Firstly, we define the variance regularization term v to adopt the

form of a hinge function that represents the standard deviation of

the embeddings along the batch dimension.

v(Z) =
1

d

d
∑

j=1

max
(

0, γ − Std
(

zj, ǫ
))

, (11)

where Std denotes the regularization standard deviation formula as:

Std(x, ǫ) =
√

Var(x)+ ǫ, (12)

where we defineZ = [z1, ..., zn] consisting of n vectors of dimension

d with embeddings zj from the feature encoding network of two

modalities. zj is represented as the value of each vectors in Z in

dimension j, γ denotes a fixed value of the standard deviation and

defaults to 1 in our experiments. ǫ is a small scalar to guarantee data

stability, which is set to 0.0001. The objective of this regularization

term v(Z) is to ensure that the variance of all embeddings Zs and

Zi are close to γ in the current batch (s indicates the skeleton

modality and i indicates the IMU modality), preventing all inputs

from mapping on the same vector.

Secondly, we define the invariance regularization term s by

using the mean square Euclidean distance between two positive

sample pairs Zs and Zi. The formulation is as follows:

s(Zs,Zi) =
1

N

N
∑

j

∥

∥

∥
zsj − zij

∥

∥

∥

2

2
, (13)

where N denotes the batch size, both embeddings Zs and Zi come

from the siamese architecture of the two branches.
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FIGURE 6

Visualization of representations learned using t-SNE for the UTD-MHAD benchmark. (A) Barlow Twins (IMU). (B) Barlow Twins (Skeleton). (C) Barlow

Twins (IMU+Skeleton). (D) Ours (IMU). (E) Ours (Skeleton). (F) Ours (IMU+Skeleton).

Finally, the most critical component of the loss function, this

term approximates the covariance between each pair of embedding

variables to zero. Generally, it is the embeddings of the model

that are decorrelated to each embedding variable to ensure the

independence of the variables and prevent the model from learning

similar or identical feature information. Inspired by Barlow Twins,

we define the variance regularization term c as:

c(Z) =
1

d

∑

i6=j

[

C(Z)
]2

i,j
, (14)

where the 1/d scales this function at the dimensional

level and C(Z) denotes the covariance matrix

of the embeddings Z. The formula is expressed

as follows:

C(Z) =
1

N − 1

n
∑

j=1

(

zj − z̄
)(

zj − z̄
)T
, z̄ =

1

N

N
∑

j

zj. (15)

Therefore, the overall loss function with weighted average of

the invariance, variance and covariance terms could be expressed

as follows:

L(Zs,Zi) = λ ∗ s(Zs,Zi)+µ ∗
[

v(Zs)+ v(Zi)
]

+ ϕ ∗ [c(Zs)+ c(Zi)],

(16)

where λ, µ, and ϕ are hyperparameters that measure

the importance of each loss component. In our

experiment, ϕ is set to 1 and a grid search is performed

for the values of λ and ϕ with the basic condition

λ = ϕ > 1.

The pseudo-code algorithm implementation is illustrated in

Algorithm 1.

4. Experiments

4.1. Datasets

UTD-MHAD (Chen et al., 2015). The dataset is a multimodal

dataset widely used for human action recognition, which includes

RGB video, depth sequences, skeleton and IMU data. During the

capturing process, 8 subjects perform 27 categories of actions,

each individual repeating each action 4 times, for a total of
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FIGURE 7

The normalized confusion matrix for UTD-MHAD.

861 samples. For the skeleton sequences, the Kinect camera

would capture information regarding the subject’s posture and

movements. For the IMU data, the subjects were required to

wear gloves, shoes and belts with IMU sensors attached, which

recorded motion information on the subject’s body parts, including

accelerations, angular velocities and gyroscope data. Similar to

the evaluation protocol in the original paper, we use data

from odd-numbered subjects: 1, 3, 5, 7 as the training and

validation sets, and data from even-numbered subjects: 2, 4, 6,

8 as the testing set, and report the accuracy and F1 score on

the testing set.

MMACT (Kong et al., 2019). The dataset is a multimodal

dataset consisting of 20 subjects performing 36 classes of actions,

including skeleton sequences and IMU data. In this work, a

challenge version of the dataset with 2D keypoints is adopted for

the skeleton data. The IMU data is derived from smartphones

including accelerometers, gyroscopes and orientation sensors. We

verify our proposed recognition framework against the evaluation

protocol from the previous study: cross-subject and cross-scene.

For the cross-subject setting, the first 16 subject samples are used

for training and validation, while the remaining ones are used for

testing. For the cross-scene setting, the numbered 2 samples from

the occlusion scene were used for testing and the rest for training,

numbered 1, 3, 4. We report the accuracy and F1 score on the

testing set.

4.2. Implementations details

Our experimental environment is implemented on the A5000

GPU platform using the Pytorch framework. Subsequently,

we detailed three aspects: data pre-processing, pre-training

and fine-tuning.

Data pre-processing. In order to normalize the IMU data

and skeleton sequences, we employed a resampling method to

uniformly represent all sequences with 50 time steps. Furthermore,

to ensure consistency and comparability, we applied a standard

normalization procedure to normalize the joints in all skeleton

sequences. This normalization process involved scaling the joint

positions based on the reference frame established by the first frame

of each sequence. For data augmentation of skeleton sequences, we

employ {jittering, random resized crops, scaling, rotation, shearing}

for two benchmarks. For data augmentation of IMU data, we

employ {jittering, scaling, permutation, rotation, channel shuffle}.

Pre-training. For the UTD-MHAD dataset, in unimodal

pretraining, our proposed method uses a batch size of 100 and sets

the random seed for both skeleton and IMU modalities to 28. The

training is performed for 100 epochs with a learning rate of 1e-2

and Adam optimizer. In the case of multimodal pretraining, our

proposed method increases the batch size to 200 epochs, adjusts

the learning rate to 1e-3, and sets the training scale to 200 epochs.

The optimizer remains Adam. For theMMAct dataset, wemaintain
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FIGURE 8

Visualization of representations learned using t-SNE for the MMAct benchmark. (A) Barlow Twins (IMU). (B) Barlow Twins (Skeleton). (C) Barlow Twins

(IMU+Skeleton). (D) Ours (IMU). (E) Ours (Skeleton). (F) Ours (IMU+Skeleton).

A B

FIGURE 9

The normalized confusion matrix for MMAct benchmarks. (A) MMAct (cross-subject). (B) MMAct (cross-scene).
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TABLE 3 Zero shot performance (%) on UTD-MHAD benchmark.

Modality
num_classes=1 num_classes=2 num_classes=5

Accuracy F1-score Accuracy F1-score Accuracy F1-score

IMU 73.95 73.95 73.49 73.79 75.35 75.54

Skeleton 88.84 88.43 87.91 87.84 89.77 89.51

IMU+Skeleton 95.58 95.59 93.95 93.85 96.05 96.00

TABLE 4 Zero shot performance (%) on MMAct benchmark.

Modality
num_classes=1 num_classes=2 num_classes=5

Accuracy F1-score Accuracy F1-score Accuracy F1-score

IMU 48.39 48.11 48.31 47.34 48.81 48.63

Skeleton 73.67 75.74 72.35 73.97 73.68 75.83

IMU+Skeleton 81.39 81.19 81.73 82.35 82.45 83.02

the same training settings as before, regardless of single or multi-

modality. In unimodal pretraining, the learning rate is set to 1e-3,

and the batch size is 96. In multimodal pretraining, we increase the

batch size to 128 and adjust the learning rate to 1e-4. Similarly, the

parameter initialization random seed is set to 28. All settings are

shown in Table 1.

Fine-tuning. Following prior fine-tuning routines, we

implemented modality-specific feature fusion layers for the

multimodal fine-tuning process, including batch normalization

and non-linear ReLU, mapping the embeddings of IMU data

and skeleton sequence to the same size of 256. And then

concatenated them up by a linear classifier with Softmax function.

We train the samples with labels by fine-tuning the model both

to 100 epochs either unimodal or multimodal for our action

recognition task.

4.3. Evaluations

4.3.1. Learning feature representation
To evaluate the multimodal learned feature representation,

we perform linear evaluation of the features extracted

from a specific encoder and then input the labeled

samples into the fine-tuned training encoder and linear

classifier. The performance of our model is compared with

existing state of the art methods, and the results as shown

in Table 2.

From the accuracy and F1 score terms obtained from the linear

evaluation, our method significantly outperforms unimodal (more

than 20% for IMU and almost 10% for Skeleon) for two benchmarks

when multimodal contrastive learning is implemented. When

comparing the self-supervised learning baseline models, our

method is superior to other contrastive learning methods in terms

of the multimodal learning approach. However, for the unimodal

learning approach, our method has relatively no advantage. It is

possible that our method undergoes a certain degree of embeddings

collapse when calculating the standard deviation and variance.

Meanwhile, the accuracy and F1 score of our method are also

slightly lower when comparing fully supervised learning, which

may be due to the fact that the supervised learning approach can

perform end-to-end feature extraction for specific modalities. It is

worth noting that our proposed method achieves 82.95% accuracy

and 83.62% F1 score for MMAct (cross-subject), which exceeds

the supervised learning method by 1.17 and 0.76%, indicating

that our method has a better learned feature representation for

multimodal training.

4.3.2. Semi-supervised learning
In the experiments, we adopt proportional unlabeled IMU

and Skeleton data to perform contrastive learning in the pre-

training phase. In particular, we set a random percentage

p ∈ {1%, 5%, 10%, 25%, 50%} to conduct the experiment.

To obtain a reasonable fine-tuning result, we calculate the

average accuracy under the evaluation protocol corresponding

to that presented in the colored interval by repeating the

training 10 times on each p. In addition, we train a supervised

learning multimodal model using the same encoders (Transformer

for IMU and Co-occurrence for Skeleton). Similarly, fine-

tuning the two-stream siamese networks and performing feature

fusion, the final recognition results are obtained by a linear

classifier, especially noting that the weights of the encoders are

randomly initialized.

As shown in Figure 5, despite training only a small number

of labeled samples, the contrastive learning methods all exhibit

excellent robustness and performance. Specifically, the contrastive

learning based approach outperforms the supervised learning

based approach when the labeled samples are less than 25%,

regardless of the dataset. Besides, our proposed method is

superior to both Barlow Twins and CMC contrastive learning

based multimodal methods with arbitrary p values, which

further validate the effectiveness and generalization ability of our

proposed method.

4.3.3. Qualitative analysis
In order to evaluate the clustering effect of the model from

a qualitative perspective, we employ a t-Distributed Stochastic
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Neighbor Embedding (t-SNE, van der Maaten and Hinton, 2008)

method to visualize the high-dimensional embeddings into a two-

dimensional plane.

As shown in Figures 6, 7, we explore the IMU-based, Skeleton-

based and multimodal approaches on the UTD-MHAD and

MMAct datasets, respectively. Compared to the Barlow Twins,

from an intuitive point of view, our proposed method is

obviously effective in separating action class. Moreover, it is

discovered that the multimodal data clustering is better than

the unimodal clustering by fusing the features of IMU and

Skeleton modalities. Furthermore, to measure the classification

performance of our proposed method after fine-tuning, we

performed accuracy evaluation by normalizing the confusion

matrix. As shown in Figures 8, 9, we plot the normalized

confusion matrices on UTD-MHAD, MMAct (cross-subject) and

MMAct (cross-scene) to intuitively evaluate the performance of

the classifier.

4.4. Zero shot setting

In the zero shot setting, we further explore the proposed

method on the IMU and skeletonmodalities through hiding certain

action groups during the pre-training process. Specifically, we

ensured that the action categories index [1, 2, 5] were not leaked

during the training process by masking them.

As shown in Tables 3, 4, the performance of our model is

compared with existing state of the art methods. Regarding UTD-

MHAD benchmark for the unimodal evaluation, we could observe

that the difference of the model is not significant after fine-tuning,

but the skeleton sequence-based is much higher 15% than the

IMU-based method. This is probably due to the fact that the

skeleton sequences are modeled in both spatial and temporal

dimensions, whereas IMU is only considered in the temporal

dimension. For the multimodal evaluation, the model achieved

96.05% for accuracy and 96.00% for F1 score with class_id = <

5 > hidden, which is very close to the results achieved without

the zero shot approach. Furthermore, regardless of the action class

hidden, it is noted that the multimodal-based achieves much higher

accuracy than the unimodal-based approach, exceeding the IMU-

based approach by approximately 20% and the skeleton-based

approach by approximately 6%. This validates that our proposed

method achieves superior results with multimodal data inputs,

which demonstrate the ability of the proposed method to learn

complementary information.

5. Conclusion

In this paper, we propose a simple and effective contrastive

self-supervised learning framework for human action recognition.

Specifically, we construct a multimodal dataset by combining

skeleton sequences and IMU signal data, and feed them into

pretrained modality-specific two-stream networks for feature

encoding. During the fine-tuning stage, labeled data is fed into

the frozen encoders with weight initialization, and a linear

classifier is applied to predict actions. Extensive experiments

demonstrate that our proposed method outperforms unimodal

approaches. It is worth noting that our model achieves comparable

performance to pure supervised multimodal learning in certain

metrics. In the future, we plan to further investigate other

modalities, such as depth maps and RGB videos, to enhance

multimodal human action recognition methods. Additionally,

by incorporating knowledge distillation and unsupervised

learning techniques, we aim to explore different ways of feature

fusion between modalities to improve its performance in

complex scenarios.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

ZR and HYu: conceptualization and writing—review and

editing. HYa: methodology and validation. ZR and ZX: software.

JZ: formal analysis. HYu: resources. ZX and JZ: data curation and

visualization. HYa and ZR: writing—original draft preparation. ZR:

supervision and funding acquisition. All authors contributed to the

article and approved the submitted version.

Funding

This work was supported by the National Natural Science

Foundation of Guangdong Province (Nos. 2022A1515140119

and 2023A1515011307), Dongguan Science and Technology

Special Commissioner Project (No. 20221800500362), Dongguan

Science and Technology of Social Development Program (No.

20231800936242), and the National Natural Science Foundation of

China (Nos. 61972090, U21A20487, and U1913202).

Acknowledgments

The authors thank everyone who contributed to this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225312
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnins.2023.1225312

References

Ahn, D., Kim, S., Hong, H., and Ko, B. C. (2023). "Star-transformer: a spatio-
temporal cross attention transformer for human action recognition," in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, 3330–3339.
doi: 10.1109/WACV56688.2023.00333

Akbari, H., Yuan, L., Qian, R., Chuang, W.-H., Chang, S.-F., Cui, Y., et al. (2021).
“VATT: transformers for multimodal self-supervised learning from raw video, audio
and text,” in Advances in Neural Information Processing Systems, Vol. 34, eds M.
Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan (Curran
Associates, Inc), 24206–24221.

Al-qaness, M. A., Dahou, A., Abd Elaziz, M., and Helmi, A. (2022).
Multi-resAtt: multilevel residual network with attention for human activity
recognition using wearable sensors. IEEE Trans. Indus. Inform. 19, 144–152.
doi: 10.1109/TII.2022.3165875

Andrade-Ambriz, Y. A., Ledesma, S., Ibarra-Manzano, M.-A., Oros-Flores,
M. I., and Almanza-Ojeda, D.-L. (2022). Human activity recognition using
temporal convolutional neural network architecture. Expert Syst. Appl. 191, 116287.
doi: 10.1016/j.eswa.2021.116287

Bardes, A., Ponce, J., and Lecun, Y. (2022). “VICReg: variance-invariance-
covariance regularization for self-supervised learning,” in ICLR 2022 - International
Conference on Learning Representations.

Brinzea, R., Khaertdinov, B., and Asteriadis, S. (2022). “Contrastive learning with
cross-modal knowledge mining for multimodal human activity recognition,” in 2022
International Joint Conference on Neural Networks (IJCNN) (Padua: IEEE), 1–8.
doi: 10.1109/IJCNN55064.2022.9892522

Challa, S. K., Kumar, A., and Semwal, V. B. (2022). A multibranch cnn-bilstm
model for human activity recognition using wearable sensor data. Visual Comput. 38,
4095–4109. doi: 10.1007/s00371-021-02283-3

Chen, C., Jafari, R., and Kehtarnavaz, N. (2015). “UTD-MHAD: a multimodal
dataset for human action recognition utilizing a depth camera and a wearable inertial
sensor,” in 2015 IEEE International Conference on Image Processing (ICIP) (Quebec
City, QC), 168–172.

Chen, J., and Ho, C. M. (2022). “MM-VIT: multi-modal video transformer
for compressed video action recognition,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (Waikoloa, HI), 1910–1921.
doi: 10.1109/WACV51458.2022.00086

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). “A simple framework
for contrastive learning of visual representations,” in International Conference on
Machine Learning (PMLR), 1597–1607.

Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., and Lu, H. (2020). “Skeleton-
based action recognition with shift graph convolutional network,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (Seattle, WA),
183–192. doi: 10.1109/CVPR42600.2020.00026

Chi, H.-G., Ha, M. H., Chi, S., Lee, S. W., Huang, Q., and Ramani, K. (2022).
“InfoGCN: representation learning for human skeleton-based action recognition,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(New Orleans, LA), 20186–20196. doi: 10.1109/CVPR52688.2022.01955

Das, A., Sil, P., Singh, P. K., Bhateja, V., and Sarkar, R. (2020). MMHAR-ensemNet:
a multi-modal human activity recognition model. IEEE Sens. J. 21, 11569–11576.
doi: 10.1109/JSEN.2020.3034614

Dua, N., Singh, S. N., Semwal, V. B., and Challa, S. K. (2023). Inception inspired
CNN-GRU hybrid network for human activity recognition.Multimedia Tools Appl. 82,
5369–5403. doi: 10.1007/s11042-021-11885-x

Duhme, M., Memmesheimer, R., and Paulus, D. (2022). “Fusion-GCN: multimodal
action recognition using graph convolutional networks,” in Pattern Recognition:
43rd DAGM German Conference, DAGM GCPR 2021 (Bonn: Springer), 265–281.
doi: 10.1007/978-3-030-92659-5_17

Feng, L., Zhao, Y., Zhao, W., and Tang, J. (2022). A comparative review of graph
convolutional networks for human skeleton-based action recognition.Artif. Intell. Rev.
55, 4275–4305. doi: 10.1007/s10462-021-10107-y

Grill, J.-B., Strub, F., Altche, F., Tallec, C., Richemond, P., Buchatskaya, E., et
al. (2020). “Bootstrap your own latent-a new approach to self-supervised learning,”
in Advances in Neural Information Processing Systems Vol. 33, eds H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Curran Associates, Inc),
21271–21284.

Grillini, A., Hernández-García, A., Renken, R. J., Demaria, G., and Cornelissen, F.
W. (2021). Computational methods for continuous eye-tracking perimetry based on
spatio-temporal integration and a deep recurrent neural network. Front. Neurosci. 15,
650540. doi: 10.3389/fnins.2021.650540

He, M., Hou, X., Ge, E., Wang, Z., Kang, Z., Qiang, N., et al. (2023). Multi-head
attention-basedmasked sequencemodel formapping functional brain networks. Front.
Neurosci. 17, 1183145. doi: 10.3389/fnins.2023.1183145

Islam, M. M., Nooruddin, S., Karray, F., and Muhammad, G. (2022). Human
activity recognition using tools of convolutional neural networks: a state of the art

review, data sets, challenges, and future prospects. Comput. Biol. Med. 2022, 106060.
doi: 10.1016/j.compbiomed.2022.106060

Khaertdinov, B., and Asteriadis, S. (2022). “Temporal feature alignment in
contrastive self-supervised learning for human activity recognition,” in 2022
IEEE International Joint Conference on Biometrics (IJCB) (Abu Dhabi), 1–9.
doi: 10.1109/IJCB54206.2022.10007984

Khaertdinov, B., Ghaleb, E., and Asteriadis, S. (2021). “Contrastive self-
supervised learning for sensor based human activity recognition,” in 2021 IEEE
International Joint Conference on Biometrics (IJCB), (Shenzhen: IEEE), 1–8.
doi: 10.1109/IJCB52358.2021.9484410

Kong, Q., Wu, Z., Deng, Z., Klinkigt, M., Tong, B., and Murakami, T. (2019).
“MMACT: a large-scale dataset for cross modal human action understanding,” in 2019
IEEE/CVF International Conference on Computer Vision (ICCV) (Seoul), 8657–8666.
doi: 10.1109/ICCV.2019.00875

Li, C., Zhong, Q., Xie, D., and Pu, S. (2018). Co-occurrence feature learning from
skeleton data for action recognition and detection with hierarchical aggregation. arXiv
preprint arXiv:1804.06055. doi: 10.24963/ijcai.2018/109

Li, H., Liu, M., Yu, X., Zhu, J., Wang, C., Chen, X., et al. (2023). Coherence based
graph convolution network for motor imagery-induced EEG after spinal cord injury.
Front. Neurosci. 16, 1097660. doi: 10.3389/fnins.2022.1097660

Li, T., Cheng, B., Ni, B., Liu, G., and Yan, S. (2016a). Multitask low-rank affinity
graph for image segmentation and image annotation. ACM Trans. Intell. Syst. Technol.
7, 1–18. doi: 10.1145/2856058

Li, T., Mei, T., Yan, S., Kweon, I.-S., and Lee, C. (2009). “Contextual decomposition
of multi-label images,” in 2009 IEEE Conference on Computer Vision and Pattern
Recognition (Long Beach, CA), 2270–2277. doi: 10.1109/CVPR.2009.5206706

Li, T., Meng, Z., Ni, B., Shen, J., and Wang, M. (2016b). Robust geometric p-norm
feature pooling for image classification and action recognition. Image Vision Comput.
55, 64–76. doi: 10.1016/j.imavis.2016.04.002

Liu, Y., Wang, K., Li, G., and Lin, L. (2021). Semantics-aware adaptive knowledge
distillation for sensor-to-vision action recognition. IEEE Trans. Image Process. 30,
5573–5588. doi: 10.1109/TIP.2021.3086590

Mazzia, V., Angarano, S., Salvetti, F., Angelini, F., and Chiaberge, M. (2022).
Action transformer: a self-attention model for short-time pose-based human action
recognition. Pattern Recogn. 124, 108487. doi: 10.1016/j.patcog.2021.108487

Mughal, N. E., Khan, M. J., Khalil, K., Javed, K., Sajid, H., Naseer, N., et al. (2022).
EEG-fNIRS based hybrid image construction and classification using CNN-LSTM.
Front. Neurorobot. 16, 873239. doi: 10.3389/fnbot.2022.873239

Plizzari, C., Cannici, M., and Matteucci, M. (2021). “Spatial temporal transformer
network for skeleton based action recognition,” in Pattern Recognition. ICPR
International Workshops and Challenges: Virtual Event (Springer), 694–701.
doi: 10.1007/978-3-030-68796-0_50

Shavit, Y., and Klein, I. (2021). Boosting inertial-based human activity recognition
with transformers. IEEE Access 9, 53540–53547. doi: 10.1109/ACCESS.2021.3070646

Shen, X., and Ding, Y. (2022). Human skeleton representation for 3d action
recognition based on complex network coding and LSTM. J. Vis. Commun. Image
Represent. 82, 103386. doi: 10.1016/j.jvcir.2021.103386

Shu, X., Zhang, L., Sun, Y., and Tang, J. (2021). Host-parasite: graph LSTM-
in-LSTM for group activity recognition. IEEE Trans. Neural Netw. Learn. Syst. 32,
663–674. doi: 10.1109/TNNLS.2020.2978942

Suh, S., Rey, V. F., and Lukowicz, P. (2023). Tasked: transformer-based adversarial
learning for human activity recognition using wearable sensors via self-knowledge
distillation. Knowledge Based Syst. 260, 110143. doi: 10.1016/j.knosys.2022.110143

Sun, Z., Ke, Q., Rahmani, H., Bennamoun, M., Wang, G., and Liu, J. (2023). Human
action recognition from various data modalities: a review. IEEE Trans. Pattern Anal.
Mach. Intell. 45, 3200–3225. doi: 10.1109/TPAMI.2022.3183112

Tian, Y., Krishnan, D., and Isola, P. (2020). “Contrastive multiview coding,”
in Computer Vision-ECCV 2020: 16th European Conference (Glasgow), 776–794.
doi: 10.1007/978-3-030-58621-8_45

Tu, Z., Zhang, J., Li, H., Chen, Y., and Yuan, J. (2022). Joint-bone fusion graph
convolutional network for semi-supervised skeleton action recognition. IEEE Trans.
Multimedia 25, 1819–1831. doi: 10.1109/TMM.2022.3168137

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.
Learn. Res. 9, 2579–2605.

Wang, T., Li, 479 J., Wu, H.-N., Li, C., Snoussi, H., andWu, Y. (2022). Reslnet: deep
residual lstm network with longer input for action recognition. Front. Comput. Sci. 16,
166334. doi: 10.1007/s11704-021-0236-9

Xie, C., Li, C., Zhang, B., Chen, C., Han, J., Zou, C., et al. (2018). “Memory attention
networks for skeleton-based action recognition,” in International Joint Conference on
Artificial Intelligence (Stockholm), 1639–1645. doi: 10.24963/ijcai.2018/227

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225312
https://doi.org/10.1109/WACV56688.2023.00333
https://doi.org/10.1109/TII.2022.3165875
https://doi.org/10.1016/j.eswa.2021.116287
https://doi.org/10.1109/IJCNN55064.2022.9892522
https://doi.org/10.1007/s00371-021-02283-3
https://doi.org/10.1109/WACV51458.2022.00086
https://doi.org/10.1109/CVPR42600.2020.00026
https://doi.org/10.1109/CVPR52688.2022.01955
https://doi.org/10.1109/JSEN.2020.3034614
https://doi.org/10.1007/s11042-021-11885-x
https://doi.org/10.1007/978-3-030-92659-5_17
https://doi.org/10.1007/s10462-021-10107-y
https://doi.org/10.3389/fnins.2021.650540
https://doi.org/10.3389/fnins.2023.1183145
https://doi.org/10.1016/j.compbiomed.2022.106060
https://doi.org/10.1109/IJCB54206.2022.10007984
https://doi.org/10.1109/IJCB52358.2021.9484410
https://doi.org/10.1109/ICCV.2019.00875
https://doi.org/10.24963/ijcai.2018/109
https://doi.org/10.3389/fnins.2022.1097660
https://doi.org/10.1145/2856058
https://doi.org/10.1109/CVPR.2009.5206706
https://doi.org/10.1016/j.imavis.2016.04.002
https://doi.org/10.1109/TIP.2021.3086590
https://doi.org/10.1016/j.patcog.2021.108487
https://doi.org/10.3389/fnbot.2022.873239
https://doi.org/10.1007/978-3-030-68796-0_50
https://doi.org/10.1109/ACCESS.2021.3070646
https://doi.org/10.1016/j.jvcir.2021.103386
https://doi.org/10.1109/TNNLS.2020.2978942
https://doi.org/10.1016/j.knosys.2022.110143
https://doi.org/10.1109/TPAMI.2022.3183112
https://doi.org/10.1007/978-3-030-58621-8_45
https://doi.org/10.1109/TMM.2022.3168137
https://doi.org/10.1007/s11704-021-0236-9
https://doi.org/10.24963/ijcai.2018/227
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnins.2023.1225312

Xu, K., Ye, F., Zhong, Q., and Xie, D. (2022). “Topology-aware convolutional neural
network for efficient skeleton-based action recognition,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2866–2874. doi: 10.1609/aaai.v36i3.20191

Yan, S., Xiong, Y., and Lin, D. (2018). “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Thirty-Second AAAI Conference on
Artificial Intelligence (Phoenix, Arizona). doi: 10.1609/aaai.v32i1.12328

Yi, M.-K., Lee, W.-K., and Hwang, S. O. (2023). A human activity
recognition method based on lightweight feature extraction combined with
pruned and quantized CNN for wearable device. IEEE Trans. Cons. Electron. 1.
doi: 10.1109/TCE.2023.3266506

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. (2021). “Barlow twins: self-
supervised learning via redundancy reduction,” in International Conference onMachine
Learning (PMLR), 12310–12320.

Zhang, J., Wu, F., Hu, W., Zhang, Q., Xu, W., and Cheng, J. (2019). “Wienhance:
towards data augmentation in human activity recognition using wifi signal,” in MSN
(Shenzhen), 309–314. doi: 10.1109/MSN48538.2019.00065

Zhang, J., Wu, F., Wei, B., Zhang, Q., Huang, H., Shah, S. W., et al.
(2020). Data augmentation and dense-LSTM for human activity recognition
using wifi signal. IEEE Internet Things J. 8, 4628–4641. doi: 10.1109/JIOT.2020.
3026732

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225312
https://doi.org/10.1609/aaai.v36i3.20191
https://doi.org/10.1609/aaai.v32i1.12328
https://doi.org/10.1109/TCE.2023.3266506
https://doi.org/10.1109/MSN48538.2019.00065
https://doi.org/10.1109/JIOT.2020.3026732
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Contrastive self-supervised representation learning without negative samples for multimodal human action recognition
	1. Introduction
	2. Related works
	2.1. Unimodal human action recognition
	2.2. Multimodel human action recognition
	2.3. Contrastive learning for human action recognition

	3. Methodology
	3.1. Problem definition
	3.2. Feature encoder
	3.3. Contrastive learning for unimodal recognition
	3.4. Contrastive learning for multimodal recognition

	4. Experiments
	4.1. Datasets
	4.2. Implementations details
	4.3. Evaluations
	4.3.1. Learning feature representation
	4.3.2. Semi-supervised learning
	4.3.3. Qualitative analysis

	4.4. Zero shot setting

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


