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Introduction: Spiking neural networks (SNNs), inspired by biological neural

networks, have received a surge of interest due to its temporal encoding. Biological

neural networks are driven by multiple plasticities, including spike timing-

dependent plasticity (STDP), structural plasticity, and homeostatic plasticity,

making network connection patterns and weights to change continuously during

the lifecycle. However, it is unclear how these plasticities interact to shape neural

networks and a�ect neural signal processing.

Method: Here, we propose a reward-modulated self-organization recurrent

network with structural plasticity (RSRN-SP) to investigate this issue. Specifically,

RSRN-SP uses spikes to encode information, and incorporate multiple plasticities

including reward-modulated spike timing-dependent plasticity (R-STDP),

homeostatic plasticity, and structural plasticity. On the one hand, combined with

homeostatic plasticity, R-STDP is presented to guide the updating of synaptic

weights. On the other hand, structural plasticity is utilized to simulate the growth

and pruning of synaptic connections.

Results and discussion: Extensive experiments for sequential learning tasks are

conducted to demonstrate the representational ability of the RSRN-SP, including

counting task, motion prediction, and motion generation. Furthermore, the

simulations also indicate that the characteristics arose from the RSRN-SP are

consistent with biological observations.

KEYWORDS

spiking neural network, self-organization, reward-modulated spike timing-dependent

plasticity, homeostatic plasticity, structural plasticity

1. Introduction

Spiking neural networks, inspired by biological neural networks, are deemed to

possess strong information processing abilities due to temporal encoding (as shown

in Figure 1) and variable connection pattern (Zhang et al., 2018b, 2021; Bellec et al.,

2020), which are driven by multiple neural plasticities, such as STDP (Frémaux and

Gerstner, 2016; Brzosko et al., 2019), structural plasticity (Caroni et al., 2012; Milano

et al., 2020), and homeostatic plasticity (Delvendahl and Müller, 2019; Haşegan et al.,

2022). STDP enables the network to modulate its connection weight based on spike

timing, while homeostatic plasticity can regulate the excitability of neurons within an

appropriate range. Structural plasticity can endow the network with robust adaptability

by fine-tuning its mesoscopic connection pattern during the lifecycle. However, it is non-

trivial to achieve a stable training procedure for spiking neural networks incorporating

multiple neural plasticity mechanisms. The temporal encoding of biological neural

networks is a sophisticated information encoding method, which needs to cooperate with
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various neural plasticities to exert strong information processing

ability. Although many sophisticated spiking neuron models have

been designed, there is a lack of research on neural plasticities.

Many current spiking neural networks are simple abstraction of

biological neural networks, which makes it not an easy task to

train the network. For example, changes in input may occasionally

cause a sharp increase or decrease in the firing rate of neurons,

resulting in probabilistic non-convergence (Pfeiffer and Pfeil, 2018;

Xing et al., 2019) and a lack of adaptation to input (Wang et al.,

2020). To address these questions, it is crucial to understand

how these plasticities interact to shape neural networks and affect

neural signal processing. But, it is difficult and expensive to directly

observe the biological neural network at the mesoscopic level, since

it consists of a large number of neurons that are dynamically

connected through synapses.

To handle the problem mentioned above, it is a potential

way to establish a biologically reasonable spiking neural network

model that incorporates multiple neural plasticity mechanisms.

For example, Lazar et al. proposed a self-organization recurrent

network (SORN) driven by multiple neural plasticities (Lazar

et al., 2009), which only consists of a recurrent layer and an

output layer. The recurrent layer is mainly adapted by STDP and

homeostatic plasticity. STDP is used to adjust synaptic weights

based on postsynaptic spike activity. In detail, synaptic weight

is strengthened when pre-synaptic spike activity is followed by

post-synaptic spike activity, while the reverse pattern makes

synaptic weight weak. Homeostatic plasticity induces a competition

among synaptic connections and maintains spike firing. The

simulation results of SORN show that STDP and homeostatic

plasticity lead to some non-statistical characteristics of spiking

neural networks, such as lognormal-like distribution of synaptic

weights, long-term persistence of strong synaptic connections,

and power-law distribution of synaptic lifetimes. Inspired by

SORN, Aswolinskiy et al. proposed a reward-modulated self-

organization recurrent network (RM-SORN) (Aswolinskiy and

Pipa, 2015; Dora et al., 2016), in which synaptic weights are adjusted

by R-STDP and homeostatic plasticity. R-STDP refers that the

outcome of STDP, induced by pre-synaptic and post-synaptic spike

activity, is gated by external reward, and the resulting learning

rules are no longer unsupervised (Izhikevich, 2007; Anwar et al.,

2022).

Despite the fact that the SORN and RM-SORN models

are self-organization networks, their connection patterns do not

alter continually during the training phase. It means that these

spiking neural network models do not really incorporate structural

plasticity, and structural plasticity remains under-explored for

existing SNNs. Therefore, in this work, we propose a novel reward-

modulated self-organization recurrent network with structural

plasticity, in which the connection pattern is continuously adjusted

along with the lifecycle. In detail, R-STDP is utilized to generate

effective representations for inputs in the recurrent layer, which

also helps to achieve efficient mapping in the output layer.

Besides, homeostatic plasticity is used to stabilize the excitability

of neurons. In particular, structural plasticity is further introduced

to simulate the growth and pruning of connections in the

recurrent layer, which could well explore the characteristics of

structural plasticity for training SNNs. The representational ability

of the RSRN-SP is evaluated on three sequence learning tasks,

including counting task, motion prediction task, and motion

generation task.

In summary, our contributions are as follows: (1) We

propose a novel reward-modulated self-organization recurrent

network with structural plasticity (RSRN-SP), in which structural

plasticity is introduced from neurophysiology to enhance the

variability of connection patterns; (2) We experimentally find

that structural plasticity could improve the adaptability of the

network and reduce the training difficulty; (3) We empirically

reveal some characteristics arose from the RSRN-SP are consistent

with biological observations, i.e., lognormal-like distribution of

connection weight, power-law distribution of connection lifecycle,

and a stable tendency for stronger connections; (4) Experiments on

three sequence learning tasks show that our method achieve better

representation ability than the same type of spiking neural networks

such as SORN and RM-SORN. Further analyzes are utilized to

demonstrate the effectiveness of structural plasticity.

2. Related works

There have been many researches on spiking neuron models

and learning rules (Yu et al., 2014; Zhang et al., 2018a; Ju et al., 2020;

Xu et al., 2021), where neuron models, learning rules, and network

architectures are three essential factors for designing spiking neural

networks.

2.1. Neuron models

The human brain contains billions of neurons, which form

structurally complex and computationally efficient networks

through dynamic synaptic connections (Bassett and Sporns, 2017).

There are various spiking neural models to simulate the temporal

coding of neurons in the brain, i.e., Hodgkin-Huxley (HH)

model (Izhikevich, 2004), leaky integrate-and-fire (LIF) model (Yu

et al., 2014), and binary neuron model (Dayan and Abbott, 2001).

The HH model focuses on the microscopic mechanism of spikes,

while the LIF model focuses on the computational complexity of

spikes. The binary neuron model is developed from the LIF model,

has lower computational complexity, and is suitable for building

large-scale networks. Therefore, in this work, the binary neuron

model is used to construct a spiking neural network.

2.2. Learning rules

Inspired by biological observations, there are mainly two brain-

inspired learning rules suitable for SNNs (Caporale and Dan,

2008; Frémaux and Gerstner, 2016): Hebb learning rule and STDP

learning rule. The former suggests that neurons activated at the

same time should have a closer relationship. The latter indicates

that synaptic weight is adjusted based on the spike timing of pre-

synaptic and post-synaptic neurons. STDP learning rule can be

described as follows,

1wij =

{

A+ exp (−1t/τ+) , if1t ≥ 0

−A− exp (1t/τ−) , if1t < 0
(1)
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FIGURE 1

The principle of temporal encoding. Given a simple neural network in the dashed box, n pre-synaptic neurons are connected to one post-synaptic

neuron. The pre-synaptic neuron prei generates a spike at time ti, which causes a signal ui continuously sent to the post-synaptic neuron. Once the

signal received by the post-synaptic neuron exceeds the threshold, a spike is generated, and the corresponding spiking time is marked as tj.

According to neuroscience, information is thought to be encoded in the spiking time sequence, such as t1, t2, ..., tn, tj.

where 1wij represents the weight change of connection from pre-

synaptic neuron j to post-synaptic neuron i. A+, A−, τ+, and

τ− are dimensionless constants, which are obtained by fitting

neurophysiological data.1t = t
f
i − t

f
j represents the error between

the last spike timing of post-synaptic neuron i and the last spike

timing of pre-synaptic neuron j.

2.3. Spiking neural networks

Spiking neural networks are known as the third-generation

neural networks. Due to the brain-like temporal encoding and

multiple neural mechanisms, they are considered to have a strong

information processing capability. However, this also makes the

training of spiking neural networks difficult (Wang et al., 2020).

The widely used gradient descent algorithm is difficult to apply to

spiking neural networks (Taherkhani et al., 2020). Therefore, many

researches combine various mathematical optimization techniques

with spiking neural networks, trying to propose a new learning

paradigm suitable for SNNs. For example, Xing et al. adopted the

ANN-to-SNN strategy to migrate the parameters of the trained

ANNs to the SNNs of the same architecture (Xing et al., 2019;

Gao et al., 2023). Anwar et al. applied reinforcement learning to

spiking neural networks to perform specific tasks, such as Pong

and Cartpole game playing (Bellec et al., 2020; Anwar et al., 2022;

Haşegan et al., 2022). These spiking neural networks combine

biologically reasonable neural mechanisms with reinforcement

learning and mathematical optimization to complete sophisticated

tasks. Some studies also employ spiking neural networks containing

biologically reasonable neural mechanisms to explore the principle

of biological neural network information processing. For example,

the SORN and RM-SORN models are proposed to explore the

coordination of neural mechanisms such as R-STDP, structural

plasticity, and homeostatic plasticity (Lazar et al., 2009; Aswolinskiy

and Pipa, 2015; Dora et al., 2016).

3. The proposed method

3.1. Problem formulation

3.1.1. Preliminary
Consider a binary neuron model, the neuron state (0 and 1)

changes over the inputs. The binary neuron state st at discrete time

t is updated as follows:

st =

{

1, if ψt ≥ θ

0, if ψt < θ
(2)

where θ is the threshold andψ is the sum of inputs. Onceψ reaches

the threshold, the neuron state will be activated as 1, otherwise

x = 0. Besides, ψ is calculated as follows:

ψi = ui +
∑

j∈S

wijsi (3)

where wij is the weight between neuron i and neuron j. ui is the

external signal received by neuron i. The notations used in this

work are explained in Table 1.

3.1.2. Counting task
The task objective is to predict the subsequent element by

modeling the structure of a recurrent sequence. Consider am times

recurrent sequence as follows:

1
︷ ︸︸ ︷

a bb · · · b
︸ ︷︷ ︸

n

c

2
︷ ︸︸ ︷

a bb · · · b
︸ ︷︷ ︸

n

c · · ·

m
︷ ︸︸ ︷

a bb · · · b
︸ ︷︷ ︸

n

c (4)

where each subsequence contains a start flag, an end flag and a fixed

number of a repeated element (i.e., a, c, and b). Taking an element

as the input, the model aims to accurately predict the next element.

For example, given a as the input, and the ground-truth is b. This

task is designed to test the memory property of the model.
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TABLE 1 Notations used in this work. We demonstrate the commonly

used notations in this work.

Notation Interpretation

I/E Inhibitory/Excitatory neuron

NI/NE Number of inhibitory/excitatory neuron

sei /s
in
i /s

o
i State of i-th excitatory/inhibitory/output neuron

θ ei /θ
in
i /θ

o
i Threshold of i-th excitatory/inhibitory/output neuron

wee
ij Weight between i-th excitatory and j-th excitatory

neuron

wei
ij Weight between i-th excitatory and j-th inhibitory

neuron

wie
ij Weight between i-th inhibitory and j-th excitatory

neuron

woe
ij Weight between i-th output and j-th excitatory neuron

3.1.3. Motion prediction task
The task objective is to predict the subsequent element by

modeling the structure of a recurrent sequence, in which all

elements are associated with different spatial positions. Consider

am times recurrent sequence as follows:

1
︷ ︸︸ ︷

12 · · · n

2
︷ ︸︸ ︷

12 · · · n · · ·

m
︷ ︸︸ ︷

12 · · · n (5)

where each subsequence contains n integers from 1 to n. Taking an

element as the input, the model aims to accurately predict the next

element. Because the elements are associated with different spatial

positions, this task can be interpreted as the left to right motion of

an object along an axis.

3.1.4. Motion generation task
The task objective is to generate them times recurrent sequence

same as (5), with the output serving as the input and no external

teaching signals. For example, if the current output of the model is

equal to 1 and serves as the next input, the next output should be 2.

3.2. Overview architecture

The overall architecture of RSRN-SP is shown as in Figure 2,

which is composed of two general modules, i.e., a recurrent layer,

and an output layer.

3.2.1. Recurrent layer
The recurrent layer extracts features of inputs and stores them

in its variable connection patterns and weights. The neurons in

the layer are divided into two groups: excitatory and inhibitory

neurons. NE and NI are utilized to denote the numbers of them,

NI = 0.2×NE. They are connected through weighted connections,

which is denoted as a weight matrix W. The element wij in the

weight matrix is the connection weight from neuron j to neuron

i. The connections among excitatory neurons are sparse, while full

connections exist between excitatory and inhibitory neurons. The

initial connection density among excitatory neurons is controlled

by the average connection fraction pc of neurons. It should be

noted that there exist no self-connections and connections among

inhibitory neurons.

3.2.2. Output layer
The output layer maps the features stored in the recurrent

layer into interpretable and specific-task outputs. It only contains

excitatory neurons without connections among each other. There is

a feedback connection from the output layer to the recurrent layer.

3.3. Evolution

The input of RSRN-SP is a time sequence that contains different

symbols (letters or digits). Each symbol corresponds to a subset of

neurons in the recurrent layer, which and only which can receive

the corresponding input symbol. When a certain symbol in the

sequence is input to the model, only neurons in the corresponding

subset are activated, while other neurons remain silent. The state

updating for different types of neurons are as follows:

sek(t + 1)

=2

( NE
∑

i=1

wee
ki s

e
i (t)−

NI
∑

j=1

wei
kjyk(t)+ uk(t)− θ

e
k(t)

)

,
(6)

sink (t + 1) = 2

( NE
∑

j

wie
kjs

e
j (t)− θ

in
k (t)

)

. (7)

sok(t + 1) = 2(

NE
∑

j

woe
kj s

e
j (t)− θ

o
k (t)) (8)

where 2 is the Heaviside step function, and uk(t) is the external

signal of neuron k at time t. The weights are uniformly drawn from

[0, 1] and initially normalized as
∑N

j wij = 1.

3.4. Learning rule of R-STDP

According to the learning rule of R-STDP (Frémaux and

Gerstner, 2016; Yuan et al., 2018), the change of connection weight

is not only controlled by spikes, but also regulated by reward signal,

as illustrated in Figure 2B, which can be described as follows:

W(t + 1) =W(t)+ η ·M × e. (9)

Where η is the learning rate of the weight. e denotes a synaptic

eligibility trace to temporarily store the outcome of R-STDP, which

can be still available for a delayed reward signal. The eligibility trace

is computed as:

deij

dt
=−

eij

τe
+

[

si(t) · sj(t − 1)

−f · si(t − 1) · sj(t)
]

(10)
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FIGURE 2

(A) The structure of RSRN-SP. Excitatory-to-Excitatory (E-E) connections WEE are sparse. Excitatory-to-Inhibitory (E-I) connections WIE ,

Inhibitory-to-Excitatory (I-E) connections WEI and connections from the recurrent to output layer WOE are full. WEE and WOE follow R-STDP, while

others keep fixed. Suppose that the input is a m times recurrent sequence (i.e., abab...ab), in which a and b correspond to subset 1 and 2, respectively.

When a is input into the model, only the neurons of the subset 1 are activated, likewise b is input into the model, only the neurons of the subset 2 are

activated. (B) Illustration of R-STDP. The outcome of R-STDP is stored in eligibility trace. The updating of the weights occurs only at the time of

reward.

FIGURE 3

The results of the counting task. (A) The overall performance. (B) The counting performance.

where si and sj are the activation of pre- and post-synaptic neurons,

respectively. τe is a time constant. f is a dimensionless parameter

(f = 1 for WEE and f = 0.01 for WOE). According to Equation

(9), when neuromodulation factor M = R − b is not equal to 0,

i.e., reward R deviates from baseline b, the connection weight will

be updated.

In our model, for the counting task and motion prediction

task, the reward R is set to 1 for correct output, while either

0 or −1 for incorrect output. The baseline b is set to the

moving average of R. For the generation task, when the target

sequence is correctly generated, the reward R that is proportional

to the length of the correctly generated sequence will be

given.

3.5. Structural plasticity

Structural plasticity is a fundamental neural mechanism of the

biological neural network in the brain, which is demonstrated

to have a critical role in regulating circuit connection during

learning (Caroni et al., 2012). Structural plasticity refers that old

synaptic connections may be pruned and new synaptic connections

formed during the self-organization of neural networks (Lamprecht

and LeDoux, 2004). In our model, we apply structural plasticity

to the connections among excitatory neurons. New connections

will be added between two unconnected neurons with a probability

psp ∈ (0, 1), and their weights are initialized as 0.001. psp is fine-

tuned as a hyper-parameter to stabilize the recurrent layer. Old
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connections will be pruned if their weights are less than a near-zero

threshold wth ∈ (0, 1).

Structural plasticity can be formulated as follows:

{

cij = 0, if cij = 1 and wij < wth

cij = 1,wij = 0.001, if cij = 0 and rnd > 1− psp
(11)

where cij ∈ {0, 1} indicates whether a connection from neuron j to

neuron i exists or not. If cij = 1, the connection exists; if cij = 0, the

connection does not exist. rnd ∈ (0, 1) is a uniformly distributed

random number.wij denotes the weight of connection from neuron

j to neuron i.

3.6. Homeostatic plasticity

Homeostatic plasticity is critical to alleviate the instability

of neural networks. Two common homeostatic mechanisms are

utilized in our method: synaptic normalization and intrinsic

plasticity. The synaptic normalization is formulated as:

wij(t) =
wij(t)

∑

j wij(t)
−→

∑

j

wij(t) = 1. (12)

Where the weights of all afferent connections to a neuron

are proportionally scaled to make their sum equal to 1.

Synaptic normalization can promote healthy competition among

connections that connect to the same neuron.

The intrinsic plasticity enables to adjust the thresholds of

excitatory neurons by an average firing rate µip, which can be

formulated as follows:

1θ ei (t) = η(si(t)− µip). (13)

Where ηip is the learning rate of the threshold. For excitatory

neurons in the recurrent layer, µip is fine-tuned in a range of

[0.05, 0.25]. In the output layer, µip is uniquely set for each neuron,

corresponding to the expected occurrence probability of the symbol

represented by the neuron. Due to the intrinsic plasticity, the

threshold of a neuron in our model will increase if it is too active;

otherwise, the threshold will decrease.

3.7. Two-stage training

A two-stage training scheme is proposed for RSRN-SP. In

the first stage, the model is trained with R-STDP, homeostatic

plasticity, and structural plasticity. In the second stage, the

connection pattern and weight of the recurrent layer are fixed.

The connection weight of the output layer is fine-tuned for

specific tasks. The first stage is alternated with the second

stage. In each alternation, the model takes about 100 steps

at the first stage, and then proceeds to the second stage to

take about 20,000 steps. During training, the alternation

will be repeated about 200 times. During inference, the

model will be evaluated on testing data. For the motion

generation task, the output of the model is fed back as its

input during training, and the model is used to generate

desired output during inference. The algorithm for the first

stage is listed here. The second-stage algorithm is similar,

which only applies R-STDP and homeostatic plasticity at the

output layer.

Require: Sequence that meets the counting task,

motion prediction task, and motion generation

task.

Ensure: Letter or integer predicted or generated

based on the sequence.

1: Initialize the network parameters: neuron number

N, connection weight W, neuron state S, state

threshold 2, etc.

2: for t = 0 to 100 do

3: for k = 1 to N do

4: compute se
k
(t + 1), si

k
(t + 1), and so

k
(t + 1)

5: end for

6: for i = 1 to NE do

7: for j = 1 to NE do

8: if connection from jth to ith neurons exists

then

9: compute eij based on Equation (10)

10: wee
ij (t + 1)← wee

ij (t)+ η ∗M ∗ eij

11: end if

12: end for

13: end for

14: for i = 1 to NE do

15: wij(t + 1)← wij(t + 1)/
∑

j wij(t + 1)

16: θ ei (t + 1)← θ ei (t)+ η
(

sei (t)− µip

)

17: end for

18: for i = 1 to NE do

19: for j = 1 to NE do

20: if cij == 1 and wee
ij (t + 1) < wth then

21: cij ← 0

22: end if

23: if cij == 0 and rnd > 1− psp then

24: cij ← 1

25: wee
ij (t + 1)← 0.001

26: end if

27: end for

28: end for

29: end for

Algorithm 1. The first-stage algorithm of RSRN-SP.

4. Experiments

4.1. Experimental settings

Our model is evaluated on three tasks: counting task (Lazar

et al., 2009), motion prediction (Aswolinskiy and Pipa, 2015), and

motion generation (Aswolinskiy and Pipa, 2015). The comparison

approaches mainly involve SORN (Lazar et al., 2009) and RM-

SORN (Aswolinskiy and Pipa, 2015). Notably, in SORN and RM-

SORN, the weights to the output layer are trained with linear
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regression, and there is no structural plasticity applied in the

recurrent layer. Themodel is implemented in Python programming

on a Windows 10 computer with NVIDIA RTX 1080Ti. Source

code and parameters are released at Github.

4.2. Experiments for counting task

4.2.1. Evaluation protocol
Two kinds of evaluation protocols are used: (1) overall

performance is to evaluate the matching of all letters in a sequence;

(2) counting performance is to evaluate the prediction accuracy for

all subsequences in a sequence.

TABLE 2 The results of the counting task.

Overall
performance

n

N = 200 4 8 12 16 20

RM-SORN 94.02 94.23 91.39 87.56 89.73

RSRN-SP (Ours) 93.48 93.96 92.82 89.28 91.59

N = 400 4 8 12 16 20

SORN 95.78 91.66 92.31 94.52 96.04

RSRN-SP (Ours) 92.64 95.92 93.91 92.43 94.58

Counting
performance

n

N = 200 4 8 12 16 20

RM-SORN 99.70 99.50 99.31 69.50 50.44

RSRN-SP (Ours) 100.00 100.00 98.18 81.17 58.88

N = 400 4 8 12 16 20

SORN 98.87 89.68 65.44 43.89 24.95

RSRN-SP (Ours) 100.00 100.00 100.00 98.38 86.04

The bold values indicate that the method outperforms other models under the same

conditions.

4.2.2. Results
The results for the counting task are shown in Figure 3 and

Table 2. It can be observed that as the number n of the repetition

of a letter in a subsequence increases, the overall performance

fluctuates around 90% within a relatively narrow range, while the

counting performance declines. This is because the value of n is

proportional to the number of input patterns that the recurrent

layer needs to learn. Larger n increases the difficulty of predicting

the last letter of a subsequence, but reduces the difficulty of

predicting the other letters of this subsequence. The counting

performance gap among our model, SORN, and RM-SORN can

be explained by the difference between reward-modulated learning

and offline linear regression. SORN and RM-SORN try to learn

all separable input patterns and minimize global mapping errors,

whereas the reward of our model is computed as moving average

within a time window, in which each individual input pattern is

more effectively learned.

4.3. Experiments for motion prediction task

4.3.1. Results
As shown in Figure 4A and Table 3, when n is small, our

model, SORN and RM-SORN have high prediction accuracy. As

TABLE 3 The results of the motion prediction task.

N = 200 n

4 8 12 16 20

RM-SORN 98.79 98.04 95.42 90.46 86.80

RSRN-SP

(Ours)

99.38 98.63 97.87 93.51 89.32

N = 400 4 8 12 16 20

RM-SORN 99.46 99.08 98.57 96.96 93.92

RSRN-SP

(Ours)

99.83 99.28 99.07 97.99 95.57

The bold values indicate that the method outperforms other models under the same

conditions.

FIGURE 4

The results of the motion prediction and generation tasks. (A) The motion prediction task. (B) The motion generation task.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224752
https://github.com/yuanyesjtu/RSRN
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yuan et al. 10.3389/fnins.2023.1224752

n increases, the accuracy of the three models gradually decreases,

and the accuracy of ourmodel becomes higher than RM-SORN and

lower than SORN. It is worth noting that in our model, increasing

the number of neurons can greatly increase the performance of

the model. Considering that our model has much less training

difficulty than SORN, it can achieve an accuracy similar to SORN

by increasing the number of neurons when n is very big.

4.4. Experiments for motion generation task

4.4.1. Evaluation protocol
The performance is calculated as the percentage of the symbols

belonging to the target sequence to the total number of symbols.

For example, assuming that the desired sequence is 1234. If the

desired sequence is generated, the model receives the full reward

of unit 1. Otherwise, it receives the reward of 3
4 for the sequence

x123, 24 for the sequence xx12 and 1
4 for the sequence xxx1.

4.4.2. Results
As shown in Figure 4B and Table 4, without external teaching

signals, our model can still generate the desired sequence

TABLE 4 The results of the motion generation task.

N = 200 n

4 8 12 16 20

RM-SORN 99.79 96.66 91.24 43.20 0.00

RSRN-SP

(Ours)

99.90 98.98 93.13 56.40 18.78

N = 400 4 8 12 16 20

RM-SORN 99.92 99.66 97.24 81.20 66.70

RSRN-SP

(Ours)

100.00 99.98 96.13 84.64 71.54

The bold values indicate that the method outperforms other models under the same

conditions.

accurately. Success in this task shows that the model can generate

an arbitrary sequence with the same symbol distribution as in the

motion sequence.

As a result of the self-organization driven by multiple plasticity,

the recurrent layer can an create effective representation of inputs.

The model containing 400 neurons outperforms that containing

200 neurons, suggesting that the memory capacity of the model is

closely related to the number of neurons.

4.5. Influence of structural plasticity

To study structural plasticity, the models with different N and

pc are constructed in the counting task. Figure 5 and Table 5 suggest

that the recurrent layer with structural plasticity outperforms

that without structural plasticity. The performance improvement

is larger when the recurrent layer is initialized with sparse

connectivity. The recurrent layer with structural plasticity has great

advantage, which is prominent when the connection patterns are

not reasonably initialized. In the case of initial pc = 0.002, the

TABLE 5 The changes of E-E connection fractions of RSRN-SP on the

counting tasks at four initial connection fractions.

pc
(0) N = 200 N = 400

1pc/pc
(0) pc

(1) 1pc/pc
(0) pc

(1)

0.002 +(459±

242)%

0.011 +(305±

223)%

0.008

0.01 +(53± 29)% 0.015 +(53± 20)% 0.015

0.1 −(37±

11)%

0.063 −(41±

13)%

0.059

0.2 −(46±

10)%

0.108 −(50±

11)%

0.099

pc
(0) is the initial connection fraction.

pc
(1) is the connection fraction after the training, which is computed as the average of the

model on the counting tasks (n = [4, 8, .., 32]).

The relative change of1pc/pc
(0) is denoted as “(mean± std)”.

FIGURE 5

The performance of RSRN with and without structural plasticity (SP), with initial pc = 0.002, 0.01, 0.1, 0.2, on the counting task. (A) The network

consisting of N = 200 neurons. (B) The network consisting of N = 400 neurons.
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FIGURE 6

The synaptic connection characteristics of RSRN-SP. (A, B) Synaptic weight distribution. Blue bars are synaptic weight distribution histogram. Red line

is lognormal distribution fit curve. (C, D) Synaptic lifecycle distribution. Red line is distribution fit curve.

connection fractions change into 0.011 and 0.008 after training, for

the model of N = 200 and N = 400, respectively. When the initial

pc is set to 0.01, the increment is much smaller. The decrease is

much smaller for pc = 0.1, compared to the case of pc = 0.2. It is

testified that the model of N = 200 and N = 400 achieved the best

performance with pc = 0.05 and pc = 0.0125, respectively.

4.6. Synaptic connection characteristics of
RSRN-SP

The connection pattern of cortex exhibits some fundamental

characteristics (Zheng et al., 2013), e.g., lognormal-like distribution

of synaptic weight, power-law distribution of synaptic lifecycle,

and a tendency for stronger connections to be more stable. To

study whether these characteristics exist in RSRN-SP, we simulated

a model of 200 and 400 on the counting task of n = 8. As

shown in Figures 6A, B, the synaptic weights exhibit lognormal-like

distribution, which is consistent with biological observations (Song

et al., 2005; Loewenstein et al., 2011). Figures 6C, D demonstrated

that the distribution of lifecycle of newly formed connections can be

roughly fitted by a power law. Most of newly formed connections

tend to disappear and only a few of them can persist and become

strong.

5. Discussion and conclusion

To understand how multiple plasticities interact to shape

biological neural networks and affect neural signal processing,

we proposed a novel spiking neural network incorporating

with multiple neural plasticity from neurophysiology, e.g.,

reward-modulated spike timing-dependent plasticity, homeostatic

plasticity, and structural plasticity. In particular, homeostatic

plasticity and reward-modulated spike timing-dependent plasticity

are used to promote the consistency between the network updating

and brain learning, which help to guide the updating of connection

weight during training SNNs. Specially, structural plasticity is

introduced to simulate the growth and pruning of connections in
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the network, which could guarantee the consistency between the

network structure and brain structure.

Here, our work attempts to combine R-STDP with other

plasticity mechanisms to achieve better training results. The

simulations demonstrated that (1) reward-modulated spike

timing-dependent plasticity, structural plasticity, and homeostatic

plasticity can work in coordination to empower neural networks

to learn; (2) structural plasticity weakens the network connection

stability but enhances its ability to adapt to the input; (3) RSRN-SP

could effectively learn the representation of the input, and achieves

better performance on sequence learning tasks than the same

type of spiking neural network including SORN and RM-SORN.

Furthermore, the simulations also indicate that the characteristics

arose from RSRN-SP are consistent with biological observations.

Compared to the widely used artificial neural networks, our

spiking neural network is not easy to train due to complex

temporal encoding, variable connection pattern, and diverse

plasticity mechanisms. One challenge stems from the temporal

encoding, which allows information to be processed in the form

of spikes in SNNs. However, spikes are not mathematically

differentiable, making it difficult to apply traditional gradient-based

optimization algorithms. The generation of new connections and

the disappearance of old connections also increase the difficulty

of network training. To address these challenges, some studies

have explored R-STDP (Frémaux and Gerstner, 2016), which is

considered a biologically plausible learning algorithm suitable for

SNNs. Nevertheless, how efficient learning of SNNs can be achieved

by R-STDP, while maintaining sustained balanced network activity

remains an open question.
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