
TYPE Original Research

PUBLISHED 11 August 2023

DOI 10.3389/fnins.2023.1224457

OPEN ACCESS

EDITED BY

Jundong Liu,

Ohio University, United States

REVIEWED BY

Yufei Guo,

China Aerospace Science and Industry

Corporation, China

Zhewei Wang,

Massachusetts General Hospital and Harvard

Medical School, United States

Ye Yue,

Ohio University, United States

*CORRESPONDENCE

Andrea Castagnetti

andrea.castagnetti@univ-cotedazur.fr

RECEIVED 17 May 2023

ACCEPTED 27 July 2023

PUBLISHED 11 August 2023

CITATION

Castagnetti A, Pegatoquet A and Miramond B

(2023) SPIDEN: deep Spiking Neural Networks

for e�cient image denoising.

Front. Neurosci. 17:1224457.

doi: 10.3389/fnins.2023.1224457

COPYRIGHT

© 2023 Castagnetti, Pegatoquet and

Miramond. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

SPIDEN: deep Spiking Neural
Networks for e�cient image
denoising

Andrea Castagnetti*, Alain Pegatoquet and Benoît Miramond

Université Côte d’Azur, CNRS, LEAT, Sophia Antipolis, France

In recent years, Deep Convolutional Neural Networks (DCNNs) have outreached

the performance of classical algorithms for image restoration tasks. However,

most of thesemethods are not suited for computational e�ciency. In this work, we

investigate Spiking Neural Networks (SNNs) for the specific and uncovered case

of image denoising, with the goal of reaching the performance of conventional

DCNN while reducing the computational cost. This task is challenging for two

reasons. First, as denoising is a regression task, the network has to predict a

continuous value (i.e., the noise amplitude) for each pixel of the image, with high

precision.Moreover, state of the art results have beenobtainedwith deep networks

that are notably di�cult to train in the spiking domain. To overcome these issues,

we propose a formal analysis of the information conversion processing carried

out by the Integrate and Fire (IF) spiking neurons and we formalize the trade-o�

between conversion error and activation sparsity in SNNs. We then propose, for

the first time, an image denoising solution based on SNNs. The SNN networks

are trained directly in the spike domain using surrogate gradient learning and

backpropagation through time. Experimental results show that the proposed SNN

provides a level of performance close to the state of the art with CNN based

solutions. Specifically, our SNN achieves 30.18 dB of signal-to-noise ratio on the

Set12 dataset, which is only 0.25 dB below the performance of the equivalent

DCNN. Moreover we show that this performance can be achieved with low

latency, i.e., using few timesteps, and with a significant level of sparsity. Finally,

we analyze the energy consumption for di�erent network latencies and network

sizes. We show that the energy consumption of SNNs increases with longer

latencies, making them more energy e�cient compared to CNNs only for very

small inference latencies. However, we also show that by increasing the network

size, SNNs can provide competitive denoising performance while reducing the

energy consumption by 20%.

KEYWORDS

denoising, Spiking Neural Networks, quantization error, low latency, sparsity, direct

training, energy consumption

1. Introduction

Image denoising algorithms are intensively used in smartphones and embedded vision

systems to recover image quality by reducing the amount of noise of the raw image. Image

denoising performance have increased during the last few years and recent methods based

on Deep Convolutional Neural Networks (DCNNs) have provided very high scores (Zhang

et al., 2017) to the point of outreaching classical spatial and patch-based algorithms (Gu et al.,

2014). However, deploying AI-based algorithms on embedded devices posesmany problems.

The limited amount of memory available, the power consumption and thermal dissipation

are indeed critical for embedded battery powered platforms. Therefore, the deployment of

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1224457
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1224457&domain=pdf&date_stamp=2023-08-11
mailto:andrea.castagnetti@univ-cotedazur.fr
https://doi.org/10.3389/fnins.2023.1224457
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1224457/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

AI-based solutions on mobile devices requires a careful adaptation

of the neural network architecture to the restrictions of AI hardware

in mobiles. Such optimizations can include network pruning (Guo

et al., 2021), low-bit quantization (Esser et al., 2020; Yamamoto,

2021; Young et al., 2021) or platform-aware neural architecture

search (Wu et al., 2019; Kim et al., 2022). Specifically low-bit

quantization allows reducing the precision needed to represent

neuron’s activations and network parameters, i.e., weights and

biases, thus reducing the computation and memory requirements

while minimizing the accuracy loss compared to a full-precision

Artificial Neural Networks (ANN).

Meanwhile, Spiking Neural Networks (SNNs) are emerging as

an alternative for the design of low-power processing hardware

(Abderrahmane et al., 2020). The spike information coding used

by SNNs enables sparse and event-based computation through the

network. Moreover, relying on a temporal binary code allows to

replace the multiply-accumulate (MAC) operations with simpler

and more energy-efficient accumulation (ACC) operations. Both

quantized ANNs and SNNs make use of low precision, i.e.,

quantized, representations of the neurons activations to reduce the

computational requirements. Specifically, spiking neurons act like

quantizers by discretizing the input signal into a stream of spikes

(Li et al., 2022; Castagnetti et al., 2023b). The quantization error of

the signal reconstructed from the spike train is directly related to

the latency of the network. Thus, increasing the conversion time

lowers the quantization errors but at the cost of energy overhead. A

trade-off also exists for quantized ANN, where the bitwidth used to

represent the neuron activations has an effect on the accuracy, the

computational and then the energy costs.

In this paper we address the problem of training efficient

SNN’s for image denoising. This regression task is challenging

since the network has to predict a continuous value (i.e., the noise

amplitude) for each pixel of the image with high precision. We

choose to train the SNN directly in the spiking domain using

surrogate gradient learning (Neftci et al., 2019). This allows us to

adapt the neuron parameters during training. We are then able to

simultaneously optimize the task loss and the quantization noise

introduced by the spiking neurons. Using our training strategy,

we achieve performance results very close to a full-precision ANN

while minimizing the overall latency of the SNN. Finally, we

compare the resulting SNNs with quantized ANN both in terms of

performance and energy consumption.

Here, are the key contributions of this paper:

• Direct SNN training with learnable quantization: The

discretization introduced by spiking neurons limits the

performance of SNN by introducing quantization noise. By

taking into account the quantization noise during training we

show that we can improve the performance while reducing the

latency of the SNN.

• Efficient SNN for image denoising: Our approach is validated

on Gaussian image denoising and compared against full-

precision and quantized ANN. Specifically, our SNN achieves

a signal-to-noise ratio which is only 0.25 dB below the

performance of the equivalent full-precision ANN.

• Energy efficiency estimation and comparison between SNNs

and quantized-ANNs: Our SNN is compared against an

ANN using a metric for energy consumption estimation

that takes into account synaptic operations, memory accesses

and element addressing. We analyze the energy consumption

for different network latencies and network sizes. We show

that the energy consumption of SNNs increases with longer

latencies, making them more energy efficient compared to

CNNs only for very small inference latencies. However, we also

show that by increasing the network size, SNNs can provide

competitive denoising performance while reducing the energy

consumption by 20%. These results will be summarized in

Section 4.7.

2. State of the art

Spiking Neural Networks (SNNs) are biologically-inspired

models of neural networks. SNNs are stateful systems, their internal

state is represented by the value of the membrane potential of

the spiking neurons that compose the network. Moreover, SNNs

use spikes to encode and communicate information. Since a

single spike can only represent a binary value, spiking neurons

have to generate sequences of spikes to encode and communicate

complex information. The time required to encode the information

represents the latency of the SNN. Reducing the inference latency

of SNNs (i.e., the number of timesteps), without degrading the

performance, is an active area of research since it is crucial to obtain

the energy saving promised by the SNNs.

Early works demonstrated the feasibility of converting full

precision ANNs to SNNs by matching the firing rate of the neurons

(Diehl et al., 2015; Sengupta et al., 2019).With these approaches it is

almost possible to obtain a lossless conversion at the cost of a long

integration time (hundreds to thousands of timesteps) on complex

image classification tasks, e.g., CIFAR-10/100 or Imagenet.

Recent works (Li et al., 2021; Guo et al., 2022b) have shifted

the attention from firing rate matching to the analysis of the

quantization process carried out by the spiking neurons. Li et al.

(2021) propose a post-training calibration pipeline to fine-tune

the parameters of an ANN, in order to reduce the quantization

error, before transferring the weights to the SNN. They were

able to reduce the inference latency to only few timesteps but

at the cost of a significant reduction in performance. In Bu

et al. (2022), the authors propose an ANN to SNN conversion

technique that initializes the membrane potential of the spiking

neurons in order to minimize the quantization error. A significant

performance drop is observed on complex image classification tasks

(e.g., CIFAR10/100) when the network latency is lower than 16

timesteps. Besides image classification, ANN to SNN conversion

has also been applied to challenging tasks like object detection

(Kim et al., 2020) which require high numerical precision in

predicting the output values of neural networks. Here, the authors

propose a channel-wise weight normalization technique to reduce

the quantization error of the spiking neurons. The proposed

network, Spiking-YOLO, can match the performance of the

equivalent ANN implementation but at the cost of a high inference

latency since thousands of timesteps must be used. Optimizing

network performance and quantization noise independently, like

in the post-training calibration methods described above, results

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

in sub-optimal solutions, thus explaining the drop of performance

or the extremely high latency required to match the ANN

performance.

Li et al. (2022) propose to use Quantization-Aware-Training

(QAT) to train a quantized ANN before transferring the weights to

the SNN. The quantization mapping is learned using the Learned

Step Size Quantization (LSQ) algorithm (Esser et al., 2020) during

training while minimizing the task loss. The resulting SNN takes

advantage of the joint optimization carried out by QAT, thus

providing high accuracy and low latency.

Besides ANN-to-SNN conversion, new training methods have

recently emerged as an alternative to train SNN directly in the

spike domain (Neftci et al., 2019). To do so, the non-differentiable

part of the spiking neuron is replaced during back-propagation

by a surrogate function. This makes possible to compute an

approximation of the gradient for SNNs, that can be trained using

back-propagation-through-time (BPTT) as for standard recurrent

networks. Deng et al. (2022) propose Temporal Efficient Training

(TET), which is based on direct SNN training with surrogate

gradient (SG). TET constrains the network output at each timesteps

to be close to the target distribution thus improving the training

process and reducing the generalization error. Guo et al. (2022a)

introduce the Information maximization loss (IM-Loss) to increase

the information flow between the membrane potential and the

spiking output of the neurons, thus reducing the quantization

error of the spiking neurons. In Guo et al. (2022c), the authors

propose a composite loss to constrain the membrane potential

distribution of the spiking neuron. The loss term indeed penalizes

the shift of membrane potential distribution outside of the range

[0,Vth]. By matching the membrane potential distribution with

the conversion range of the spiking neuron, the quantization error

is reduced and the accuracy improves. Moreover, the proposed

method helps alleviate the exploding/vanishing gradients problem,

thus improving the convergence as well. The authors of Wang

et al. (2022) propose a learnable thresholding mechanism with a

moderate dropout method (LTMD) to enhance the learning of

SNNs. The SNN network is trained using surrogate gradient and

back-propagation. During training both synaptic connections, i.e.,

weights and biases, as well as neurons threshold can be updated.

The proposed SNNs can achieve better accuracies for both static

and neuromorphic test datasets with fewer timesteps. Similarly,

Castagnetti et al. (2023b) have shown that it is possible to achieve

low latency SNNs for complex image classification tasks with

a limited accuracy drop compared to full-precision ANN. The

authors propose to match the conversion range of the spiking

neuron to the membrane potential distribution by learning the Vth

parameter.

Most of the previous works targeted image classification

problems. Regression problems and specifically spiking

autoencoders have only been sparsely explored. Comşa et al. (2021)

introduced a spiking autoencoder to reconstruct images with high

fidelity using temporal coding. The SNN is trained using surrogate

gradients and standard back-propagation. The architecture of the

spiking autoencoder is limited to a single hidden-layer network and

is tested on low resolution images (MNIST, FMNIST). Similarly

Roy et al. (2019) proposed a spiking autoencoder for image

reconstruction trained using surrogate gradient and BPTT. The

autoencoder is composed of a 3-layer fully-connected network and

is also tested on the same low-resolution datasets. The previous

works only consider shallow networks and low-resolution datasets

thus making difficult to compare these results with state of the art

non-spiking autoencoders for image denoising (Zhang et al., 2017).

To the best of our knowledge this work is first study on spiking

deep convolutional autoencoder for image denoising. Our work is

inspired by the convolutional architecture proposed in Zhang et al.

(2017) and is tested on moderately high-resolution (256× 256 and

512 × 512 pixels) images that are widely used for the evaluation of

Gaussian denoising methods. In the following section, we analyze

the information coding of spiking neurons and we characterize

the quantization noise. Based on this analysis we then propose a

trainable quantization scheme for spiking neurons in Section 3.2.

3. Methods

3.1. Information coding with spiking
neurons

In this section, we characterize the quantization function of a

spiking neuron with respect to its parameters. The goal is to show

how the properties of the input (e.g., the range), the conversion time

and the parameters of the neuron affect the conversion process. We

restrict our analysis to the Integrate-and-Fire with soft-reset spiking

neuron. This neuron model, which is widely used in SNN research

(Li et al., 2022; Castagnetti et al., 2023b) implements a uniform

quantization scheme which leads to a reduced quantization error

compared to other spiking neuron models.

The information coding pipeline for a spiking neuron with a

single pre-synaptic input is shown in Figure 1. The neuron receives

a pre-synaptic input current which is composed of two terms: x[t]

which depends on the activity of the pre-synaptic neurons and a

bias b[t]. The neuron converts the input current into a train of

spikes represented by z[t]. The spiking output is decoded using

rate coding. The output of the decoder, x̂[t] is therefore a quantized

version of the input. By considering a constant input current, that

is x[t] = x, ∀t and b[t] = b, ∀t, it can be shown (Castagnetti et al.,

2023b) that, for this specific neuron model, the neuron output and

the rate decoded output can be approximated as follows:

T
∑

t=1

z(t) = min

{

T,

⌊

(x+ b)T

Vth

⌋}

=

⌊

(x+ b)T

Vth

⌋

T

(1)

x̂(x,T,Vth, b) =
1

T

T
∑

t=1

z(t) =
1

T

⌊

(x+ b)T

Vth

⌋

T

(2)

From Equation (2), we can observe that the output x̂ depends

both on the neuron parameters (Vth and the integration timeT) and

on the inputs x and b. In the following we study the effect of these

parameters, especially on the quantization error introduced by

the spiking neuron, that is the Signal-to-Quantization-Noise-Ratio

(SQNR) defined below:

SQNR(x) = 10 log10

(

E[x2]

E[(x− x̂)2]

)

(3)

We assess the quantization performance of the spiking neuron

by encoding and decoding a set of images (Set12), from the Berkeley

segmentation dataset (Roth and Black, 2005).

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

FIGURE 1

Information coding pipeline for a spiking neuron with a single

pre-synaptic input.

In our setup the spiking neurons are used as scalar quantizers,

that is each pixel of the images is encoded using a different neuron.

Their outputs are then decoded to reconstruct the pixels and

compute the average SQNR for each image of the test set. We set

Vth = 1 for each neuron. We repeat the quantization process for a

different amount of timesteps, specifically T ∈ [1, 32]. To show the

effect of the input range on the conversion process, the pixels of the

images are rescaled to the range [0, xmax], where xmax ∈ [0.25, 2].

For each set of parameters [Vth,T, xmax], we measure the SQNR

and the average amount of spikes, that we call θ , generated by each

neuron during the conversion process:

θ =

n
∑

i=0

m
∑

j=0

zi,j(t)

n×m
(4)

Here, n and m represent the height and the width of the input

image. Finally, we report the average value of SQNR and θ on the

test set. The average value of SQNR and θ as a function of T and

xmax are shown in Figure 2.

As it can be observed from Figure 2 the SQNR increases using

a longer integration time, that is increasing T, independently of

the range of the input. Each additional timestep brings a new

quantization step, thus leading to a finer discretization of the input

and a higher SNQR. However, when xmax ≤ Vth the SQNR

decreases since the number of quantization intervals available to

encode the signal is lower than the total number of intervals that the

encoder could theoretically provide. As an example, when xmax =

0.5 the input occupies only half the quantization range available.

Therefore, only 50% of the quantization intervals are effectively

used for the encoding which leads to a strong decrease in the SQNR.

In the same way, when xmax ≥ Vth the SQNR decreases since a

part of the input signal (xmax − Vth) falls in the saturation zone

of the quantizer. The input samples that fall in this interval will be

converted to the same output regardless of their respective values.

The sparsity, that is the number of spikes generated by each neuron

are also affected by the choice of the parameters [Vth,T, xmax] as

it can be observed from Figure 2. Moreover, we can see that it is

not always useful to generate more spikes to increase the SQNR.

For example, θ increases when xmax ≥ Vth but the performance

of the quantizer is lower. At the opposite, when xmax ≤ Vth, only

a fraction of the quantization steps allowed by latency T are used

thus leading to a lower SQNR.

A solution to the problem related to the width of the

quantization interval is to modify Vth to match the range of the

input (xmax). In this way, all the quantization intervals fall inside the

input range, thus maximizing the SQNR without generating more

spikes than necessary. The proposed quantization-aware training

strategy is discussed in the next section.

3.2. Improving compression through
trainable quantization and surrogate
gradient learning

3.2.1. Threshold scaling and gain compensation
In this section, we provide a numerical example to explain

how the firing thresholds can be adapted in a network of spiking

neurons. Our example is based on the network shown in Figure 3

and composed of three identical spiking neurons arranged in two

layers and followed by a rate decoder.

We consider two constant inputs with value (x1, x2) = (1.5, 1.2)

and the following weights (w1,w2,w3) = (2, 3, 1). The biases are

set to b = 0. to shorten the calculations. The thresholds are set to

(Vth1,Vth2,Vth3) = (1, 1, 1) and we also use T = 8 timesteps.

According to Equations (1) and (2), we can compute the output

of each neuron and the decoded value x̂ as follows:

T
∑

t=1

z1(t) =

⌊

(x1 + b)T

Vth1

⌋

T

=

⌊

1.5× 8

1

⌋

T

= 8 spikes (5)

T
∑

t=1

z2(t) =

⌊

(x2 + b)T

Vth2

⌋

T

=

⌊

1.2× 8

1

⌋

T

= 8 spikes (6)

T
∑

t=1

z3(t) =

⌊

∑T
t=1(w1Vth1z1(t)+ w2Vth2z2(t))+ b T

Vth3

⌋

T

(7)

=

⌊

2× 8+ 3× 8

1

⌋

T

= 8 spikes (8)

x̂ =
8

8
× w3 = 1.0 (9)

Using formal instead of spiking neurons the previous operation

would have produced the following result:

xf = (x1 w1 + x2 w2)w3 = (1.5× 2+ 1.2× 3× 1) = 6.6 (10)

Using the previous results we can compute the difference

between the spiking and formal outputs as follows:

1s = |xf − x̂| = 6.6− 1.0 = 5.6 (11)

This error 1s is caused by the mismatch at the input, since

x1 > Vth1 and x2 > Vth2. Moreover, the output neuron is also

mismatched since the sum of the activations is greater than Vth3.

To correct the mismatch we can set (Vth1,Vth2,Vth3) =

(1.5, 1.5, 7), that is to the maximum value of the input of each

synapse. However, by varying the thresholds a gain factor is

introduced in the operation carried out by the neuron. Let us

consider a spiking neuron with Vth = 1, its firing rate will be

equal to 1, its maximum value, when its input is also equal to

1. If we decrease the threshold to Vth = 0.5, then the neuron

outputs its maximum firing rate when the input is equal to 0.5.

In this case the neuron is introducing a gain of 1/Vth = 2.

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

FIGURE 2

Average SQNR (A) and θ (B) of an IF neuron with soft reset as a function of the input range xmax and the integration time T. The pixels of the test

images have been rescaled to the range [0, xmax] where 0.25 ≤ xmax ≤ 2. Here, Vth = 1. and b = 0., therefore the quantization range spans the interval

[0, 1.]. The SQNR decreases when xmax moves away from Vth.

FIGURE 3

Minimal network model.

To compensate the gain introduced by the neuron at layer l we can

simply multiply the weights of the post-synaptic neurons at layer

l + 1 by the coefficient 1/Vthl , that is the threshold of the neurons

at layer l.

Following the previous example, and using the new threshold

values and the gain compensation, we can compute the decoded

value x̂ as follows:

T
∑

t=1

z1(t) =

⌊

(x1 + b)T

Vth1

⌋

T

=

⌊

1.5× 8

1.5

⌋

T

= 8 spikes (12)

T
∑

t=1

z2(t) =

⌊

(x2 + b)T

Vth2

⌋

T

=

⌊

1.2× 8

1.5

⌋

T

= 6 spikes (13)

T
∑

t=1

z3(t) =

⌊

∑T
t=1(w1Vth1z1(t)+ w2Vth2z2(t))+ b T

Vth3

⌋

T

(14)

=

⌊

3× 1.5× 8+ 2× 1.5× 6

7

⌋

T

= 7 spikes (15)

x̂ =
7

8
× w3 × Vth3 =

7

8
× 7 = 6.125 (16)

Following this approach, the quantization error is now equal to:

1s = |x̂f − x̂| = 6.6− 6.125 = 0.475 (17)

It corresponds to more than a tenfold decrease in the error

compared to the previous example, with less spikes (21 compared

to 24 in the mismatched configuration).

The previous example allowed us to introduce the gains that

can be obtained by setting the neuron parameters to minimize

the input mismatch. However, Vth was set manually by comparing

quantized and full-precision operations. Moreover, we set Vth to

the maximum value of the input synapses. Better choices and

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

further gains can be obtained by learning Vth rather than tuning

it layer-by-layer using a post-training procedure.

3.2.2. Learning the spiking neuron parameters -
the ATIF neuron model

The surrogate gradient method (Neftci et al., 2019) used

in SNNs allows computing the derivative of the Heaviside step

function of a spiking neuron during error back-propagation,

thus making the full spiking network trainable using BPTT

and standard deep learning frameworks. Specifically the non-

differentiable Heaviside step function2(x) is replaced during back-

propagation with 2′(x) = σ ′(x). Where σ (x) is an approximation

of the step function, typically a sigmoid, used in the following

experimentation, or any other form of smooth saturating function.

The upstream gradient of the spiking neuron, ∂L
∂z , can be

propagated to Vth thanks to the surrogate function:

∂L

∂Vth
= −

∂L

∂z
· σ ′(q) (18)

Where q denotes the membrane potential of the neuron. It is

thus possible to optimize both the weights and biases of the network

and the Vth of the spiking neurons during gradient descent. In

consequence, both the task loss and the quantization error can

be jointly optimized. This spiking neuron model, called ATIF,

has been introduced in Castagnetti et al. (2023b) and tested on

image and sound classification tasks. In the following sections, we

experimentally evaluate the ATIF neuron model for the task of

image denoising.We then provide a comparison between the ATIF-

based SNN networks, quantized-ANN and other SNN-based image

denoising networks based on different spiking neuron models and

coding mechanisms.

4. Experiments and results

4.1. Experimental setting

We train the model proposed in Zhang et al. (2017), called

DnCNN, for the task of denoising with known specific noise

level. The network is composed of 17 convolutional layers each

with 64 filters. The input are gray-scale images, with pixel values

normalized in the interval [0 − 1]. We use the same dataset as

Zhang et al. (2017) for training and testing. The training set is

composed of 400 images of size 180× 180. The training images are

first cropped into patches of size 40× 40 and noise is added to each

patch.We evaluate themodels on two different noise types: additive

Gaussian and multiplicative Speckle noise. Then, the patches are

flowed into the network. We test three different noise levels with

standard deviations σ = [15, 25, 50] respectively. The higher the σ

the harder the denoising task. For training we follow the residual

learning formulation proposed in the original paper. The network

R(·) is fed with a noisy image y = x+ v, where x is the clean image

and v is the noise and must output the residual mapping R(y) ≈ v.

We use the Peak-Signal-to-Noise-Ratio (PSNR) between the clean

image x and xd = y − R(y) to measure the denoising performance

of the network. The higher the PSNR the better.

For the spiking denoiser shown in Figure 4, that we call

DnSNN, we replace the ReLU activation functions with the spiking

ATIF neurons described in Section 3.2. The image to spike

conversion process is carried out by the first layer of the network.

The noisy image y is forwarded T times at the input of the network.

Then the spiking neurons that follow the first convolutional layer

(conv1) converts their membrane potentials into a train of spikes.

The decoding process is carried out at the last layer, where the

outputs of the last convolution (conv17) is collected by a read-out

layer composed of integrate without fire neurons. These neurons

accumulate the output of the conv17 layer at each timestep. The

residual image v is then obtained by reading-out the membrane

potentials of these neurons at the last timestep. Finally, after the

last timestep and before feeding a new image to the network, the

membrane potential of each spiking neuron is hard reset between

each image. We use PyTorch and the SpikingJelly framework (Fang

et al., 2020) for simulatingDnSNN. Both networks are trained using

Adam optimizer with a learning rate lr = 10−3. The learning rate is

exponentially decayed with a factor of 0.1 each 10 epochs. Finally,

the networks are trained for 30 epochs. For fair comparison with

previous works we report the performance for the same test sets

used in Zhang et al. (2017). These datasets, composed of natural

images, are widely used for the evaluation of gaussian denoising

methods. The first dataset contains 68 natural images from the

Berkeley segmentation dataset (BSD68) and the second one (Set12)

contains 12 images. None of the test images are included in the train

dataset.

4.2. Quantitative and qualitative image
denoising evaluation

4.2.1. Gaussian denoising
In this section, an Additive White Gaussian Noise (AWGN)

with standard deviation σ is considered as noise model. The noisy

image is defined by the following degradation model:

y = x+ v (19)

Where x is the clean image and v ∼ N(0, σ) is the gaussian

distributed additive noise. We first compare DnSNN with a

full-precision implementation of DnCNN where all the network

parameters and neurons activations are encoded using a 32 bits

floating point (FP) representation. Both DnCNN and DnSNN have

the same architecture and number of parameters (556K trainable

parameters). The experimental results for both BSD68 and Set12

are shown in Table 1.

As it can be observed, DnSNN provides competitive results in

terms of PSNR compared to a non-quantized DnCNN network.

As an example, we achieve an average PSNR of 31.593 dB on the

BSD68 dataset with σ = 15, which is only 0.137 dB below the PSNR

provided by the DnCNN. The performance gap (1PSNR) increases

for higher levels of input noise, but always stays below 0.4 dB in

all the considered scenarios. As discussed in Section 3.1 spiking

neurons introduce a quantization noise in their output because

of the discretization introduced by the spikes. At the opposite,

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

FIGURE 4

The architecture of DnSNN as well as the encoding (image to spike) and decoding (spike to image) processes.

TABLE 1 The average PSNR (dB) results of DnCNN (Zhang et al., 2017), FC-AIDE (Cha and Moon, 2019), FOC-Net (Jia et al., 2019), and DnSNN on the

Set12 and BSD68 datasets for three di�erent noise levels.

FC-AIDE FOC-Net DnCNN DnSNN DnCNN vs.
DnSNN

Set12

PSNR [dB] PSNR [dB] PSNR [dB] PSNR [dB] θ/T 1PSNR [dB]

σ = 15 32.99 33.07 32.859 32.681 0.282 0.178

σ = 25 30.57 30.73 30.436 30.186 0.295 0.25

σ = 50 27.42 27.68 27.178 26.790 0.31 0.388

BSD68

σ = 15 31.78 31.83 31.73 31.593 0.285 0.137

σ = 25 29.31 29.38 29.23 29.025 0.293 0.205

σ = 50 26.38 26.50 26.23 25.94 0.31 0.29

The results for DnSNN are given for T = 15 timesteps. The normalized sparsity of DnSNN is also reported.

the quantization noise is absent from the FP implementation of

DnCNN, thus explaining the performance gap. However, as our

results suggest, by jointly minimizing the SQNR of neurons, i.e.,

learning Vth, and the task loss we can minimize the performance

degradation while keeping the inference latency, i.e., T, low.

Moreover, these results are achieved with a significant level of

sparsity since DnSNN generates 0.3 spikes/neuron/timestep on

average. As it will be discussed later, the sparsity besides the latency

is another key parameter that must be minimized to get energy

gains. Finally, the denoising results of both DnCNN and DnSNN

for a specific image are shown in Figure 5. As it can be observed,

the denoised image generated by DnSNN matches the quality of

the DnCNN output: edges and details are recovered and the effect

of the quantization noise does not generate artifacts in the smooth

regions.

4.2.2. Speckle denoising
In this section, both DnCNN and DnSNN are evaluated using

a multiplicative noise model called Speckle noise. The degradation

model is defined as follows:

y = x+ x× v (20)

Where the multiplicative noise factor is gaussian distributed

v ∼ N(0, σ). Multiplicative Speckle noise is common in

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

FIGURE 5

Gaussian denoising results of the image parrot with noise level 25. The result for DnSNN is given for T = 15 timesteps. (A) Noisy/20.18 dB. (B)

DnCNN/29.37 dB. (C) DnSNN/29.3 dB.

TABLE 2 The average PSNR (dB) results of DnCNN (Zhang et al., 2017) and

DnSNN on the Set12 dataset for Speckle denoising.

DnCNN DnSNN 1PSNR
[dB]

PSNR [dB] PSNR
[dB]

θ/T

σ = 15 29.63 29.06 0.329 0.57

σ = 25 28.51 27.86 0.324 0.65

σ = 35 27.83 27.12 0.325 0.71

The results for DnSNN are given for T = 8 timesteps. The normalized sparsity of DnSNN is

also reported.

medical images obtained using ultrasound and optical coherence

tomography (Nao and Wang, 2022).

We report the experimental results on Table 2.

For Speckle denoising we observe that the performance of both

networks are lower compared to the case of Gaussian denoising.

This is explained by the increasing complexity of the noise model

which has a multiplicative relationship with the original signal. As

it can be observed, the performance gap in terms of PSNR between

DnSNN and DnCNN is slightly higher compared to Gaussian

denoising for the same number of timesteps. As an example, we can

observe from Figure 6 that for Gaussian denoising with σ = 25 and

T = 8 timesteps, the 1PSNR = 0.374 dB. For Speckle noise and the

same configuration of noise value and timesteps the 1PSNR = 0.65

dB, a loss of 0.27 dB compared to the gaussian case. However,

we can observe that the noise type does not significantly impact

the sparsity of the network. Again, as a comparison we obtain

a sparsity θ = 0.3 for Gaussian denoising and θ = 0.324 for

Speckle denosing, both for T = 8 timesteps. These results show

that the proposed method performs well with different types of

noise. However, due to the increased complexity of the Speckle

noise, more timesteps are needed to match the performance of

the DnCNN network. In the following sections we only consider

Gaussian denoising.

FIGURE 6

The average PSNR (dB) and the normalized sparsity (θ/T) of DnSNN

on the Set12 dataset for noise levels σ = [15, 25, 50] and T ∈ [1, 15]

timesteps. The PSNR levels for DnCNN are also shown with dotted

lines for each noise level.

4.3. Latency/performance trade-o�

The temporal dimension of SNNs allows to trade neurons

activation precision with latency, thus giving access to a trade-off

in terms of latency and performance. We study the effect of the

inference latency on the DnSNN performance on the Set12 dataset

for different noise levels. The PSNR and sparsity are shown in

Figure 6 as a function of the inference latency.

As expected, by reducing the latency the performance of the

DnSNN drops compared to the full-precision DnCNN. By lowering

the latency we indeed decrease the number of quantization

intervals provided by each spiking neuron. In consequence, more

quantization noise is present at the neurons outputs leading

to a decrease in the performance. Moreover, the normalized

sparsity, that is the average number of spikes generated at each

timestep decreases for longer inference latencies, suggesting that

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

the spike generation process does not scale linearly with the latency.

However, to measure the total activity generated by DnSNN one

has to consider the total amount of spikes generated during the

whole inference process. For example, we can observe that when

T = 1 each neuron generates on average 0.45 spikes per inference.

At the opposite when T = 15 each neuron fires 0.3 × 15 =

4.5 spikes per inference, thus generating a greater activity and

potentially reducing the expected energy gains. Finally, we show in

Figure 7 the denoising results for the DnSNNnetworks for different

inference latencies. As it can be observed, several artifacts are

visible in the smooth regions of the images generated using short

latency inferences, e.g., T = 1 and T = 3. Increasing the latency

smoothens the quantization artifacts that are almost invisible

when T = 15.

4.4. Comparison with multi-resolution
denoising networks

In the previous sections, we have assessed the performance

of the ATIF neuron for the DnCNN architecture. DnCNN is

a particular form of autoencoder which does not modify the

dimensions over the layers. Here, we analyze the performance of

the ATIF neuron model for the particular case of a multi-resolution

denoising convolutional autoencoders, that we call CAE-F and

CAE-S for the formal and spiking version respectively. The CAE

denoiser is composed of 8 convolutional layers, each composed

of 64 filters. The first and the last convolutional layers do not

modify the input dimensions as in DnCNN. At the opposite,

the intermediate layers first down-sample then up-sample the

inputs therefore generating a bottleneck in the middle of the

network. Specifically, the second, third and fourth layers down-

sample the inputs, each by a factor of two. This is achieved

using normal convolutions with a stride of two. The following

layers up-sample their respective inputs in order to obtain, at

the output of the seventh layer, the same dimension of the input

image. The up-sampling operation is achieved using fractionally-

strided convolutions with a stride of two. Each convolutional

layer is followed by a ReLU activation function, in the CAE-

F configuration, and by an ATIF spiking neuron, in the CAE-

S configuration. The experimental results of both networks for

two noise levels are shown in Table 3. As we can observe,

due to the reduced depth of the CAE networks the denoising

performance are lower compared to both original DnCNN and

DnSNN. However, the performance difference between CAE-F

and CAE-S, measured by 1PSNR, is similar to that previously

observed for DnCNN for the same noise levels. As shown in

Table 1, for a noise level σ = 25, the performance gap between

DnCNN and DnSNN is 0.25 dB on the Set12 dataset. On the

same dataset and for the same noise level the performance gap

between CAE-F and CAE-S is 0.21 dB. The same trend can also

be observed for the BSD68 dataset and with different noise levels

on the input images. These results suggest that the proposed

spiking neuron model is able to minimize the quantization error,

therefore limiting the performance gap between CNN and SNN,

even for multi-resolution networks with dimensionality reduction

over the layers.

TABLE 3 The average PSNR (dB) results of CAE-F and CAE-S on the Set12

and BSD68 datasets for two di�erent noise levels.

CAE-F CAE-S CAE-F
vs.

CAE-S

Set12

PSNR
[dB]

PSNR
[dB]

θ/T 1PSNR
[dB]

σ = 15 31.32 31.24 0.34 0.08

σ = 25 28.45 28.24 0.35 0.21

BSD68

σ = 15 30.51 30.48 0.35 0.03

σ = 25 27.65 27.53 0.37 0.12

The results for CAE-S are given for T = 8 timesteps. The normalized sparsity of CAE-S is also

reported.

4.5. Comparison with other SNN-based
image denoising methods

To highlight the benefit of the ATIF spiking neuron model

discussed in Section 3.2, we compare the previous results obtained

with the SNN-based image denoising solutions introduced in

Castagnetti et al. (2023a). Here, two different SNNs are developed

for the task of image denoising and tested on the same benchmark

dataset. The first network, that we call DnSNN-LIF is similar to

our DnSNN, but the ReLU activation functions are replaced with

Leaky Integrate and Fire (LIF) neurons. In this implementation

the spiking neuron parameters (e.g., Vth, τ) are fixed at the design

stage and only the weights and the biases of the neural networks are

learned during training. The second network, called DnSNN-Rate

shares a similar architecture with DnSNN-LIF, but uses rate-coded

images as input. In the rate coding scheme each pixel with intensity

xi is first normalized between [0, 1] and then converted into a spike

train with rate ri. In this coding scheme, each spike train is an

independent realization of a Poisson process with rate ri. The PSNR

and the sparsity as a function of the inference latency are shown in

Figure 8.

As it can be observed, the higher the inference latency T for

each DnSNN, the better the PSNR. However, the PSNR is on

average 1 dB lower for DnSNN-LIF compared to DnSNN with

ATIF neurons. As this result suggests, LIF neurons introduce

more quantization noise compared to the proposed model. In

fact, as shown in Castagnetti et al. (2023a), the LIF neurons

implement a non-uniform quantization scheme, where the size

of each quantization step depends on the leakage current. As a

result, the non-uniform quantization scheme that emerges from

the LIF neuron generates more distortion, thus a lower SQNR

compared to the ATIF model. Moreover, the parameters of the

spiking neurons in DnSNN-LIF cannot bemodified during training

and the quantization noise cannot be further reduced. On the

other hand, in the rate conversion scheme the PSNR increases

with a logarithmic shape as a function of T. However, due to the

stochastic nature of the generation process, a significant amount

of information is lost during the conversion of pixels into spike

trains. In consequence, DnSNN-Rate produces a PSNR which is

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

FIGURE 7

DnSNN Gaussian denoising results of the image butterfly with noise level 50 for di�erent number of timesteps. The latency is shown in parenthesis.

(A) Noisy/14.14 dB. (B) DnSNN(1)/24.5 dB. (C) DnSNN(3)/25.32 dB. (D) DnSNN(7)/26.32 dB. (E) DnSNN(11)/26.39 dB. (F) DnSNN(15)/26.55 dB.

FIGURE 8

The average PSNR (dB) and the normalized sparsity (θ/T) of

DnSNN-ATIF, DnSNN-LIF, and DnSNN-Rate on the Set12 dataset for

noise levels σ = 25 and T ∈ [1, 12] timesteps.

almost 8 dB lower compared to the other SNNs. We can also

observe, that the specific quantization scheme of the LIF neuron

generates more spikes compared to the ATIF model. For example,

for T = 10, each LIF neuron generates on average 0.54× 10 = 5.4

spikes per inference, while the ATIF neuron only emits 0.3× 10 =

3, so almost 80% less activity. The same observation holds for

the rate coding scheme, where spikes are generated at an almost

linear rate.

4.6. Comparison with quantized ANN

In the last sections, we have compared the performance of

DnSNN with an FP implementation of DnCNN. As previously

discussed, using an FP representation for the neurons activations

does not introduce any measurable quantization noise in the

network. So, to make a fair comparison, we train DnCNN using

a Quantization-Aware-Training technique called LSQ (Esser et al.,

2020). In the following, we call this network q-DnCNN. It is

worth noticing that only the DnCNN neurons activations are

quantized. The weights, biases and the other networks parameters

are still coded using FP representation in both q-DnCNN and

DnSNN. In q-DnCNN each neuron’s ReLU activation is replaced

with the discretized version of the same function. The number of

quantization levels is fixed before training, specifying the number

of bits (bitwidth) used to map real numbers to a set of discrete

values. As an example, using a 4-bit quantization the outputs

of the neurons are mapped to 24 = 16 different quantization

levels. Using low-precision representations one can therefore trade

performance with computational and memory costs, similarly to

the latency-performance trade-off offered by SNNs. Moreover, LSQ

provides a method to learn the quantization step-size (the width

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

TABLE 4 The average PSNR (dB) of a quantized DnCNN (q-DnCNN) and

DnSNN on the Set12 dataset for a σ = 25 noise level.

q-DnCNN DnSNN 1PSNR
[dB]

Bitwidth
(b)

PSNR
[dB]

T PSNR
[dB]

1 28.25 1 28.74 0.49

3 30.04 7 29.99 0.05

4 30.23 15 30.18 0.05

Each configuration of bitwidth and T leads to the same number of quantization intervals in

both networks.

of a quantization bin) during training. By minimizing the SQNR,

LSQ provides state of the art performance on complex image

classification tasks even for very low-precision networks, e.g., 2-

bit quantization (Esser et al., 2020). LSQ is therefore similar to

the trainable quantization method described in Section 3.2 for

spiking neurons. The spiking neuron model described in Section

3.1, provides T+1 quantization intervals for an inference latency T

(Castagnetti et al., 2023b), we therefore expect similar results when

quantizing the DnCNN activations using the following bitwidth:

b = log2(T + 1) (21)

The experimental results are shown in Table 4. As it can be

seen, DnSNN and q-DnCNN provide almost the same PSNR when

the neurons activations quantization follows the relation given in

Equation (21). In conclusion, DnSNN can reach the performance of

a full-precision network like DnCNN and match the performance

of the quantized version of the same network, q-DnCNN. Even if

these networks perform similarly, the mechanisms underlying their

operations are quite different: SNNs use multiple time-steps and

sparse synaptic operations to perform their task, while ANNs use

single time-step dense computations. In the following section, we

explore the performance-energy trade-off that both networks offer

in the context of the denoising task.

4.7. Energy e�ciency

The metric introduced in Lemaire et al. (2022) is used to

estimate the energy consumption of both DnCNN and DnSNN.

This metric provides an hardware-independent way of estimating

the energy consumption by taking into account the synaptic

operations, memory accesses, and element addressing. The model

takes into account the network architecture, the number of

parameters and activations as well as the sparsity for the SNN.

It outputs the number of synaptic operations, the Read/Write

memory accesses and the operations needed to address the

memory. The energy is then computed by multiplying the energy

cost of each operation by its number of occurrences. To compute

the energy per operation we use the estimation provided by Jouppi

et al. (2021) which refers to a 45 nm process. Moreover, to estimate

the memory accesses the metric makes the assumption that each

layer of both the ANN and the SNN has its own local (non-

shared) memory. The memory, assumed to be local SRAM, stores

the parameters (weights, biases) and also serves as a buffer for the

activations of each layer. In the case of SNN the memory also stores

the membrane potentials of the spiking neurons. An input image of

size 256× 256 is considered for all the following results.

4.7.1. Latency/energy trade-o�
Based on the results presented in Section 4.3, we discuss

the latency-energy trade-off for DnSNN. Figure 9 shows the

energy consumption of DnSNN as a function of the latency, T.

As a reference, the energy consumption of DnCNN, which is

independent of the parameter T, is also shown.

As it can be observed, the energy consumption of DnSNN

increases for longer inference latencies. As discussed in Section

4.3, the longer the latency the higher the activity, that is the

number of spikes generated during the inference process. As SNNs

are event-driven, synaptic operations as well as the associated

memory accesses are indeed triggered upon the reception of

spikes. Therefore, the lower the total number of spikes the lower

the energy consumption. It can also be observed that the total

energy consumed by synaptic operations for DnSNN is one to two

order of magnitude lower compared to DnCNN. This outcome

was expected according to what is often reported in the SNN

literature (Sengupta et al., 2019). For spiking neurons, each synaptic

operations requires an addition of the weights into the membrane

potential instead of the costly multiply-accumulate operation

required by ANNs, thus explaining the energy reduction for these

operations. However, we can observe that the energy consumption

is completely dominated by the memory accesses. This fact has

already been observed in previous works (Lemaire et al., 2022) for

classification tasks using different neural network architectures. For

the DnSNN architecture, the memory access cost is particularly

high. This is due to the amount of memory accesses needed by

this particular architecture. The neural architecture presented in

Zhang et al. (2017) and used in this work, is a particular form

of autoencoder where there is no data dimensionality reduction

throughout the layers. This makes the memory requirement for

storing the membrane potentials particularly high. We can observe

that DnSNN consumes less energy than DnCNN only for T = 1

timesteps. Specifically DnSNN consumes 24.4 · 109 nJ compared to

28.1 · 109 nJ for DnCNN, a 15% reduction in energy consumption.

However, for higher latency the energy consumption of DnSNN

increases, making it less energy efficient compared to DnCNN. As

an example, for T = 2 DnSNN consume almost 30% more energy

than DnCNN.

The previous results suggests that to obtain an energy efficiency

improvement for a given neural network architecture, one has

to reduce not only the inference latency, but also the amount of

spikes generated during the inference by the SNN network, so

the sparsity. In this section, we analyze the energy efficiency by

comparingDnCNN andDnSNN for a given network configuration,

i.e., number of layers and parameters. In the next section, we study

the impact of the network configuration in terms of number of

parameters on the energy efficiency.

4.7.2. Network size/energy trade-o�
Here, we investigate the impact of the network size on the

DnSNN energy efficiency, specifically we modify the original

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

FIGURE 9

Energy consumption estimation of DnSNN for di�erent inference latencies. The energy consumption of DnCNN, which is independent on the

number of timesteps, is also reported. Energies are shown in log-scale.

TABLE 5 The average PSNR (dB) results of DnSNN on the Set12 dataset

for a noise level of 25 and four di�erent configurations of network size.

Nb. filters q-DnCNN DnSNN

PSNR [dB] PSNR [dB] θ/T

64 28.25 29.11 0.422

96 28.89 29.13 0.407

128 29.25 29.21 0.366

160 29.4 29.44 0.342

DnSNN is trained with T = 2 and q-DnCNN with b = 1.

DnCNN architecture and increase the number of filters per layer.

We train both DnCNN and DnSNN with the following number of

filters per layer: [64, 96, 128, 160]. The base model described in the

previous section has 64 filters per layer. The PSNR and the sparsity

for each configuration are reported in Table 5 for a noise level of 25

and T = 2.

In Table 5, it can be seen that as the network size increases

the performance and the sparsity of DnSNN improve. Moreover,

by observing the energy consumption curves shown in Figure 10

we can notice that as the network size grows both the energy

consumption of DnCNN and DnSNN increases.

However, for larger networks and thanks to the sparsity, the

total amount of memory accesses is now lower for DnSNN than

for DnCNN. As an example, with 128 filters per layer, DnSNN

consumes 173 · 109 nJ compared to the 220 · 109 nJ of DnCNN,

that is more than 20% energy gain. This gain becomes greater as

the network grows, e.g., almost 40% in favor of DnSNN with 160

filters per layer.

In conclusion our results indicate that, unlike what is often

assumed in the SNN research, the sole reduction of the energy

consumption of synaptic operations provide an energy advantage

for SNNs only for very small inference latencies, in our case

only when T = 1. When memory costs dominate the energy

budget, increasing the latency above few timesteps hinders the

energy efficiency of SNNs. However, the effect of the sparsity is

more pronounced for larger networks. The dense computation

performed by the ANN requires accessing all the weights and

activations in each layer, which causes an almost linear increase of

the memory accesses. In SNNs, the memory accesses also grow but

at a smaller pace thanks to the sparsity which results in an energy

efficiency improvement.

5. Discussion and further
improvements

In this work, we propose a method for training deep Spiking

Neural Networks for the task of image denoising. To the best of

our knowledge, this is the first work that addresses the problem of

training deep SNNs for such a task. Image denoising is particularly

difficult to deal with SNNs due to the challenge of predicting

continuous values using the discretized representation of the

information provided by the spikes.

Our results show that when taking into account the

quantization noise introduced by the spiking neurons during

training, it is then possible to separate noise from noisy

observations with a performance level very close to a full-precision

non-spiking ANN. In particular, our best results show that our

proposed spiking denoising network, called DnSNN, achieves

31.593 dB of signal-to-noise-ratio on BSD68 dataset with noise level

15, which is only 0.137 dB below the performance of DnCNN.

Similar results are also achieved for different noise levels and

datasets, highlighting the robustness of DnSNN.We also report the

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

FIGURE 10

Energy consumption estimation of DnSNN and DnCNN for di�erent network sizes. Both networks are trained with a noise level of 25. Here, T = 2 for

DnSNN.

latency and the sparsity of DnSNN and show that our best results

are achieved with low-latency.

Finally, we provide an energy efficiency estimation of DnSNN,

using an analytical model (Lemaire et al., 2022) that takes into

account both the energy cost of synaptic operations and the

memory access. Our results confirm that SNNs are indeed more

energy efficient when considering only synaptic operations, but

their energy efficiency is reduced when the energy consumption

is dominated by the memory accesses. These results suggest

that besides latency, another important parameter that has to be

optimized to improve the energy efficiency is the sparsity of the

network, or equivalently the number of spikes generated during an

inference. Finally, we also show that with a given level of sparsity,

imposed by the network architecture and the particular task, SNNs

energy efficiency could increase when the network size increases.

This fact suggests that larger neural network architectures could

potentially benefit from the event-based and sparse computing

mechanisms provided by the SNNs compared to smaller ones.

Our network is trained using surrogate gradient and back-

propagation in the spike domain. This training strategy, even if

effective has some drawbacks. Since time is taken into account

during the training phase, inputs and gradients must be propagated

for T timesteps during the forward and backward passes, making

the overall process very costly in terms of computation and

memory. Forward-propagation-through-time (FPTT) has recently

been proposed (Kag and Saligrama, 2021) as an alternative to

BPTT for training recurrent networks. This method can be used

for training SNNs that are a particular class of recurrent networks.

FPTT could help alleviate the memory cost of training, since the

gradients are back-propagated at each timestep. Moreover, FPTT

could also be useful to reduce the exploding and vanishing gradient

problems that affect recurrent networks in general as well as SNNs.

Finally, in our work we did not consider the problem of

quantizing the network parameters like the weights, biases and

membrane potentials. However, we believe that this is an important

subject that has to addressed in the future, notably to reduce

the amount of memory needed in SNNs to store the membrane

potentials of the spiking neurons.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://www2.eecs.berkeley.edu/Research/

Projects/CS/vision/bsds/.

Author contributions

AC developed the methods, under the supervision of AP and

BM. All authors contributed to the article and approved the

submitted version.

Funding

This work has been supported by the French government

through 3IA Côte d’Azur Institute, reference ANR-19-P3IA-0002

and CNRS Innovation.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Castagnetti et al. 10.3389/fnins.2023.1224457

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abderrahmane, N., Lemaire, E., andMiramond, B. (2020). Design space exploration
of hardware spiking neurons for embedded artificial intelligence. Neural Netw. 121,
366–386. doi: 10.1016/j.neunet.2019.09.024

Bu, T., Ding, J., Yu, Z., and Huang, T. (2022). “Optimized potential initialization
for low-latency spiking neural networks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 11–20.

Castagnetti, A., Pegatoquet, A., and Miramond, B. (2023a). Neural information
coding for efficient spike-based image denoising. arXiv preprint arXiv:2305.11898.

Castagnetti, A., Pegatoquet, A., and Miramond, B. (2023b). Trainable
quantization for speedy spiking neural networks. Front. Neurosci. 17, 1154241.
doi: 10.3389/fnins.2023.1154241

Cha, S., and Moon, T. (2019). “Fully convolutional pixel adaptive image denoiser,”
in 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (Seoul: IEEE),
4159–4168.

Comşa, I.-M., Versari, L., Fischbacher, T., and Alakuijala, J. (2021).
Spiking autoencoders with temporal coding. Front. Neurosci. 15, 712667.
doi: 10.3389/fnins.2021.712667

Deng, S., Li, Y., Zhang, S., and Gu, S. (2022). “Temporal efficient training of spiking
neural network via gradient re-weighting,” in International Conference on Learning
Representations.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015).
“Fast-classifying, high-accuracy spiking deep networks through weight and threshold
balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN), 1–8.

Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., and Modha, D. S. (2020).
Learned step size quantization. arXiv preprint arXiv:1902.08153.

Fang, W., Chen, Y., Ding, J., Chen, D., Yu, Z., Zhou, H., et al. (2020). Spikingjelly.
Available online at: https://github.com/fangwei123456/spikingjelly (accessed May 15,
2023).

Gu, S., Zhang, L., Zuo, W., and Feng, X. (2014). “Weighted nuclear norm
minimization with application to image denoising,” in 2014 IEEE Conference on
Computer Vision and Pattern Recognition (Columbus, OH: IEEE), 2862–2869.

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2021). Neural coding in
spiking neural networks: a comparative study for robust neuromorphic systems. Front.
Neurosci. 15, 638474. doi: 10.3389/fnins.2021.638474

Guo, Y., Chen, Y., Zhang, L., Liu, X., Wang, Y., Huang, X., et al. (2022a). “IM-loss:
information maximization loss for spiking neural networks,” in Advances in Neural
Information Processing Systems, eds A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho.

Guo, Y., Chen, Y., Zhang, L., Wang, Y., Liu, X., Tong, X., et al. (2022b). “Reducing
information loss for spiking neural networks,” in Computer Vision—ECCV 2022, eds S.
Avidan, G. Brostow,M. Cisse, G.M. Farinella, and T. Hassner (Cham: Springer Nature),
36–52.

Guo, Y., Tong, X., Chen, Y., Zhang, L., Liu, X., Ma, Z., et al. (2022c). “RecDis-
SNN: rectifying membrane potential distribution for directly training spiking neural
networks,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (New Orleans, LA: IEEE), 326–335.

Jia, X., Liu, S., Feng, X., and Zhang, L. (2019). “FOCNet: a fractional optimal control
network for image denoising,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (Long Beach, CA: IEEE), 6047–6056.

Jouppi, N. P., Hyun Yoon, D., Ashcraft, M., Gottscho, M., Jablin, T. B., Kurian, G.,
et al. (2021). “Ten lessons from three generations shaped Google’s TPUv4i: industrial
product,” in 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 1–14.

Kag, A., and Saligrama, V. (2021). “Training recurrent neural networks via forward
propagation through time,” in Proceedings of the 38th International Conference on
Machine Learning (PMLR), 5189–5200.

Kim, S., Park, S., Na, B., and Yoon, S. (2020). “Spiking-YOLO: spiking neural
network for energy-efficient object detection,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 11270–11277.

Kim, Y., Li, Y., Park, H., Venkatesha, Y., and Panda, P. (2022). “Neural architecture
search for spiking neural networks,” in Computer Vision—ECCV 2022, eds S. Avidan,
G. Brostow, M. Cisse, G. M. Farinella, and T. Hassner (Cham: Springer Nature),
36–56.

Lemaire, E., Cordone, L., Castagnetti, A., Novac, P.-E., Courtois, J., and Miramond,
B. (2022). “An analytical estimation of spiking neural networks energy efficiency,” in
International Conference on Neural Information Processing (ICONIP), ed Springer (ITT
Indore), 8.

Li, C., Ma, L., and Furber, S. (2022). Quantization framework for fast spiking neural
networks. Front. Neurosci. 16, 918793. doi: 10.3389/fnins.2022.918793

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. (2021). “A free lunch
from ANN: towards efficient, accurate spiking neural networks calibration,” in
Proceedings of the 38th International Conference on Machine Learning (PMLR),
6316–6325.

Nao, S., and Wang, Y. (2022). Speckle noise removal model based on diffusion
equation and convolutional neural network. Comput. Intell. Neurosci. 2022, 5344263.
doi: 10.1155/2022/5344263

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Roth, S., and Black, M. (2005). “Fields of Experts: a framework for learning image
priors,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), 860–867.

Roy, D., Panda, P., and Roy, K. (2019). Synthesizing images from spatio-
temporal representations using spike-based backpropagation. Front. Neurosci. 13, 621.
doi: 10.3389/fnins.2019.00621

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95.
doi: 10.3389/fnins.2019.00095

Wang, S., Cheng, T. H., and Lim, M.-H. (2022). “LTMD: learning improvement of
spiking neural networks with learnable thresholding neurons and moderate dropout,”
in Advances in Neural Information Processing Systems, Vol. 35, eds S. Koyejo, S.
Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Curran Associates, Inc.),
28350–28362.

Wu, B., Keutzer, K., Dai, X., Zhang, P., Wang, Y., Sun, F., et al. (2019). “FBNet:
hardware-aware efficient ConvNet design via differentiable neural architecture search,”
in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(Long Beach, CA: IEEE), 10726–10734.

Yamamoto, K. (2021). Learnable companding quantization for accurate low-bit
neural networks. arXiv preprint arXiv:2103.07156.

Young, S., Wang, Z., Taubman, D., and Girod, B. (2021). “Transform quantization
for CNN compression,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1.

Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2017). Beyond a Gaussian
denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image
Process. 26, 3142–3155. doi: 10.1109/TIP.2017.2662206

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1224457
https://doi.org/10.1016/j.neunet.2019.09.024
https://doi.org/10.3389/fnins.2023.1154241
https://doi.org/10.3389/fnins.2021.712667
https://github.com/fangwei123456/spikingjelly
https://doi.org/10.3389/fnins.2021.638474
https://doi.org/10.3389/fnins.2022.918793
https://doi.org/10.1155/2022/5344263
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2019.00621
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1109/TIP.2017.2662206
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	SPIDEN: deep Spiking Neural Networks for efficient image denoising
	1. Introduction
	2. State of the art
	3. Methods
	3.1. Information coding with spiking neurons
	3.2. Improving compression through trainable quantization and surrogate gradient learning
	3.2.1. Threshold scaling and gain compensation
	3.2.2. Learning the spiking neuron parameters - the ATIF neuron model

	4. Experiments and results
	4.1. Experimental setting
	4.2. Quantitative and qualitative image denoising evaluation
	4.2.1. Gaussian denoising
	4.2.2. Speckle denoising

	4.3. Latency/performance trade-off
	4.4. Comparison with multi-resolution denoising networks
	4.5. Comparison with other SNN-based image denoising methods
	4.6. Comparison with quantized ANN
	4.7. Energy efficiency
	4.7.1. Latency/energy trade-off
	4.7.2. Network size/energy trade-off

	5. Discussion and further improvements
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

