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Information on regional variation in cell numbers and densities in the CNS 
provides critical insight into structure, function, and the progression of CNS 
diseases. However, variability can be real or a consequence of methods that 
do not account for technical biases, including morphologic deformations, 
errors in the application of cell type labels and boundaries of regions, errors of 
counting rules and sampling sites. We address these issues in a mouse model 
by introducing a workflow that consists of the following steps: 1. Magnetic 
resonance histology (MRH) to establish the size, shape, and regional morphology 
of the mouse brain in situ. 2. Light-sheet microscopy (LSM) to selectively label 
neurons or other cells in the entire brain without sectioning artifacts. 3. Register 
LSM volumes to MRH volumes to correct for dissection errors and both global 
and regional deformations. 4. Implement stereological protocols for automated 
sampling and counting of cells in 3D LSM volumes. This workflow can analyze 
the cell densities of one brain region in less than 1 min and is highly replicable in 
cortical and subcortical gray matter regions and structures throughout the brain. 
This method demonstrates the advantage of not requiring an extensive amount 
of training data, achieving a F1 score of approximately 0.9 with just 20 training 
nuclei. We report deformation-corrected neuron (NeuN) counts and neuronal 
density in 13 representative regions in 5 C57BL/6J cases and 2 BXD strains. 
The data represent the variability among specimens for the same brain region 
and across regions within the specimen. Neuronal densities estimated with our 
workflow are within the range of values in previous classical stereological studies. 
We demonstrate the application of our workflow to a mouse model of aging. 
This workflow improves the accuracy of neuron counting and the assessment of 
neuronal density on a region-by-region basis, with broad applications for studies 
of how genetics, environment, and development across the lifespan impact cell 
numbers in the CNS.
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1. Introduction

Accurate counts of neurons are essential metrics for understanding 
the structure and function of the brain (Bonthius et  al., 2004; 
Herculano-Houzel and Lent, 2005). This is particularly important for 
pre-clinical studies of human disease, as it provides a necessary starting 
point for assessing neurodegenerative changes on a regional basis 
(Price et al., 2001; Rosen and Williams, 2001; Bandeira et al., 2009). In 
addition to absolute counts, measuring neuron density can provide 
important insights into the structural complexity of local circuits. The 
distribution of neurons in the mouse brain on a region-by-region basis 
is also crucial for understanding variation between individuals and 
strains. The density of neurons can reflect the distinctive 
cytoarchitecture of brain regions, including laminar organization, size 
and shape of constituent neurons, and the volume and composition of 
associated neuropil (Wree et al., 1982; Spocter et al., 2012; Kasthuri 
et al., 2015). Furthermore, assessing neuronal densities in targeted 
brain regions under varying conditions may reveal impacts that change 
the composition of neuropil with or without associated loss (or gain) 
of neuronal cell bodies (Amunts et al., 1996; Selemon and Goldman-
Rakic, 1999). The heterogeneity of neuronal density within a given 
region can provide insights into the complexity, developmental history, 
and functional diversity of the region (Peters et al., 1991). Establishing 
such datasets enables pre-clinical studies of the impact of genetics, 
environment, and development across the lifespan on brain structure.

To investigate cells numbers and densities in CNS, researchers have 
developed various quantitative methods, including several stereological 
approaches (Williams and Rakic, 1988; West, 1999; von Bartheld, 2002; 
Schmitz and Hof, 2005; Deniz et al., 2018) and approaches that first 
homogenize brain tissue and dissociate brain cells (Herculano-Houzel 
and Lent, 2005; Collins et al., 2010; Young et al., 2012). Stereology is a 
quantitative method for estimating the three-dimensional characteristics 
of biological structures using two-dimensional histological sections or 
images and systematic random sampling within delineated brain regions. 
In traditional approaches to stereology, the specimen is preserved by 
means of chemical fixation, the brain is removed from skull, sectioned 
into thin slices (usually 5–50 μm thick), and stained with specific dyes to 
highlight different cell types. The sections are then viewed under a 
microscope, and measurements are taken to estimate the cell numbers 
within delineated brain regions. Both 3D counting and the optical 
fractionation are alternatives to traditional stereological methods 
introduced by Abercrombie (1946, reviewed in Rosen and Williams, 
2001) that is design-based in its approach to sampling a volume of tissue, 
counting targeted objects (e.g., neurons), and generating statistics that 
assess the precision of the counts (West, 1999). These methods are 
considered unbiased, but still can suffer from bias due to differential 
z-axis shrinkage and variable penetration of stains. By providing a less 
biased estimate of structural parameters, these modern stereological 
methods have contributed significantly to our understanding of many 
biological systems. However, there are some limitations. Stereological 
methods require extensive preparation of tissue and the use of 
microtomes to produce thin tissue sections. This can introduce damaging 
artifacts, lost sections, and distortions, even in the hands of experts. The 
results are sensitive to a range of factors, including the choice of chemical 
fixation, the post-fixation treatment of the specimens, the specific 
histological protocols used, and the specific features of the design-based 
approach to sampling and counting. Thus, it has be difficult to determine 
the accuracy of the measurements obtained in tissue that was subject to 

such deformation and the range of operational variables employed. 
Finally, stereological analysis can be a laborious and time-consuming 
process (Bonthius et al., 2004). When multiple brain regions are analyzed, 
the time and effort required can increase significantly, and the manual 
aspect of the process can introduce additional sources of variability.

In contrast, the isotropic fractionator (IF) involves homogenizing 
a small tissue sample from a region of interest—or the entire brain —
and processing it into a uniform suspension of cells. The cells are then 
stained with a dye and placed into a special counting chamber, where 
the number of cells in a known volume is counted under a microscope 
(Herculano-Houzel and Lent, 2005), or by the flow cytometry (Collins 
et al., 2010; Young et al., 2012). The total number of cells in the brain 
region can then be estimated by extrapolating the cell density from the 
counting chamber to the reported or measured volume of the entire 
brain region. The downsides to isotropic fractionator are similar to 
stereology. One limitation is that both IF and stereology use the brain 
which is taken out of the skull and processed, introducing swelling 
and/or shrinkage, which can affect the accuracy of volume estimation.

Light sheet microscopy (LSM) has emerged as a powerful tool for 
3D visualization of targeted populations of cells in intact, cleared tissue 
samples using fluorescent immunocytochemistry. Recent advances in 
tissue clearing (Ueda et al., 2020) have enabled the capture of high-
quality, countable images in the whole-brain using LSM (Hillman et al., 
2019). These intact 3D volumes can then be used for accurate counting 
of neurons and assessing neuronal densities, providing a more 
comprehensive and representative view of the brain region of interest. 
Typically, the whole brain images are registered to a standard reference 
atlas, such as the Waxholm Space Atlas (WHS) (Johnson et al., 2010) or 
the Allen Brain Atlas (ABA) (Wang et al., 2020). The combination of the 
digital images and the standard reference atlas facilitates the segmentation 
of regions and correction of altered brain morphology, allowing for 
comparison of neuron numbers and density within and across studies.

Researchers have employed this approach of registering LSM to 
WHS or ABA atlases in a number of recent studies (Susaki et al., 2014; 
Menegas et al., 2015; Renier et al., 2016; Zhang et al., 2017; Krupa 
et al., 2021). Susaki et al. (2014) mapped LSM to WHS space but did 
not proceed with cytometric quantitative analysis. The remaining 
studies mapped the LSM images to ABA space for analysis. ClearMap, 
as described by Renier et al. (2016), utilizes a peak detection algorithm 
with a threshold determined by comparing manual and machine 
counting, which may not yield optimal results when applied to 
complex and heterogeneous neuron distributions. Zhang et al. (2017) 
employed L1 minimization (Lasso), a machine learning regression 
method, to detect neurons in the whole brain. However, this method 
assumes sparsity of objects and a linear relationship between input 
features and output variables, with all features equally important, 
which may not hold true in the case of heterogeneous neuron 
distributions. Krupa et al. (2021) used a 3D Unet for cell detection, but 
these deep learning methods require large inputs and considerable 
training time compared to other machine learning methods. Menegas 
et al. (2015) utilized Ilastics1 to segment cells in eight brain regions, 
with separate training for each region.

Registration of LSM images obtained from mouse brains to ABA 
space for correcting deformation and quantitatively segmenting brain 

1 https://www.ilastik.org
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structures and regions has one fundamental deficiency. The ABA atlas 
was generated from multiple specimens that were imaged after the 
brains were removed from the skulls (Wang et al., 2020). The lack of 
skull support and the effects of processing will deform the brain. 
Furthermore, ABA assembled their atlas from 1,600 animals, which 
were registered into a volume that does not conform to the size and 
morphology of the in situ mouse brain—as we  demonstrate in 
this work.

We present a novel approach that is highly reproducible and 
allows efficient counting across the whole brain. Our method 
utilizes magnetic resonance histology (MRH), an extension of MRI 
to microscopic resolution of fixed tissue specimens (Johnson et al., 
1993). MRH images are acquired with the brain inside the skull, 
resulting in a representation that more closely approximates the 
size and morphology of the in vivo brain (Johnson et al., 2023), as 
compared to reconstructions from histological methods that 
require cranial dissection, serial sectioning of the brain, and 
chemical treatment of thin brain sections. As a result, MRH images 
can serve as the “gold standard” for correcting ex situ brain 
morphology. Our workflow offers a powerful combination of 
morphological correction based on MRH, machine learning-based 
neuron classification, and post-processing. It provides accurate 
and detailed neuron counts and calculations of neuronal density, 
which can be  readily derived from different brain regions and 
specimens. Our method features a large, well-defined field of view 
in 3D, which allows for a comprehensive analysis of an entire 
subvolume under study. Moreover, our workflow applies the 
principles of optical fractionation to systematically sample and 
count neuron numbers in 3D volumes, which reduces the 
computational costs and represents a novel digital approach not 
previously explored.

2. Materials and methods

2.1. Specimens

Two groups of animals were used to test the methods (see Table 1). 
The first group included 5 C57BL/6 J mice (4 male and 1 female) that 
were sacrificed at 90 ± 3 days to test the consistency of the counts and 
provide measures that could be related to existing literature. A second 
experiment with BXD89 mice included two male specimens at 111 
and 687 days to test the sensitivity of the method to changes in 
neuronal density arising from aging. The mice were obtained from 
independent litters. The BXD strains are a set of well-characterized 

recombinant inbred mouse strains, making them a valuable tool for 
systems genetics studies (Ashbrook et al., 2021).

2.2. MRH, label map and LSM scanning

All animal procedures were carried out in accordance with 
guidelines approved by the Duke Institutional Animal Care and Use 
Committee. Specimens were perfusion-fixed using an active staining 
method as previously described (Johnson et al., 2019). Briefly, warm 
saline was perfused through a catheter in the left ventricle to 
exsanguinate, followed by ~5 min of perfusion (50 mL) of a mixture of 
10% buffered formalin and 10% Prohance (Gadoteridol) to reduce the 
spin lattice relaxation time (T1) of the tissue for accelerated scanning. 
MRH scanning was performed on a 9.4 T vertical bore magnet with a 
Resonance Research, Inc., gradient coil yielding peak gradients up to 
2,500 mT/m, controlled by an Agilent console running VnmrJ 4.0. The 
MRH scanning was performed using a Stesjkal Tanner spin echo 
sequence with b values of 3,000 s/mm2 and 108 angular samples 
spaced uniformly on the unit sphere. Compressed sensing (Lustig 
et al., 2007) was used with a compression factor of 8X (Wang et al., 
2018), resulting in a large (252 GB) 4D volume with isotropic 
resolution of 15 µm (Johnson et al., 2023).

The label map in this study is based on a modified version of the 
Common Coordinate Framework (CCFv3) (Johnson et  al., 2023) 
from ABA (Wang et al., 2020). The CCFv3 atlas includes 461 carefully 
curated regions of interest (ROIs). Our workflow relies on an initial 
mapping of labels from our canonical MRH atlas of a 90-day male 
C57BL/6 J mouse to the MRH of the specimen under study using a 
pipeline built around Advanced Normalization Tools (ANTs) (Avants 
et al., 2011; Anderson et al., 2019). Many of the CCFv3 ROIs are less 
than 1 mm3, including numerous subdivisions of cortical areas 
(laminae) and subcortical structures (subnuclei) that are of limited 
value within the present scope of our analyses. Accordingly, 
we reduced the label set to 360 ROI (180 per hemisphere) gray matter 
and white matter structures. This modified atlas, which we refer to as 
the reduced CCFv3 (r1CCFv3), consolidates these smaller subregions 
in CCFv3. The r1CCFv3 provides a label set that registers to the MRH 
volumes reproducibly enabling precise neuron counting within a large 
number of structures. The details of this registration process are 
described in Johnson et al. (2023).

Following the MRH scans, the brains were carefully removed from 
the skulls. Paraformaldehyde-fixed samples were preserved with using 
SHIELD reagents (LifeCanvas Technologies) using the manufacturer’s 
instructions (Park et al., 2019). Samples were delipidated using Clear+ 
delipidation reagents. Following delipidation samples were labeled 
using eFLASH technology which integrates stochastic electrotransport 
(Kim et al., 2015) and SWITCH (Murray et al., 2015). The samples 
were then washed in PBS for 7-8 h before overnight fixation in 4% 
paraformaldehyde followed by incubation in secondary labeling buffer 
at 37°C with two refreshes over the course of 7–8 h before secondary 
labeling in the SmartLabel device. For each brain, 10 μg of rabbit anti-
Iba1 (Cell Signaling Technologies 17198S*) primary antibody, 10 μg 
mouse anti-NeuN (Encor MCA-1B7), 6 μg rabbit anti-NeuN (Cell 
Signaling Technologies 24307S*), or 20 μg mouse anti-MBP (Encor 
MCA-7G7). Secondary antibodies were used at a 2:1 
Secondary:Primary molar ratio. After immunolabeling, samples were 
incubated in 50% EasyIndex (RI = 1.52, LifeCanvas Technologies) 

TABLE 1 Test specimens for neuron counting.

Specimen ID Sex Strain/Age

191209 M C57BL/6J/90 d

200302 M C57BL/6J/90 d

200316 F C57BL/6J/90 d

200826 M C57BL/6J/92 d

210823 M C57BL/6J/93 d

190108 M BXD89/111 d

200803 M BXD89/687 d
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overnight at 37°C followed by 1 d incubation in 100% EasyIndex for 
refractive index matching. After index matching the samples were 
imaged using a SmartSPIM axially-swept light sheet microscope using 
a 3.6x objective (0.2 NA) (LifeCanvas Technologies, Cambridge, MA). 
The processing streams for MRH and LSM are depicted in Figure 1A.

2.3. Automated neuron counting

2.3.1. Overview of the algorithm
To address the significant distortion introduced during skull 

removal and chemical processing in the preparation of LSM samples, 
the LSM images are first registered to the MRH volumes of the same 
specimen (Figure 1B; Tian et al., 2023). Section 3.1, accompanied by 
Figure 2, provides a detailed explanation of the impact of correcting 
the morphology and extraction of the cytometric statistics. 
We  examine the effects of the preprocessing steps on the neuron 
density measurements, providing insights into the importance of these 
steps for accurate data analysis.

The workflow is visualized in Figure 1C. After warping the LSM 
and label map to the MRH space, the user selects a region for analysis 
by inputting the corresponding label from the label map into Fiji. This 
generates a surface defining the region of the selected label, as well as 
a group of subvolumes within the surface. These subvolumes are 
distributed in a uniform but random manner, which improves the 
accuracy of neuron counting and facilitates analysis of the heterogeneity 
of neuron distribution throughout the selected region. Please note that 
subvolumes located on boundaries and containing broken tissues will 
be  automatically excluded by screening the label value of the 
subvolume. For each subvolume (Figure  1C), we  apply a lightly 
supervised algorithm called random forest neuron segmentation, 
which utilizes an ensemble of decision trees to generalize the projection 
between graphical features and labels. This algorithm is commonly 
used in image processing tasks and requires only a small amount of 
training data to perform well (Pavlov, 2000). Prior to segmentation, the 
random forest classifier is pre-trained using training data consisting of 
binary signatures, where neurons are labeled as 1 and non-neurons as 
0, as well as feature vectors extracted from various visual characteristics 
of the image, such as texture, shape, and size. The training process 
optimizes the relationship between graphical features of an image and 
the assigned neuron labels. The labeling example can be  seen in 
Supplementary Figure S1. In general, labeling approximately 20 
neurons with both the cell body and background enables the algorithm 
to learn the essential features of neurons, resulting in a commendable 
F1 score (Supplementary Section S2) of around 0.9, as illustrated in 
Supplementary Figure S2. After the random forest segmentation is 
applied to each subvolume, the workflow will perform post-processing 
on the objects classified as neurons. This post-processing uses 3D 
watershed (showcased in Supplementary Figure S3) and volume filters 
to further isolate the neurons as discrete objects. The final count of the 
neurons in each subvolume is generated based on these refined objects. 
The density is calculated by averaging densities obtained from 
subvolumes, and the standard deviation of the density provides insight 
into the variability of the neuron distribution within the region.

2.3.2. Big data environment
Whole brain LSM images are large – typically ~300 GB. To enable 

efficient, interactive development and execution of the workflow 

we have assembled a hardware/software environment suited for these 
large data. The pipeline has been implemented on two high 
performance Dell servers: Dell E5-2400, NVIDIA Tesla V100 GPU 
and a Dell E52670, NVIDIA V100 GPU. Each server has 1.5 TB 
of memory.

Several software packages have been integrated into the big data 
environment. Imaris2 is a commercial software package designed for 
interactive 3D/4D viewing of large microscopy data sets. It 
accommodates simultaneous visualization of multiple light sheet 
volumes using a hierarchical data format. Imaris has been developed 
to allow memory sharing with external packages. One of these is Fiji,3 
a distribution of Image J that has been developed for applications such 
as that envisioned here through the extensive use of plugins. One 
crucial plugin for our work is BigDataViewer (Pietzsch et al., 2015), 
an open source solution for accommodating large volumes in Fiji and 
supporting plugins for post processing. This includes LabKit (Arzt 
et al., 2022) a user friendly Fiji plugin for microscopy segmentation 
using the random forest algorithm.

2.3.3. Compiled algorithms
To improve the accuracy and efficiency of neuron counting, 

we developed two pipelines for different purposes: one for visualized 
validation and the other for production use. The initial pipeline 
(available on GitHub4) provides visualization of classification and 
segmentation performance. This algorithm is built on the coding 
interface of the image rendering software, Imaris.5 The procedures, 
from applying classifiers to obtaining statistics, are executed in the 
GUI of Imaris. Although the workflow cannot be fully automated 
through the Imaris coding interface, it can be automated through 
recording applications such as OS Automator.6 The second algorithm 
(available on GitHub7) provides an automated workflow constructed 
using Python and macros. This method utilizes Fiji macro GUIs to 
automate segmentation, 3D watershed, and region counting plugins. 
The watershed uses morphological erosion to identify the center of 
each object, followed by calculating a distance map from the object 
center points to the object edges. The resulting topological map is then 
filled with imaginary water, and dams are built at locations where two 
watersheds meet to separate them. The region counting method 
assigns unique labels to each unconnected component to facilitate 
subsequent counting. The plugin used for constructing the random 
forest model is Labkit.8 The watershed method and the 3D connected 
region counting method in the first algorithm are available in Imaris. 
The 3D watershed and 3D connected region counting method in the 
second algorithm are the Fiji/binary/watershed function and from the 
open-source plugin MorphoLibj.9

2 https://imaris.oxinst.com

3 https://fiji.sc/

4 https://github.com/YuqiTianCIVM/NeuronCounting/blob/main/Algor_

forVisualization.py

5 https://imaris.oxinst.com

6 https://support.apple.com/guide/automator/intro-to-automator-

aut6e8156d85/mac

7 https://github.com/YuqiTianCIVM/NeuronCounting/blob/main/

MainAlgor.py

8 https://imagej.net/plugins/labkit/

9 http://imagej.net/MorphoLibJ
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2.3.3.1. Imaris pipeline for visualization
The user identifies the structure to be analyzed and loads the 

surface defining that structure. A Python script generates a 
collection of 3D subregions that are randomly placed within the 

volume of the structure defined by the surface. Each counting 
subregion is a 100 μm × 100 μm × 100 μm cube. To avoid 
oversampling or undersampling in different regions and to 
accurately capture the heterogeneity, we analyzed 15 subvolumes 

FIGURE 1

Overview of the workflow for assessing the density of neurons. (A) The mouse brain is imaged using two modalities: MRH imaging while the brain is in 
the skull, followed by LSM after the brain is removed from the skull and subjected to tissue clearing. (B) The LSM data are pre-processed by registering 
to MRH correcting the deformation in brain morphology. (C) The automated workflow locates the region with the label from r1CCFv3 and generates 
random subvolumes within that region to sample, applying the design-based principles of optical fractionation. Neurons in each subvolume are 
identified via a random forest algorithm followed by 3D watershed and volume filters and counted.
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per brain region while keeping the number of subvolumes 
consistent across regions to facilitate statistical analysis. The user 
selects “Labkit” in the Fuji extension. The GUI displays the 
subregion’s volume, and the user either imports a pre-trained 
classifier or starts labeling neurons and background with binary 
labels. Supplementary Figure S1 shows representative images of the 
training process. Once a classifier has been trained, it can be saved 
for future use in other ROI or other specimens, with some 
limitations discussed below. The classification is then sent to 
Imaris. Imaris applies thresholding to the binary labels and 
generates individual surfaces based on the results. The watershed 
algorithm uses seed points to split touching surfaces. After 
approximating the size of neurons through visualization, the 
volume filter is applied, and the count is generated.

2.3.3.2. Fiji pipeline for high throughput
A Python script generates sub-regions inside the surface of the 

structure being analyzed and saves these subvolumes as individual 
TIFF files. The same Python script creates and executes a FIJI macro 
that reads the TIFF files in batches, applies the pre-trained random 
forest classifier, and performs 3D watershed. Components in the 
resulting image are labeled with different colors using the FIJI function 
“connected components labeling” and saved as a TIFF file. A second 
Python script reads these TIFF files in batches, applies volume filters, 

and generate counts of the components. The details of the volume 
filters are provided in Supplementary Section S6.

2.4. Data availability statement

Original datasets are available in a repository. The access will 
be granted upon request.

3. Results

3.1. Visualization of morphology correction

Figure  2 displays the comparison between images from an 
uncorrected and deformation-corrected whole brain light sheet 
volume. Much of the existing literature for stereology has employed 
optical light microscopy and confocal microscopy with higher 
resolution and smaller field of view than that in the whole brain 
LSM images. However, the deformation, which is dependent on the 
fixation and staining method, is likely to be similar to that presented 
in Figures 2A,C,E. The compensation of this deformation is usually 
done through the application of an isotropic correction factor, but 
this factor may be  insufficient to fully address the nonuniform 

FIGURE 2

Effect of morphology correction on light-sheet datasets. (A) A single slice from a whole-brain LSM before correction. (B) The same slice as in (A) after 
correction using MRH. Magnified axial views of auditory areas and hippocampus before (C) and after (D) correction, and coronal views of the anterior 
temporal and posterior diencephalic region (showing the amygdaloid complex) before (E) and after (F) correction. The specimen is the same on both 
sides, and the colormap is used to illustrate the contrast between before and after correction.
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deformation arising from tissue processing. Figure 2B shows the 
LSM image with morphology correction by MRH, which 
significantly reduces the irregular distortion present in the raw LSM 
images. The magnified views of the posterior cerebrum (showing 
the auditory cortex and hippocampus (Figure  2D) and LGN 
(Figure 2F)) illustrate the benefits of the morphology correction 
method in improving the quality of imaging data and segmentation 
label maps, compared to Figures 2C,E. Supplementary Figure S4 
illustrates the differences in neuron density between raw LSM and 
deformation corrected LSM for 6 brain regions. The smallest percent 
difference (calculated as the difference between raw and corrected 
density over the corrected density), observed in the primary visual 
cortex, is 7%, while the largest, observed in the subiculum, is 64%. 
These results demonstrate that deformation is not uniform 
throughout the brain.

Figures 3A,C,E displays the label-map CCFv3. Data for the ABA 
were obtained by averaging 2-photon microscopy images of 1,600 
animals. The distortions from tissue handling are not consistent across 
all 1,600 animals. Wang et al. (2020) report variability in the volume 
of the regions in their atlas ranging from 6 to 80% so tissue handling 
introduces variation. Figures 3B,D,F displays the r1CCFv3 labels with 
morphology correction by MRH. The resulting corrected label map 
provides more accurate representation of brain regions (Figure 3).

3.2. Comparison of machine counting and 
human counting

To assess the accuracy and precision of our workflow, we chose 
five brain regions with cell densities we  determined would 
be countable: Dorsal part of the lateral geniculate complex (LGd), 
Auditory area (AUD), retrosplenial area (RSP), orbital area (Orb), and 
subicular region (SUBR). We  created 15–20 3D subvolumes for 
sampling within these regions with dimensions of 1,000 μm × 1,000 
μm × 12 μm (556 × 556 × 3 voxels) for visualization in Figures 4A,B, 
and 100 μm × 100 μm × 100 μm (56 × 56 × 25 voxels) for routine 
implementation of the workflow. The random forest classifier, trained 
on a random sub volume in the auditory cortex of a specimen not 
involved in the experiment, was applied automatically to identify the 
objects to be  included. We  randomly selected 10–15 subvolumes 
within the same datasets, and an experienced researcher manually 
counted the neurons within them by labeling neurons in subvolumes 
across 3–5 specimens. We compared the results of both methods and 
found that both manual counting and the machine had overall 
performance that was comparable (Figures 4A,B). One consideration 
to note is that during the manual labeling process, the researcher was 
involved in selecting the subvolumes, which introduced potential bias. 
Although efforts were made to minimize bias and select subregions 
randomly, there may have been a tendency to choose subregions with 
visually distinguishable neurons, leading to an uneven distribution. 
That means the manual classification has a tendency to 
underestimatesthe heterogenieoty of the neuron distribution. 
However, in the subsequent machine classifier analysis, subvolumes 
were automatically generated without bias. As a result, the machine 
counts in this panel exhibit greater variability in comparison. A 
statistical comparison is shown in Figure 4D.

Supplementary Table S2 presents a comparison between the 
proposed method and other cell counting software solutions.

3.3. Neuron counting in C57BL/6J mouse 
brain

We demonstrated the use of the pipeline in counting neurons in 
13 different brain regions across 7 specimens. We  choose 
representative regions to demonstrate the capability of our workflow 
in neocortex, hippocampus, amygdala, thalamus, and brainstem. 
These regions include (1) neocortex: orbital area (Orb), auditory area 
(AUD), retrosplenial area (RSP), primary visual area (VISp); (2) 
hippocampal region: entorhinal area (ENT), subicular region (SUBR), 
field CA1 (CA1), field CA3 (CA3); (3) amygdala: basolateral 
amygdalar nucleus (BLA); (4) thalamus: dorsal part of the lateral 
geniculate complex (LGd), and the entire thalamus (Th); (5) 
brainstem: facial motor nucleus (VII), principal sensory nucleus of the 
trigeminal (PSV). Initial measurements were performed on 5, 90-day 
old male C57BL/6J specimens. The results show that neuron density 
in some regions (LGd, AUD, RSP, Orb) is quite consistent across 
specimens, and much more variable while there is a high standard 
deviation in others (PSV, VISp, TH, BLA), as indicated by the relatively 
high standard deviation of the means (Figure  5). 
Supplementary Figure S5 and Supplementary Table S1 present the 
comparison between the neuron density obtained from our workflow 
and previous studies.

To assess the variability of our measurements, we calculated the 
coefficient of variation (CV) for the density and number of neurons 
in several brain regions across different specimens 
(Supplementary Table S3). The CV for neuron density ranged from 
0.062 in CA1 to 0.333 in VII, with an average of 0.139. The CV for 
neuron number ranged from 0.06 in CA1 to 0.44 in PSV, with an 
average of 0.17. These results indicate that there is considerable 
variation in neuron density and number across individual animals, 
even within the same brain region. Notably, the regions with the 
highest CV for neuron density and number were VII (0.333) and PSV 
(0.44), respectively. This is likely to be induced by the small sizes of 
these regions. The higher coefficient of variation for small regions may 
be due to minor displacements between the placement of individual 
delineations from the labelmap and the actual neuroanatomical 
structures, as discerned in LSM, especially for brainstem regions 
where deformation was significant. Conversely, the regions with the 
lowest CV for neuron density and number were CA1 (0.062), RSP 
(0.073), AUD (0.076), Orb (0.092), CA3 (0.091), and SUBR (0.097), 
respectively. These findings underscore the importance of accounting 
for inter-individual variability when analyzing neuronal parameters 
and highlight the need for careful consideration of sample size and 
statistical power in studies of brain structure.

3.4. Illustration of aging effects on the 
neuron density and number

Figure 6 presents a comparison between one young (111 day) and 
one old (687 day) BXD89 specimen to demonstrate the application of 
our workflow to a different strain and its potential to be  used to 
examine the impact of aging on neuron density. It is important to note 
that only two animals are being assessed in this Figure and the 
standard deviation thus reflects the heterogeneity of neuron 
distribution within each brain region, which was obtained by 
analyzing mean neuronal counts within the subvolumes. Our analysis 
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revealed that in certain regions, such as the orbital area (Orb), the 
observed decrease in neuron density was primarily due to a reduction 
in the total number of neurons, while in other regions such as the 
entorhinal area (ENT) and basolateral amygdala (BLA), the observed 
decrease in density was largely attributable to regional enlargement of 
the brain during aging. These findings underscore regional variation 
and the complexity of the aging process and highlight the need for 
careful consideration of volume and cellular number when studying 
brain development across the lifespan.

4. Discussion

We present a workflow that corrects the deformation introduced 
by the chemical treatment of brain tissue for LSM and uses an 
automated algorithm for neuron segmentation and counting through 
machine learning and post-processing. To improve the accuracy of the 
results, we use the MRH of the same specimen as a reference for LSM 
image morphology, as MRH provides in-skull images of the brain that 
closely approximate the compartmental configuration and accurate 
size of the living brain. Our method offers a reliable means of 

acquiring neuron number and density and requires less human labor 
and subjective judgment than previous methods. The method exhibits 
high flexibility, as it requires a much lower amount of pre-training 
data and demonstrates efficient computational time and performance 
compared to deep learning methods, as depicted in 
Supplementary Figure S6. It is also much easier to replicate across 
multiple brain regions and specimens. By correcting raw images and 
conducting region segmentation, our method provides improved 
estimates over previous counting methods. Furthermore, by 
incorporating the principles of optical fractionation, our workflow 
provides an unbiased sampling method with equal probability to 
sample for each section with a relatively low sampling ratio 
(Supplementary Table S4), resulting in reduced computational costs 
and representing a novel digital approach that has not been 
explored before.

To validate the method, we  used the workflow to analyze 13 
regions in different divisions of 5 C57BL/6 J specimens. The results, as 
shown in Figure  5, demonstrate the variability in neuron density 
across regions within the same animal and across animals for the same 
regions. In the Supplementary materials, we conducted a systematic 
search of the literature providing neuron counts of the same regions 

FIGURE 3

Comparison of similar levels from the ABA (A,C,E) and a single specimen imaged by MRH. (B,D,F) The colormaps are different because the ABA atlas is 
shown with the full complement of 461 (CCFv3) labels and the MRH is shown with the reduced (r1CCFv3) labels in which some ROI have been 
combined.
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for comparison with our method. As our method produces regional 
neuron density as its direct output, we assessed the accuracy of our 
results in terms of density. For most cortical regions, our findings were 

consistent with those of previous studies or fell within the range of 
previously reported results. However, in some regions, e.g., LGd, PSV, 
VISp, TH, and BLA, our results showed a higher neuron density than 
what was reported in earlier studies. This is likely due to our utilization 
of the morphology-corrected space for calculating neuron density. 
This space closely approximates the volume and morphology of the 
brain confined within the skull, which may have contributed to the 
observed differences in density measurements. In certain regions 
where our density measurements were markedly different from those 
reported in previous studies, such as the facial motor nucleus, 
we  manually counted the sub-regions to validate the neuron 
distribution. Our findings indicated that the neuron distribution in 
this region was indeed sparse, with a density measurement about six 
times lower than that reported in the Blue Brain Map (BBM) (Ero 
et al., 2018). We hypothesize that this discrepancy may be due to 
differences in data quality or acquisition methods between studies. 
BBM estimated neuron counts using a transfer function and Monte 
Carlo method applied to the ABA Nissl atlas. The authors only used 
whole-brain values from literature, such as the total number of cells 
and neurons in the mouse brain, to constrain their estimates of cell 
densities in each brain region. Further investigation is required to 
elucidate the causes of the observed discrepancy. Nonetheless, our 
method, which directly measures regional neuron density, provides a 
reliable alternative to indirect methods such as those used by BBM, 
and can contribute to a more accurate appreciation of brain structure.

Our method has two limitations. In those regions in which the cell 
density is so high that the resolution of the LSM we acquired is not 
sufficient to differentiate countable cells (e.g., dentate gyrus, granule cell 
layer of cerebellar cortex), the random forest classifier and watershed 
algorithms will fail, and hence the performance hinges on the volume 
filter, which approximates the neuron count by partitioning the volumes 
of nested neurons based on the average neuron size 
(Supplementary Section S7). A second limitation is that performance is 
dependent on the quality of the raw data. In cases where the tissue 
preparation and scanning are suboptimal, the method will not function 
properly. Although the data provided by LifeCanvas, which we used for 
our study, are generally of high quality, there are occasionally regions 
with poor image quality (as shown in Supplementary Figure S7), which 

FIGURE 4

Comparison of neuron density between the machine workflow 
(A) and manual counting (B). Note that both the labeling will go 
through watershed illustrated in (C) to ensure the connected surfaces 
are separated. Standard deviation is shown in (D), representing 
statistical variations across five different 90-day C57BL/6J specimens.

FIGURE 5

Demonstration of the variation of neuron density (A) and neuron number (B) across brain regions, as well as variations across specimens. Error bars are 
standard deviations of the means. The dots indicate neuron counts from individual specimens. Region: LGd: Dorsal lateral geniculate nucleus, AUD: 
auditory area, RSP: retrosplenial area, Orb: orbital area, SUBR: subiculum, VII: facial motor cortex, PSV: trigeminal, ENT: entorhinal area, CA1: field CA1, 
CA3: field CA3, VISp: primary cortex, TH: thalamus, BLA: Basolateral amygdala.
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can limit the method’s reliability. Advanced imaging techniques such as 
expansion microscopy, as demonstrated by Wassie et  al. (2019) or 
acquisition with higher power objectives will address resolution 
questions and are likely to produce reliable and accurate counts of 
neurons using our workflow.

The application of stereology to counting cells has a venerable 
history. As acquisition methods have improved the methods to count 
cells have been adapted to the newer data. The advent of tissue 
clearing and volume light sheet imaging yield opportunities for 
significant improvement in precision and accuracy. This is 
particularly important in our studies of the mouse brain as we seek 
apply this workflow to quantitative studies of the mophological and 
cytological impacts of neurodegeneration and aging. Correction for 
tissue changes, use of a more accurate label set, and automation 
described in this work will provide crucial tools in 
quantitative neuropathology.
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FIGURE 6

Comparison of the neuron density (A) and number (B) in multiple brain regions of a young and an old BXD89 mouse, demonstrating the application of 
the workflow to a study of the impact of aging on neuronal populations in a different strain. The error bars in this figure represent the standard 
deviation of neuron distribution within each region, obtained from subvolumes.
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