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The development of automatic methods for image and video quality assessment

that correlate well with the perception of human observers is a very challenging

open problem in vision science, with numerous practical applications in

disciplines such as image processing and computer vision, as well as in the media

industry. In the past two decades, the goal of image quality research has been to

improve upon classical metrics by developing models that emulate some aspects

of the visual system, and while the progress has been considerable, state-of-

the-art quality assessment methods still share a number of shortcomings, like

their performance dropping considerably when they are tested on a database

that is quite different from the one used to train them, or their significant

limitations in predicting observer scores for high framerate videos. In this work

we propose a novel objective method for image and video quality assessment

that is based on the recently introduced Intrinsically Non-linear Receptive Field

(INRF) formulation, a neural summation model that has been shown to be better

at predicting neural activity and visual perception phenomena than the classical

linear receptive field. Here we start by optimizing, on a classic image quality

database, the four parameters of a very simple INRF-based metric, and proceed

to test this metric on three other databases, showing that its performance equals

or surpasses that of the state-of-the-art methods, some of them having millions

of parameters. Next, we extend to the temporal domain this INRF image quality

metric, and test it on several popular video quality datasets; again, the results of

our proposed INRF-based video quality metric are shown to be very competitive.

KEYWORDS

visual perception, visual neuroscience, receptive field, INRF, computational modeling,
image quality assessment, video quality assessment, high frame rate videos

1. Introduction

Image quality evaluation is of crucial importance in the media industry, where it has
numerous practical applications, but also in applied disciplines such as image processing
and computer vision, where it plays an important role in the development, optimization, and
testing of algorithms. It may also be used to optimize any trade-offs between the components
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of an image/video transport system (i.e., video compression ratios,
reserved network bandwidth) and perceived quality, aiming for
a good user experience while maximizing the efficiency of the
transmission, and thus reducing the ecological footprint associated
to streaming. Subjective evaluation, consisting in measuring
image quality by human beings, is costly and time-consuming.
Therefore, the goal of objective quality assessment is to develop
automatic methods that produce quantitative measures that are
consistent with the perception of human observers. But this is
a very challenging open problem in vision science, given the
limitations of current visual perception models and the way
they are exacerbated by emerging image display technologies of
ever-increasing resolution, contrast, color gamut and framerate
(Bertalmío, 2019).

Image quality methods can be divided into three categories:
full-reference methods, which compare an original image with a
distorted version of it; reduced-reference methods, that compare
some characteristics of the distorted and reference image since
the complete reference image is not available; and no-reference
methods (also called blind models), operating solely on the
distorted image.

In this article we will focus on full-reference methods, which
constitute the vast majority of image quality approaches. A simple
solution, and possibly the most widely used metric to estimate
image quality, is the peak signal-to-noise ratio (PSNR), which is a
non-linear transform of the mean square error (MSE) between the
reference and the distorted images, another very popular metric.
These metrics are simple to calculate, and they have a clear physical
meaning; however, they are not very well correlated with perceived
visual quality (Wang et al., 2004).

Therefore, in the last two decades, the goal of image quality
assessment (IQA) research has been to improve these metrics by
developing more sophisticated methods that mimic some aspects of
the visual system. For instance, the Normalized Laplacian Pyramid
Distance (NLPD) (Laparra et al., 2016) is based on transformations
present in the early visual system: local luminance subtraction
and local gain control, obtained from a decomposition of images
using a Laplacian pyramid; the Structural Similarity Index (SSIM)
(Wang et al., 2004) is based on the hypothesis that the human
visual system is highly adapted for extracting structural information
from the viewing field; the Feature Similarity Index (FSIM) (Zhang
et al., 2011) is based on the assumption that the human visual
system understands an image according to its low-level features,
such as the phase congruency, which measures the significance
of a local structure, and the image gradient magnitude, which
encodes contrast information; the Visual Signal-to-Noise Ratio
(VSNR) (Chandler and Hemami, 2007) analyses visual perception
distortions in the wavelet domain; the Noise Quality Measure
(NQM) (Damera-Venkata et al., 2000) is based on the contrast
pyramid by Peli (1990); and the Visual Information Fidelity
Measure (VIF) (Sheikh and Bovik, 2006) is based on natural scene
statistics and models of the image degradation process and the
human visual system. There are also learning-based methods that
learn a metric from a set of training images and their corresponding
perceptual scores. For instance, the Learned Perceptual Image
Patch Similarity (LPIPS) metric (Zhang et al., 2018) is based
on the hypothesis that perceptual similarity is a consequence
of visual representations, as the authors found that internal
activations of networks trained on high-level image classification
tasks correspond well to human perceptual judgments; another

example is the Deep Image Structure and Texture Similarity
(DISTS) Metric (Ding et al., 2020), which uses a variant of the
VGG convolutional neural network to construct a function that
combines structure and texture similarity measurements between
corresponding feature maps of the reference and distorted images;
and PerceptNet (Hepburn et al., 2020), which is a convolutional
neural network where the architecture reflects the structure and
various stages in the human visual system: a cascade of canonical
linear filters and divisive normalization layers simulate the retina-
LGN-cortex pathway.

For video quality assessment (VQA), a simple option is to apply
image quality metrics on a frame-by-frame basis, but this type of
approach often provides a limited performance, especially in the
case of high framerate (HFR) videos (Madhusudana et al., 2021).
Therefore, the state-of-the-art in VQA are algorithms specifically
developed for video, including the Spatio-temporal Reduced
Reference Entropic Differences (ST-RRED) (Soundararajan and
Bovik, 2012) or the Spatial Efficient Entropic Differencing for
Quality Assessment (SpEED) (Bampis et al., 2017), both measuring
quality deviations by computing spatial and temporal entropic
differences in the band-pass domain; Frame Rate dependent
Quality Metric (FRQM) (Zhang et al., 2017), which outputs
quality measurements by calculating absolute differences between
sequences that have been temporally filtered by a wavelet; Video
Multi-method Assessment Fusion (VMAF) (Li et al., 2016), which,
using a Support Vector Regressor, fuses a frame-difference feature
with a detail feature and with features obtained from a Visual
Information Fidelity (VIF) measure (Sheikh and Bovik, 2006);
Deep Video Quality Assessor (deepVQA) (Kim et al., 2018),
which combines a CNN model with a Convolutional Neural
Aggregation Network (CNAN) used for temporal pooling; the
Visual Quality Metric (VQM) (Pinson and Wolf, 2004), which uses
reduced-reference technology (ITU-T, 2005) to provide estimates
of video quality; the perceptual spatio-temporal frequency-domain
based MOtion-based Video Integrity Evaluation (MOVIE) index
(Seshadrinathan and Bovik, 2009), which monitors distortions that
are perceptually relevant along motion trajectories; or the more
recent Generalized Spatio-Temporal Index (GSTI) (Madhusudana
et al., 2020), which calculates entropic differences between
responses that have been temporally band-pass filtered.

Despite the notable advances in the field, it is important to
point out that state-of-the-art quality assessment methods still
share a number of shortcomings, like their performance dropping
considerably when they are tested on a database that is quite
different from the one used to train them (Ding et al., 2021), or their
significant difficulties in predicting observer scores for HFR videos
(Madhusudana et al., 2021). In this study we aim to overcome
these limitations by estimating perceived image and video quality
using a model for neural summation introduced recently, called
the Intrinsically Non-linear Receptive Field (INRF) (Bertalmío
et al., 2020) formulation; the INRF model successfully explains
experimental data that linear receptive field models are unable
to explain or do not explain accurately (Bertalmío et al., 2020),
and it has been shown to be very promising as a tool to develop
IQA methods given its ability to model complicated perceptual
phenomena.

The main contributions of this work are as follows. Firstly, we
start by optimizing, on a classic image quality database, the four
parameters of a very simple INRF-based metric, and proceed to test
this metric on three other databases, showing that its performance
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equals or surpasses that of the state-of-the-art IQA methods, some
of them having millions of parameters. Secondly, we extend to the
temporal domain this INRF image quality metric, and test it on
several popular video quality databases; our results show that the
proposed INRF-based VQA is very competitive, ranking best in
several challenging scenarios like those provided by a very recent
dataset for high frame rate videos. Finally, and to the best of our
knowledge, the approach of using a neural summation model to
create IQA and VQA methods is completely novel, and given its
success it might pave the way for other neuroscience models to
inform the design of new image quality assessment algorithms.

The structure of this manuscript is as follows. Section “2.
Proposed methods for IQA and VQA” explains the INRF model
and how it is used for IQA and VQA. Section “3. Materials
and methods” provides details on how the INRF parameters are
optimized for IQA and VQA usage, describes the different datasets
on which performance is tested and explains further points on how
the assessment of INRF for IQA and VQA models is performed.
Section “4. Results and comparisons” shows the performance of
INRF, employed for IQA and VQA, on different datasets, and
results are compared with performance of other state-of-the-art
IQA and VQA algorithms on those same datasets. Finally, in
Section “5. Discussion,” results and their implications are discussed.

2. Proposed methods for IQA and
VQA

2.1. Overview of the INRF neural
summation model

In vision science, the receptive field (RF) of a neuron is
the extent of the visual field where light influences the neuron’s
response. In the “standard model” of vision, the first stage is
a filtering operation consisting of multiplying the intensities at
each local region of an image stimulus by the values of a filter
(the weights of the RF), and summing the resulting intensities
(Carandini et al., 2005); this weighted sum may then be normalized
by the responses of neighboring neurons and passed through a
point-wise non-linearity. Many scientists have come to accept this
linear-plus-non-linear (L + NL) formulation as a working model
of the visual system (Olshausen and Field, 2005), both in visual
neuroscience and in visual perception, and while there have been
considerable improvements on, and extensions to, the standard
model, the linear RF remains as the foundation of most vision
models. But there are a number of problems that are inherent
to considering the RF as having a linear form, of which we will
highlight three:

• Adaptation makes the linear RF change with the input and, in
fact, the linear RF has been observed to have different sizes,
orientations, preferred directions, or even different polarity
(ON/OFF) for different stimuli (Cavanaugh et al., 2002; Coen-
Cagli et al., 2012; Jansen et al., 2018);
• a linear RF depends on the choice of basis functions used to

estimate it (Vilankar and Field, 2017);
• the linear RF is not supported by more recent neuroscience,

and a growing number of neuroscience studies show that in

general individual neurons cannot be modeled as a linear RF
followed by an output non-linearity (Poirazi et al., 2003; Polsky
et al., 2004; London and Häusser, 2005; Silver, 2010; Rodrigues
et al., 2021).

In contrast, the INRF formulation is a physiologically plausible
single-neuron summation model which, unlike the linear RF:

• Embodies the efficient representation principle and can
remain constant in situations where the linear RF must change
with the input;
• is a generalization of the linear RF that is much more powerful

in representing non-linear functions;
• is consistent with more recent studies on

dendritic computations.

The INRF equation for the response of a single neuron at
location x (a set of 2D spatial coordinates, horizontal and vertical)
is:

INRF (x) =
∑

i

miI
(
yi
)
− λ

∑
i

wiσ

I
(
yi
)
−

∑
j

g
(
yj − x

)
I
(
yj
) (1)

where mi stands for a 2D kernel m
(
x, yi

)
, locations yi (vertical and

horizontal 2D spatial coordinates) are neighbors of x, λ is a scalar,
wi stands for a 2D kernel w

(
x, yi

)
, σ represents a non-linearity, and

g is also a 2D kernel.
The model is based on knowledge about dendritic activity:

some dendritic branches act as non-linear units (Silver, 2010), a
single non-linearity is not enough to model dendritic computations
(Poirazi et al., 2003), and there is feedback from the neuron soma
to the dendrites (London and Häusser, 2005). In the INRF model,
some dendrites are linear and their contributions are summed with
weights mi, and some other dendrites are non-linear and their
contributions are summed with weights wi. The feedback from
the soma is reflected in the shifting nature of the non-linearity σ,
expressed by the term

∑
j

g
(
yj − x

)
I
(
yj
)
, which has the effect of

making the non-linearity change for each contributing location yi.
Using a single, fixed INRF module where the kernels m, w, g

have Gaussian form and the non-linearity is a power-law sigmoid,
and applying it to grayscale images, where x and yi now denote
pixel locations and I (·) are pixel values, the model response
INRF (·) emulates the perceived image and can explain several
visual perception phenomena that challenge the standard model
(Bertalmío et al., 2020):

• The “crispening” effect. Brightness perception curves show
“crispening” (slope increase) at the surround luminance level
when the background is uniform, but the phenomenon
disappears for salt and pepper background (Kane and
Bertalmío, 2019). The INRF response qualitatively replicates
both cases with a fixed set of parameters, which is not possible
with a linear RF formulation.
• White’s illusion under noise. The INRF output qualitatively

predicts the observers’ response to White’s illusion when
bandpass noise is added, while in Betz et al. (2015) none of the
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vision models that were tried, based on linear RFs, were able to
replicate this behavior.
• Light/dark asymmetry (the “irradiation illusion”). This

phenomenon can be reproduced with a fixed INRF
formulation, while a L + NL model needs to change with
the stimulus (Kremkow et al., 2014).

In short, we could say that the INRF formulation, a non-linear
transform of light intensity values, is a good estimator of brightness
perception. This is a very valuable property when creating an image
quality assessment method, as we discuss next.

2.2. IQA with the INRF model

Given that applying the INRF model to a grayscale image
produces a result that appears to closely resemble how the image
is perceived, Bertalmío et al. (2020) proposed a very simple image
quality metric: given an image I, and its distorted version ID, the
INRF transformation is applied to both of the images, obtaining
O and OD, and then the root mean square error (RMSE) between
the processed images is computed. The underlying idea here was
that the INRF model performs a sort of “perceptual linearization,”
a non-linear transform that brings light-intensity images (whose
direct comparison, with metrics like RMSE or PSNR, does not
correlate well with perception), to the space corresponding to
perceptual images (which can now be compared with a simple
Euclidean metric like RMSE). This metric had only five parameters
that were optimized for the “crispening” brightness perception
experiment mentioned above (with σ a power-law sigmoid and g
a delta function) on a handful of synthetic images, and despite this
fact and the simplicity of the metric, when tested on the natural
image database TID2013 (Ponomarenko et al., 2015) it was shown
to have a performance very similar to that of the state-of-the-art
deep learning perceptual metric LPIPS (Zhang et al., 2018), with
over 24 million parameters and close to 500K human judgments
for labeling pair-comparison preferences on the 160,000 + natural
images it used for training.

Based on this very promising result, here we propose a full-
reference INRF-based IQA method in the following way (see
Figure 1A for a graphical explanation of the process):

(1) Given a grayscale image I, the INRF transformation applied
to it produces an image O whose value at each pixel location x is
computed as:

O (x) = INRF (x) = m ? I (x)− λ
∑

i

wiS
(
I
(
yi
)
−g ? I (x)

)
(2)

where the kernels m, w, g are 2D Gaussians of standard deviations
σm, σw, σg , respectively, λ is a scalar, S is a sigmoid that has the form
of an atan function, and the symbol ? denotes the 2D convolution.

(2) The INRF-IQA value comparing image I and its distorted
version ID is computed as:

INRF − IQA
(

Î, ÎD

)
=

√
MSE (O, OD) (3)

=

√
MSE (INRF (I) , INRF (ID))

where grayscale image I is the luminance channel of Î, grayscale
image ID is the luminance channel of ÎD, and the INRF transform
of an image is computed as in Eq. 2.

(3) The values for the four parameters of the metric, namely
σm, σw, σg, and λ, are chosen so as to maximize the correlation
between the INRF-IQA perceptual distance of Eq. 3 and the mean
opinion scores (MOS) of human observers over the large-scale
natural image database TID2008 (Ponomarenko et al., 2009) (see
section “3. Materials and methods”).

We must note that the IQA method in Bertalmío et al. (2020)
used a different non-linearity (a power-law sigmoid instead of the
atan function), considered g to be a delta function instead of a
2D kernel, and used as parameter values the same set that allowed
the INRF model to reproduce the results of certain brightness
perception experiment.

2.3. VQA with the INRF model

We propose as a full-reference INRF-based VQA metric a
straightforward combination of the INRF-IQA metric of Eq. 3 with
a simple temporal pooling strategy: the image metric is applied
frame-by-frame, and then the results are averaged (see Figure 1B
for a graphical explanation of the process). That is, given a reference
video V and a distorted version VD, the output of our proposed
INRF-VQA metric is:

INRF-VQA (V, VD) = mean
{

INRF-IQAs
(
Ii, Ii

D
)}

(4)

where Ii and Ii
D are, respectively, the luminance channel of the i-th

frame of V and VD, and the IQA metric INRF-IQAs has the same
form as in Eq. 3 and the same value of 3 for the parameter λ, but the
spatial kernel sizes σm, σw, σg are scaled by a factor f that denotes
the ratio between the size of the frames in the video V and the size
of the images in TID2008 (that were used to optimize σm, σw, σg).
For instance, if V is a 2K video of resolution 1920 × 1080, and
given that images in TID2008 are of size 512 × 384, the scaling
factor is f = 1920

512 = 3.75.

3. Materials and methods

3.1. Optimization details

The parameter values of INRF-IQA (Eq. 3) are found through
optimization on the TID2008 dataset (Ponomarenko et al., 2009) to
maximize the Pearson correlation coefficient (PLCC) between the
observers’ scores for the images in TID2008 and the corresponding
INRF-IQA scores. In particular, a grid search optimization method
is used to optimize the INRF-IQA parameter values σm, σw, σg,

and λ, and the optimal parameters found are: σm = 1.74, σw =

25, σg = 1 and λ = 3.

3.2. IQA datasets

We use the LIVE (Sheikh et al., 2006), CSIQ and TID2013
(Ponomarenko et al., 2015) datasets to test the performance of
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FIGURE 1

Schematic representation of how INRF-IQA and INRF-VQA are calculated. (A) Calculation of INRF-IQA. The luminance component of a reference
image, Î, and a distorted image, ÎD, are mapped onto the perceptual domain by applying an INRF transformation on them: O and OD are,
respectively, obtained. Next, the Euclidean distance of the images in the perceptual domain is calculated by computing the root-mean-squared
error of the INRF-transformed images. (B) Calculation of INRF-VQA. The process outlined in panel (A) is applied on a frame-wise basis to the
luminance component of the video frames in a reference video, V, and a distorted video, VD.These video frames are referred to as Ii and IiD,
respectively. INRF-IQA is calculated using the reference video frames, Ii, and the distorted video frames, IiD, that compose the reference and
distorted videos, V and VD. The final INRF-VQA metric is obtained by computing the mean of the frame-wise INRF-IQA scores.

our INRF-IQA metric on images; each dataset also containing
subjective image quality scores from observers for those same
images. The LIVE dataset consists of 779 images. It has a total
of 29 reference images whose distorted versions are achieved by
applying 5 different types of distortion (Gaussian blur, additive
white Gaussian noise, JPEG compression, JP2K compression and
a simulated fast fading Rayleigh channel) with different distortion
levels. The CSIQ dataset has 866 images, with 30 being reference
ones. Their distorted versions are obtained through Gaussian blur,
Gaussian pink noise, Gaussian white noise, JPEG compression,
JP2K compression and contrast change. The TID2013 dataset
extends the previous TID2008 one (Ponomarenko et al., 2009). It
is composed of 3,000 images, out of which 25 are reference ones.
These are distorted to achieve the rest of the images by applying
24 distortion types (7 new types of distortions with respect to
TID2008) each with 5 distortion levels. Distortion types are rich,
spanning from Gaussian noise, Gaussian blur, lossy compression
of noisy images, and distortions such as JPEG to more uncommon
distortions like non-eccentricity pattern noise.

3.3. VQA datasets

We test the performance of our INRF-VQA model on
four popular video quality databases, all publicly available and
containing observers’ scores for a number of common spatial
and temporal distortions: LIVE-YT-HFR, LIVE-MOBILE, LIVE-
VQA and VQEG-HD3.

The very recent LIVE-YT-HFR dataset (Madhusudana et al.,
2021) spans 16 different video categories, each showing a different
progressively scanned natural scene. Out of those 16 contents, 11
have 2K spatial resolution and 5 have 4K resolution. Within each
of the video contents, videos with different frame rates exist, out of
which we use those of 120, 60, and 30 fps. Each video content with
a given frame rate has 5 possible compression levels [FFmpeg VP9
compression (Mukherjee et al., 2015), and single-pass encoding
varying the Constant Rate Factor (CRF)]. For instance, a given
content and its videos with a given frame rate sum a total of 5
videos: 1 video with lossless compression (CRF = 0) plus 4 videos
with compression levels ranging from CRF = 4 to CRF = 63. Finally,
for each video content, the 120 fps video with lossless compression
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(CRF = 0) is referred to as the reference sequence. All the remaining
videos within a content (that is, 120 fps videos with CRF values
larger than 0, and 60 fps and 30 fps videos), are the distorted
sequences.

The LIVE-MOBILE dataset (Moorthy et al., 2012a,b,c) consists
of 12 reference videos with frame rates of 30 fps and a spatial
resolution of 1280 × 720 pixels over which different distortion
types are applied to produce distorted videos. The existing
distortion types are: H 0.264 compression at four different
rates; wireless channel packet-loss distortion; freeze-frames where
a loss of temporal continuity exists after freeze and where
no such loss of temporal continuity takes place (not used in
the analyses); rate adaptation distortion (i.e., compression rate
dynamically varies between two compression rates); and temporal
dynamics (compression rate is varied between several rates
with different rate-switching structures). Subjective measurements
acquired through viewing the different videos on a small mobile
screen are available.

The LIVE-VQA dataset (Seshadrinathan et al., 2010a,b)
consists of 10 reference videos with a frame rate of 25 or 50 fps
and a spatial resolution of 768× 432 pixels. The existing distortion
types are MPEG2 compression, H 0.264 compression, simulated
transmission through error-prone IP networks and simulated
transmission through error-prone wireless networks.

Finally, the VQEG-HD3 dataset (Video Quality Experts Group,
2010) consists of 13 reference videos with a frame rate of 30 fps
and a spatial resolution of 1920 × 1080 pixels. Distorted videos
are achieved by applying the distortion levels hrc04, hrc07, hrc16,
hrc17, hrc18, hrc19, hrc20, and hrc21.

3.4. Evaluation of INRF-IQA and
INRF-VQA models

Existing subjective image quality and video quality scores in
each of the datasets are, respectively, correlated with our INRF-
IQA and INRF-VQA metrics. In the case of INRF-IQA, SRCC
is calculated. For INRF-VQA, SRCC and PLCC are obtained.
Before calculating PLCC, predicted objective video quality scores
are passed through a four-parameter sigmoid function as described
in Antkowiak et al. (2000):

ŷ (x) = β2
β1 − β2

1+ e−
(

x−β3
|β4|

) (5)

where x stands for the raw INRF-VQA scores, and β1, β2, β3, and
β4 are its parameters ŷ.

4. Results and comparisons

4.1. IQA

Performance of our INRF-IQA metric is evaluated on images
from the LIVE (Sheikh et al., 2006), CSIQ and TID2013
(Ponomarenko et al., 2015) datasets, and compared with that of
other full-reference IQA methods; results are shown in Table 1.
The performance of the methods PerceptNet and LPIPS is shown

TABLE 1 Numbers indicate spearman rank correlation
coefficients (SRCC).

LIVE CSIQ TID2013 (Mean)

MS-SSIM 0.951 0.886 0.782 (0.873)

CW-SSIM 0.781 0.738 0.680 (0.733)

VIF 0.963 0.911 0.676 (0.850)

NLPD 0.938 0.937 0.800 (0.892)

GMSD 0.960 0.950 0.804 (0.905)

MAD 0.960 0.941 0.773 (0.891)

FSIM 0.963 0.916 0.802 (0.894)

VSI 0.950 0.923 0.793 (0.889)

DISTS 0.942 0.905 0.764 (0.870)

LPIPSA 0.96 0.93 0.76 (0.883)

LPIPSB 0.89 0.80 0.57 (0.753)

PerceptNetA 0.94 0.88 0.76 (0.86)

PerceptNetB 0.93 0.84 0.72 (0.83)

PerceptNetC 0.98 0.96 0.87 (0.936)

INRF-IQA 0.947 0.952 0.802 (0.900)

The INRF-IQA metric is compared against a set of full-reference image quality methods:
MS-SSIM (Wang et al., 2003), CW-SSIM (Wang and Simoncelli, 2005), VIF (Sheikh and
Bovik, 2006), NLPD (Laparra et al., 2016), GMSD (Xue et al., 2014), MAD (Larson and
Chandler, 2010), FSIM (Zhang et al., 2011), VSI (Zhang et al., 2014), DISTS (Ding et al.,
2020), LPIPS (Zhang et al., 2018), and PerceptNet (Hepburn et al., 2020). LPIPSA and
PerceptNetA are trained on the ImageNet (Deng et al., 2009) and BAPSS (Zhang et al., 2018)
datasets, and LPIPSB and PerceptNetB are trained only on the BAPPS dataset. PerceptNetC
is trained on the TID2008 dataset (Ponomarenko et al., 2009). The best three correlation
values per column are marked in bold. Adapted table from Hepburn et al. (2020) and Ding
et al. (2021).

in three different training scenarios: (1) training performed on
the ImageNet (Deng et al., 2009) and BAPSS (Zhang et al.,
2018) datasets, (2) training performed only on the BAPPS
dataset, and (3) training performed on the TID2008 dataset
(Ponomarenko et al., 2009). None of the IQA methods was
tested on a dataset on which it had been specifically trained.
GMSD needs tuning of one parameter, with its value selected
so as to provide maximum performance in the three datasets
considered. We can see that the performance of INRF-IQA
is consistently very good across all datasets, surpassing CNN-
based models such as LPIPS (which has 24.7 million parameters)
(Zhang et al., 2018) and DISTS (Ding et al., 2020), as well
as other extensively used classical methods like NLPD (Laparra
et al., 2016). Overall, the best IQA performance is observed
for PerceptNet (Hepburn et al., 2020) when its 36.3 thousand
parameters are optimized for TID2008 (not for BAPPS or
ImageNet), GMSD (Xue et al., 2014) and our INRF-IQA metric
(with 4 parameters).

4.2. VQA

We start evaluating the performance of our INRF-VQA metric
on videos from the very recent (and challenging) LIVE-YT-
HFR dataset (Madhusudana et al., 2021). This dataset consists of
reference videos of 120 fps frame rate for which distorted versions
are generated by reducing their frame rate and applying different
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TABLE 2 Numbers indicate SRCC and PLCC for frame rates of 120, 60, and 30 fps in the LIVE-YT-HFR dataset.

120 fps 60 fps 30 fps

SRCC PLCC SRCC PLCC SRCC PLCC

SSIMdup 0.7485 0.6726 0.2123 0.1845 0.1108 0.0816

SSIMdrop 0.5500 0.5077 0.5718 0.5844

FSIMdup 0.7053 0.6368 0.3450 0.2776 0.2487 0.1786

FSIMdrop 0.6197 0.6585 0.5984 0.7524

VMAFdup 0.7943 0.7844 0.5408 0.6015 0.2855 0.3740

VMAFdrop 0.6664 0.8122 0.5981 0.8713

INRF-VQAdup 0.8507 0.8261 0.2983 0.2905 0.1198 0.2324

INRF-VQAdrop 0.7525 0.8262 0.6331 0.8750

The INRF-VQA metric is compared against SSIM (Wang et al., 2004), FSIM (Zhang et al., 2011), and VMAF (Li et al., 2016). For 60 and 30 fps, SSIM, FSIM, VMAF, and INRF-VQA results
are shown both using frame duplication of distorted videos (SSIMdup , FSIMdup , VMAFdup , and INRF-VQAdup , respectively) and frame dropping of reference videos (SSIMdrop , FSIMdrop ,
VMAFdrop , and INRF-VQAdrop). SSIMdup , FSIMdup , and VMAFdup results are taken from Madhusudana et al. (2021), their Table 5.

TABLE 3 Numbers indicate SRCC and PLCC for frame rates of 120, 60, and 30 fps in the LIVE-YT-HFR dataset.

120 fps 60 fps 30 fps

SRCC PLCC SRCC PLCC SRCC PLCC

PSNR 0.6019 0.5937 0.6202 0.5719 0.4414 0.4179

SSIM 0.7485 0.6726 0.5500 0.5077 0.5718 0.5844

MS-SSIM 0.6165 0.5843 0.2516 0.1900 0.1929 0.1112

FSIM 0.7053 0.6368 0.6197 0.6585 0.5984 0.7524

ST-RRED 0.6745 0.5906 0.5062 0.4457 0.1188 0.0307

SpEED 0.6827 0.6097 0.1824 0.1110 0.2278 0.0896

FRQM – – 0.0947 0.0309 0.0983 0.0854

VMAF 0.7943 0.7844 0.6664 0.8003 0.5981 0.8713

deepVQA 0.6865 0.6209 0.2527 0.1652 0.1353 0.1059

GSTI 0.7390 0.7003 0.6015 0.7566 0.4758 0.6689

INRF-VQA 0.8507 0.8261 0.7525 0.8262 0.6331 0.8750

The INRF-VQA metric is compared against a set of full-reference video quality methods: PSNR, SSIM (Wang et al., 2004), MS-SSIM (Wang et al., 2003), FSIM (Zhang et al., 2011), ST-RRED
(Soundararajan and Bovik, 2012), SpEED (Bampis et al., 2017), FRQM (Zhang et al., 2017), VMAF (Li et al., 2016), deepVQA (Kim et al., 2018), and GSTI (Madhusudana et al., 2020). For 60
and 30 fps, results for all VQA algorithms are shown using naive temporal upsampling of distorted videos except for INRF-VQA, SSIM, FSIM, and VMAF, where frame dropping of reference
videos is used. The best three correlation values per column are marked in bold. Adapted from Madhusudana et al. (2021).

compression levels. Subjective measurements of video quality are
provided for each of the videos.

It is important to note that our INRF-VQA metric, as well as
many other full-reference metrics, needs reference and distorted
video sequences to have the same number of frames. For this
reason, when a distorted video has a lower frame rate than the
reference video, either the reference video must be downsampled
to match the number of frames in the distorted video or the
distorted video must be upsampled to match the reference.
Madhusudana et al. (2021) (see their Table 5), who test the
performance of several VQA algorithms on the LIVE-YT-HFR
dataset, use naive temporal upsampling by frame duplication of
distorted videos. In doing so, they argue that downsampling may
introduce undesired temporal artifacts in reference videos. SSIM
(Wang et al., 2004), FSIM (Zhang et al., 2011) and VMAF (Li
et al., 2016) are very successful, state-of-the-art, full-reference
VQA metrics, and their performance comparison against our
INRF-VQA metric can be seen in Table 2. Performance is
shown for different frame rates in the LIVE-YT-HFR dataset:

120, 60, and 30 fps; and in the case of 60 and 30 fps, both an
upsampling (results taken from Madhusudana et al., 2021) and
a downsampling approach are used. Upsampling is achieved by
frame duplication of distorted videos and downsampling is done
through frame dropping of reference videos. This way, reference
and distorted videos have the same number of frames. Spearman
and Pearson correlation coefficients (SRCC and PLCC) of the
objective VQA metrics with subjective video quality scores are
displayed.

For 60 and 30 fps, and for the four VQA methods, performance
is seen to improve when a frame dropping strategy rather than a
duplication one is used (for which correlations are low). For this
reason, we use this approach as our preferred choice to evaluate
INRF-VQA for 30 and 60 fps.

Table 3 shows a performance comparison of our INRF-
VQA metric (using frame dropping when 60 and 30 fps videos
are evaluated) against other state-of-the-art full-reference VQA
metrics. SRCC and PLCC results of the objective VQA metrics with
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TABLE 4 Numbers indicate SRCC and PLCC for the different distortion types in the LIVE-MOBILE dataset: compression, rate adaptation, temporal dynamics and wireless; as well as global performance.

Compression Rate adaptation Temporal dynamics Wireless All

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

PSNR 0.8185 0.7841 0.5981 0.5364 0.3717 0.4166 0.7925 0.7617 0.6780 0.6909

SSIM 0.7092 0.7475 0.6303 0.6120 0.3429 0.3924 0.7246 0.7307 0.6498 0.6637

MS-SSIM 0.8044 0.7664 0.7378 0.7089 0.3974 0.4068 0.8128 0.7706 0.7425 0.7077

FSIM 0.8896 0.8368 0.6269 0.5223 0.3020 0.2674 0.8849 0.8421 0.7491 0.7230

SpEED 0.9418 0.9379 0.7262 0.7807 0.4214 0.5697 0.9390 0.9391 0.8051 0.8118

VSNR 0.8739 0.8489 0.6735 0.6581 0.3170 0.4269 0.8559 0.8493 0.7517 0.7592

VIF 0.8613 0.8826 0.6388 0.6643 0.1242 0.1046 0.8739 0.8979 0.7439 0.7870

UQI 0.5621 0.5794 0.4299 0.2929 0.0296 0.2546 0.5756 0.7412 0.4894 0.6619

NQM 0.8499 0.8318 0.6775 0.6772 0.2383 0.3646 0.8985 0.8738 0.7493 0.7622

WSNR 0.7817 0.7558 0.5598 0.5365 0.0942 0.0451 0.7510 0.7276 0.6267 0.6320

SNR 0.7073 0.6501 0.5565 0.3988 0.2029 0.0839 0.6959 0.6052 0.5836 0.5189

VQM 0.7717 0.7816 0.6475 0.5910 0.3860 0.4066 0.7758 0.7909 0.6945 0.7023

MOVIE 0.7738 0.8103 0.7198 0.6811 0.1578 0.2436 0.6580 0.7266 0.6420 0.7157

INRF-VQA 0.8891 0.8868 0.7137 0.6149 0.5314 0.5834 0.8840 0.8916 0.7701 0.7684

The INRF-VQA metric is compared against a set of full-reference video quality methods: PSNR, SSIM (Wang et al., 2004), MS-SSIM (Wang et al., 2003), FSIM (Zhang et al., 2011), SpEED (Bampis et al., 2017), VSNR (Chandler and Hemami, 2007), VIF (Sheikh and
Bovik, 2006), UQI (Wang and Bovik, 2002), NQM (Damera-Venkata et al., 2000), Weighted Signal-to-Noise Ratio (WSNR), Signal-to-Noise Ratio (SNR), VQM (Pinson and Wolf, 2004), and MOVIE (Seshadrinathan and Bovik, 2009). The best three correlation values
per column are marked in bold. Adapted from Moorthy et al. (2012a) , except for FSIM and SpEED values.
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TABLE 5 Numbers indicate SRCC and PLCC results in the LIVE-VQA
(Seshadrinathan et al., 2010a,b) and VQEG-HD3 (Video Quality Experts
Group, 2010) datasets.

LIVE-VQA VQEG-HD3

SRCC PLCC SRCC PLCC

PSNR 0.5233 0.5489 0.7172 0.7212

SSIM 0.5251 0.4997 0.6841 0.6938

MS-SSIM 0.7321 0.7387 0.8567 0.8640

FSIM 0.7317 0.7011 0.8915 0.8812

SpEED 0.7250 0.7147 0.8646 0.8538

VSNR 0.6725 0.6883 0.7707 0.7763

VIF 0.5541 0.5682 0.6785 0.6920

UQI 0.4370 0.4493 0.6218 0.6283

NQM 0.6448 0.6687 0.6957 0.6932

WSNR 0.6410 0.6739 0.6862 0.6991

SNR 0.5580 0.6027 0.6294 0.6374

INRF-VQA 0.6697 0.6916 0.8870 0.8914

The INRF-VQA metric is compared against a set of full-reference video quality methods
obtained from the Metrix Mux toolbox (Murthy and Karam, 2010): PSNR, SSIM (Wang
et al., 2004), MS-SSIM (Wang et al., 2003), FSIM (Zhang et al., 2011), SpEED (Bampis et al.,
2017), VSNR (Chandler and Hemami, 2007), VIF (Sheikh and Bovik, 2006), UQI (Wang
and Bovik, 2002), NQM (Damera-Venkata et al., 2000), weighted signal-to-noise ratio
(WSNR) and signal-to-noise ratio (SNR). The best three correlation values per column
are marked in bold.

subjective video quality scores are shown for different frame rates
in the LIVE-YT-HFR dataset.

The results in Table 3 demonstrate that INRF-VQA
consistently outperforms all state-of-the-art algorithms for all
frame rates tested, including the highest frame rate of 120 fps (for
a fair comparison, results for SSIM, FSIM and VMAF for 60 and
30 fps were also computed using frame dropping, and we do not
rule out that other methods could also benefit from carrying out
the validation in this manner).

Next, we evaluate our INRF-VQA metric on a very popular
dataset, the LIVE-MOBILE (Moorthy et al., 2012a,b,c). Table 4
shows, for several popular metrics and for INRF-VQA, the results
for the different distortion types as well as the overall performance.
As we can see, INRF-VQA ranks among the best-performing
metrics for most distortions.

To further test our INRF-VQA metric, we evaluate its
performance on two other popular video quality datasets widely
used in the VQA literature, LIVE-VQA (Seshadrinathan et al.,
2010a,b) and VQEG-HD3 (Video Quality Experts Group, 2010).
Table 5 shows the correlation values in these datasets for INRF-
VQA and for several popular metrics [PSNR, SSIM, MS-SSIM,
VSNR, VIF, UQI, NQM, WSNR, and SNR are available in
the Metrix Mux toolbox (Murthy and Karam, 2010)]. As we
can see from these results, INRF-VQA performs very well in
VQEGHD3 and shows a competitive performance in LIVE-
VQA.

As a final note, we would like to remark that our INRF-
VQA metric had its parameters optimized on an image dataset
rather than a video dataset: this is also the approach followed
by several of the best-performing VQA methods, like MS-SSIM,
VIF, VSNR or NQM, while other excellent VQA algorithms

are specifically trained on video quality datasets, like VMAF
or GSTI.

5. Discussion

In this study we have taken a recent neural summation model
and used it as a foundation for novel metrics for image and video
quality assessment. To the best of our knowledge this is a novel
approach, that might pave the way for other neuroscience models
to inform the creation of IQA and VQA methods.

Our validation, on popular datasets of observer scores, shows
that our proposed metrics for IQA and VQA compare very
well with the state-of-the-art and, very importantly, that their
performance is very good and does not drop substantially
for different datasets, unlike what many methods are prone
to do and is often the case with those based on deep
learning techniques.

For the very recent, and challenging, video quality dataset
LIVE-YT-HFR (Madhusudana et al., 2021), our metric for VQA
is shown to outperform all state-of-the-art models, often by a
wide margin, for all frame rates considered, including a high
frame rate of 120 fps. Arguably, the distortions caused by
the changes in frame rate in the LIVE-YT-HFR dataset are
much less perceptually relevant than the artifacts created by
compression: this would explain why the full-reference metrics
not specifically designed to work with different frame rates
(such as SSIM, FSIM, and INRF-VQA) correlate well with the
observers’ responses even when the information about the temporal
differences is reduced (i.e., when reference frames are dropped);
on the other hand, frame dropping may prevent the metrics to
fully capture the potential impact of different frame rates on
the perceived quality. However, we also believe that the use of
frame duplication may have implications for the performance
evaluation of different methods. When distorted videos have a
lower framerate than reference ones, and their number of frames
is matched through temporal upsampling by frame duplication,
duplicated frames from the distorted video are compared to
frames from the reference video that are spatially shifted one
from another (whenever there is motion in a video). Methods
like PSNR, with a limited performance, may indicate perceptual
differences in these cases that may not be especially sensitive
to the aforementioned spatial shift. However, better performing
algorithms like FSIM, SSIM, VMAF, or INRF-VQA itself, are
sensitive toward this spatial shift. This translates into perceptual
frame-difference judgments that, although accurate, are solely the
result of the frame duplication strategy, and do not reflect human
perception of quality. In short, the lower sensitivity of PSNR to
the spatial shifts introduced by upsampling may paradoxically
translate into a better performance than that of state-of-the-art
algorithms which are sensitive to the artificially introduced spatial
shifts.

It is important to remark that the parameters of our proposed
INRF-VQA metric were optimized for image data, i.e., INRF-
VQA was not trained on any video dataset. INRF-VQA is a
straightforward extension of the INRF-IQA method, in which

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1222815
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1222815 July 25, 2023 Time: 10:25 # 10

Luna et al. 10.3389/fnins.2023.1222815

metric values are computed on a frame-by-frame basis and then
averaged over time to produce a single score for the video: the fact
that this simple temporal extension of an IQA method works so
remarkably well for VQA challenges a common assumption in the
literature, where it is thought that the best VQA metrics must be
developed specifically for video Madhusudana et al. (2021).

Regarding future work, we want to point out that for INRF-
VQA we have resorted to very simple and very effective design
choices, like mean average for temporal pooling instead of a more
optimal strategy (e.g., Rimac-Drlje et al., 2009), or the fact that
computations on a present frame are not influenced by past frames.
For this reason, we believe that embedding temporal processing
into our INRF-VQA model in a way that is more biologically
realistic could prove better. As well, we would like to deepen into
the study of how stacking several INRF modules produces an
increase in quality prediction performance. Positive IQA results
in this regard have already been reported in Bertalmío et al.
(2020). We are also interested in extending both INRF-IQA and
INRF-VQA so that they consider color and can be applied to
high dynamic range (HDR), wide color gamut (WCG) and 8K
imagery.
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