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Background: Cognitive impairment is a common sequela following traumatic

brain injury (TBI). This study aimed to identify risk factors for cognitive impairment

after 3 and 12 months of TBI and to create nomograms to predict them.

Methods: A total of 305 mild-to-moderate TBI patients admitted to the First

A�liated Hospital with Nanjing Medical University from January 2018 to January

2022 were retrospectively recruited. Risk factors for cognitive impairment after

3 and 12 months of TBI were identified by univariable and multivariable logistic

regression analyses. Based on these factors, we created two nomograms to

predict cognitive impairment after 3 and 12 months of TBI, the discrimination and

calibration ofwhichwere validated by plotting the receiver operating characteristic

(ROC) curve and calibration curve, respectively.

Results: Cognitive impairment was detected in 125/305 and 52/305

mild-to-moderate TBI patients after 3 and 12 months of injury, respectively. Age,

the Glasgow Coma Scale (GCS) score, >12 years of education, hyperlipidemia,

temporal lobe contusion, traumatic subarachnoid hemorrhage (tSAH), very early

rehabilitation (VER), and intensive care unit (ICU) admission were independent

risk factors for cognitive impairment after 3 months of mild-to-moderate TBI.

Meanwhile, age, GCS score, diabetes mellitus, tSAH, and surgical treatment

were independent risk factors for cognitive impairment after 12 months of

mild-to-moderate TBI. Two nomograms were created based on the risk factors

identified using logistic regression analyses. The areas under the curve (AUCs)

of the two nomograms to predict cognitive impairment after 3 and 12 months

of mild-to-moderate TBI were 0.852 (95% CI [0.810, 0.895]) and 0.817 (95% CI

[0.762, 0.873]), respectively.

Conclusion: Two nomograms are created to predict cognitive impairment after 3

and 12 months of TBI. Age, GCS score, >12 years of education, hyperlipidemia,

temporal lobe contusion, tSAH, VER, and ICU admission are independent risk

factors for cognitive impairment after 3 months of TBI; meanwhile, age, the GCS

scores, diabetesmellitus, tSAH, and surgical treatment are independent risk factors

of cognitive impairment after 12 months of TBI. Two nomograms, based on both

groups of factors, respectively, show strong discriminative abilities.
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Introduction

New cases of traumatic brain injury (TBI) are estimated to

be 20 million per year, posing a heavy global burden of disease

(Injury and Spinal Cord Injury, 2019). Based on the Glasgow

Coma Scale (GCS) scores, TBI is classified as mild-to-moderate

(GCS, 9–15 points) and severe (GCS, ≤8 points). The incidence

of mild-to-moderate TBI is much higher than that of severe

TBI. Despite its low mortality, mild-to-moderate TBI still causes

multiple neurological deficits in survivors (Pavlovic et al., 2019).

Cognitive impairment, a common type of neurological

dysfunction after mild-to-moderate TBI, markedly worsens the

quality of life and the long-term neurological outcomes in survivors

(McHugh et al., 2006). Cognitive impairment after mild-to-

moderate TBI is usually manifested as the impairment of executive

function, memory, attention, speech, and naming (Miotto et al.,

2010; Panwar et al., 2019). Cognitive function can be recovered

in some TBI patients within 1–3 months post-TBI, but cognitive

impairment may stay for a long term in some cases (McHugh

et al., 2006). A previous study has reported that 19.2% of mild

TBI patients and 39.3% of moderate TBI patients still experience

cognitive impairment after 3 months of injury (Othman et al.,

2022). Draper and Ponsford (2008) have revealed that cognitive

impairment may persist in some patients even after 10 years of

TBI, the degree of which is positively correlated with the severity

of the injury.

Post-TBI cognitive impairment has been well-studied. At

present, therapeutic strategies mainly include medications,

rehabilitation exercises, and transcranial magnetic stimulation

(TMS) (Neville et al., 2015; Jenkins et al., 2019; Martinez-Molina

et al., 2022). However, efficient predictive factors for identifying

high-risk populations are scant, so intervention strategies are not

started promptly. In the present retrospective study, we analyzed

risk factors for cognitive impairment after 3 and 12 months of

mild-to-moderate TBI. Based on these factors, two nomograms

were created to predict cognitive impairment in mild-to-moderate

TBI patients after 3 and 12 months of injury.

Methods

Subjects

Mild-to-moderate TBI patients admitted to the Neurosurgery

Department, the First Affiliated Hospital with Nanjing Medical

University from January 2018 to January 2022 were retrospectively

recruited. The inclusion criteria were as follows: (i) aged over 16

years old and under 90 years old; (ii) an interval time <24 h from

TBI to admission; (iii) the lowest score of GCS at admission, 3 h

after admission, and 6 h after admission was≥9; and (iv) computed

tomography (CT) of the head performed within 6 h of admission

and 48 h before discharge. The exclusion criteria were as follows:

(i) death during hospitalization; (ii) severe compound injuries; (iii)

history of mental illnesses or cognitive impairments; (iv) hormonal

disorders during the course of disease; and (v) status epilepticus

during the course of the disease. Written informed consent was

obtained from all subjects or their guardians. This study was

approved by the Ethics Committee of the First Affiliated Hospital

of Nanjing Medical University (No. 2022-SR-354).

Data collection

The following data were recorded: (i) baseline characteristics,

including sex, age, and years of education; (ii) medical history,

including the history of hypertension, diabetes mellitus, and

hyperlipidemia; (iii) clinical characteristics of TBI, including the

GCS score and causes of injury; (iv) imaging features of TBI,

including injury site (right, left, and both); contusions in the

temporal, frontal, parietal, and occipital lobes; epidural, subdural,

or traumatic subarachnoid hemorrhage (tSAH); and subdural

effusion on discharge; and (v) treatment, including surgical

treatment, ICU admission, and very early rehabilitation (VER).

VER was defined as rehabilitation exercises that commenced within

3 days after admission or immediately after postoperative vital

signs were stable. The GCS score was selected and recorded as

the lowest score of GCS at admission, 3 h after admission, and 6 h

after admission. The computed tomography (CT) examination of

the TBI patient showed the presence of high-density shadow in the

subarachnoid space, which was defined as tSAH. Subdural effusion

was defined as effusion that appeared within 10 days of TBI with

a similar uniform low-density area, width >3mm, and CT value

<20 Hu. ICU admission was defined as treatment in the intensive

care unit during hospitalization regardless of the length of stay in

the ICU.

Assessment of cognitive impairment

The survivors of mild-to-moderate TBI patients were followed

up for 12 months after the injury. A widely used tool to detect

cognitive impairment with high sensitivity and specificity, the

Montreal Cognitive Assessment (MoCA), was performed at 3

and 12 months post-TBI. The MoCA score increased by 1 point

when traumatic brain injury patients had <12 years of education.

Ranging from 0 to 30 points, a lowerMoCA score indicated a worse

cognitive function (Nasreddine et al., 2005). In the present study,

cognitive impairment was defined as those with a maximal MoCA

score of 26 points.

Statistical analysis

Categorical variables were expressed as number of cases (n) and

percentage (%). Continuous variables in a normal distribution were

expressed as mean ± standard deviation (x ± SD); otherwise, they

were expressed as median (M) and interquartile boundary values

(P25, P75). Variables with a p-value of <0.10 in the univariable

logistic regression model were introduced into the multivariable

logistic regression model using the backward elimination method.

The odds ratio (OR) and the corresponding 95% confidence

interval (95% CI) and p-value were calculated. Nomograms were

created using an R package by incorporating variables with

a p-value of <0.05 identified using the multivariable logistic
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regression analysis. The discriminative ability of the nomogram

was assessed by plotting the receiver operating characteristic (ROC)

curve and calculating the C-statistics, which was equal to the

area under the curve (AUC). The C-statistics ranged from 0.5

to 1.0, and a higher C-statistics indicated better discrimination

of the nomogram. Internal validation of the nomogram was

performed within 1,000 bootstrap resampling. A linear calibration

curve indicated an acceptable goodness-of-fit of the nomogram.

Statistical analysis was performed using SPSS 23.0 and packages

of rms, readr, pROC, formula, and ggplot2 in R, and figures were

programmatically created using R 3.6.1. A p-value of <0.05 was

considered statistically significant.

Results

Clinical characteristics of subjects

A total of 365 patients with mild-to-moderate TBI were

recruited. After excluding 12 deaths and 48 subjects who were

lost to follow-up, 305 eligible patients were finally included in this

study, including 190 with mild TBI (GCS 13–15 points) and 115

with moderate TBI (GCS 9–12 points).

After 3 months of TBI, 125 (41.0%) patients developed

cognitive impairment. The incidences of cognitive impairment in

mild and moderate TBI patients after 3 months of injury were

28.9% and 60.9%, respectively. Later, 52 (17.0%) TBI patients still

suffered from cognitive impairment after 12 months of injury, with

incidences of cognitive impairment in mild and moderate TBI

patients of 8.4% and 31.3%, respectively.

Independent risk factors for cognitive
impairment after 3 and 12 months of
mild-to-moderate TBI

The univariable logistic regression analysis revealed that age

(P < 0.001), GCS scores (P < 0.001), >12 years of education (P

< 0.001), hyperlipidemia (P < 0.001), injury side (P = 0.005),

temporal lobe contusion (P < 0.001), subdural hematoma (P

< 0.001), tSAH (P < 0.001), surgical treatment (P = 0.016),

subdural effusion (P= 0.035), and ICU admission (P < 0.001) were

significantly correlated with cognitive impairment after 3months of

mild-to-moderate TBI (Table 1). In addition, age (P = 0.003), GCS

score (P < 0.001), >12 years of education (P = 0.047), diabetes

mellitus (P = 0.005), hyperlipidemia (P = 0.004), injury side

(bilateral sides vs. right side, P = 0.045), temporal lobe contusion

(P = 0.001), subdural hematoma (P = 0.003), tSAH (P < 0.001),

surgical treatment (P = 0.001), subdural effusion (P = 0.015),

and ICU admission (P < 0.001) were significantly correlated with

cognitive impairment after 12 months of mild-to-moderate TBI

(Table 2).

We later introduced variables with a p-value of <0.10

identified using the univariable logistic regression analysis into the

multivariable logistic regression analysis. Age (OR, 1.036; 95% CI

[1.012,1.059]; P = 0.003), GCS scores (OR, 0.807; 95% CI [0.681,

0.957]; P = 0.014), >12 years of education (OR, 0.223; 95% CI

[0.088, 0.566]; P = 0.002), hyperlipidemia (OR, 3.249; 95% CI

[1.520, 6.941]; P = 0.002), temporal lobe contusions (OR, 2.606;

95% CI [1.422, 4.776]; P = 0.002), tSAH (OR, 2.837; 95% CI

[1.506, 5.346]; P = 0.001), VER (OR, 0.166; 95% CI [0.060, 0.458];

P = 0.001), and ICU admission (OR, 2.285; 95% CI [1.070, 4.881];

P = 0.033) were independent risk factors for cognitive impairment

after 3 months of mild-to-moderate TBI (Table 1). In addition, age

(OR, 1.035; 95% CI [1.003, 1.068]; P = 0.031), GCS scores (OR,

0.777; 95% CI [0.637, 0.948]; P = 0.013), diabetes mellitus (OR,

4.443; 95% CI [1.259, 15.681]; P = 0.020), tSAH (OR, 2.449; 95%

CI [1.046, 5.735]; P = 0.039), and surgical treatment (OR, 2.473;

95% CI [1.031, 5.932]; P = 0.042) were independent risk factors

for cognitive impairment after 12 months of mild-to-moderate TBI

(Table 2).

Two nomograms to predict cognitive
impairment after 3 and 12 months of
mild-to-moderate TBI

Two nomograms were then created based on risk factors

identified using the multivariable logistic regression analysis to

predict cognitive impairment after 3 and 12 months of mild-to-

moderate TBI (Figures 1, 2). The total score was the sum of the

points for each covariate in the nomogram and corresponded

to the predicted probability of the outcome of interest. The

AUCs of the nomogram to predict cognitive impairment after

3 and 12 months of mild-to-moderate TBI were 0.852 (95% CI

[0.810, 0.895]) and 0.817 (95% CI [0.762, 0.873]), respectively,

suggesting a good discriminative ability of the two nomograms

(Figures 3, 4). The C-statistics of a nomogram to predict cognitive

impairment after 3 months of mild-to-moderate TBI was 0.834 by

internal validation using bootstrapping with 1,000 iterations. The

C-statistics of a nomogram to predict cognitive impairment after

12 months of mild-to-moderate TBI was 0.799 after bootstrapping.

The actual and predicted probabilities of cognitive impairment on

the Y-axis and X-axis were plotted, respectively. The calibration

curves showed an acceptable goodness-of-fit of the nomograms

(Figures 5, 6).

Discussion

Cognitive impairment is a common complication following

mild-to-moderate TBI, which may last for a long term. de Boussard

et al. (2005) have reported that 26% of mild TBI patients develop

cognitive impairment 3 months later. Consistently, Skandsen et al.

(2010) have illustrated that 43% of moderate TBI patients have

cognitive impairment at 3 months post-TBI. An observational

study in Malaysia has shown that 19.2% of mild TBI patients and

39.3% of moderate TBI patients presented cognitive impairment

after 3 months of injury (Othman et al., 2022). In the present

study, the incidences of cognitive impairment after 3 months of

mild and moderate TBI were 28.9% and 60.9%, respectively. Both

higher incidences, compared to those previously reported, may be

attributed to the differences in age, cause of injury, and injury site.

Few previous studies have focused on cognitive impairment 1 year

after mild-to-moderate TBI. Schneider et al. (2022) have reported
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TABLE 1 Univariable and multivariable logistic regression analyses on cognitive impairment after 3 months of mild-to-moderate TBI (n = 305).

TBI patients with
cognitive

impairment
(n = 125)

TBI patients
without cognitive

impairment
(n = 180)

Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Age (years) 57.10± 12.43 49.69± 15.97 1.036 (1.019, 1.054) <0.001 1.036 (1.012, 1.059) 0.003∗

Male sex (n, %) 93 (74.4%) 127 (70.6%) 1.213 (0.725, 2.028) 0.462

GCS scores (points) 12 (10,14) 14 (12.25,15) 0.725 (0.647, 0.812) <0.001 0.807 (0.681, 0.957) 0.014∗

Causes of injury (n, %)

Falling injury 53 (42.4%) 75 (41.7%) 0.401

Traffic accident 66 (52.8%) 89 (49.4%) 1.049 (0.653, 1.686) 0.842

Blunt injury 6 (4.8%) 16 (8.9%) 0.531 (0.195, 1.445) 0.215

Years of education>12 (n, %) 13 (10.4%) 55 (30.6%) 0.264 (0.137, 0.508) <0.001 0.223 (0.088, 0.566) 0.002∗

Diabetes mellitus (n, %) 13 (10.4%) 10 (5.6%) 1.973 (0.836, 4.655) 0.121

Hypertension (n, %) 32 (25.6%) 36 (20.0%) 1.376 (0.800, 2.369) 0.249

Hyperlipemia (n, %) 39 (31.2%) 21 (11.7%) 3.434 (1.900, 6.205) <0.001 3.249 (1.520, 6.941) 0.002∗

Injury side (n, %)

Right side 23 (18.4%) 61 (33.9%) 0.005 0.372

Left side 39 (31.2%) 57 (31.7%) 1.815 (0.967, 3.404) 0.063 1.738 (0.763, 3.957) 0.188

Bilateral sides 63 (50.4%) 62 (34.4%) 2.695 (1.488, 4.882) 0.001 1.628 (0.732, 3.619) 0.232

Contusions (n, %)

Temporal lobe 82 (65.6%) 60 (33.3%) 3.814 (2.356, 6.175) <0.001 2.606 (1.422, 4.776) 0.002∗

Frontal lobe 67 (53.6%) 90 (50.0%) 1.155 (0.731, 1.825) 0.536

Parietal lobe 7 (5.6%) 22 (12.2%) 0.426 (0.176, 1.031) 0.058 0.468 (0.165, 1.329) 0.154

Occipital lobe 10 (8.0%) 9 (5.0%) 1.652 (0.651, 4.192) 0.291

Hematoma (n, %)

Epidural hematoma 21 (16.8%) 47 (26.1%) 0.571 (0.322, 1.015) 0.056 0.820 (0.359, 1.872) 0.637

Subdural hematoma 69 (55.2%) 60 (33.3%) 2.464 (1.541, 3.940) <0.001 1.226 (0.658, 2.284) 0.522

tSAH 92 (73.6%) 69 (38.3%) 4.485 (2.724, 7.383) <0.001 2.837 (1.506, 5.346) 0.001∗

Surgical treatment (n, %) 71 (56.8%) 77 (42.8%) 1.759 (1.109, 2.789) 0.016 1.736 (0.848, 3.553) 0.131

VER (n, %) 12 (9.6%) 31 (17.2%) 0.510 (0.251, 1.038) 0.063 0.166 (0.060, 0.458) 0.001∗

Subdural effusion (n, %) 24 (19.2%) 19 (10.6%) 2.014 (1.050, 3.862) 0.035 1.198 (0.519, 2.768) 0.672

ICU admission (n, %) 68 (54.4%) 53 (29.4%) 2.859 (1.776, 4.602) <0.001 2.285 (1.070, 4.881) 0.033∗

TBI, traumatic brain injury; OR, odds ratio; GCS, Glasgow Coma Scale; tSAH, traumatic subarachnoid hemorrhage; VER, very early rehabilitation; ICU, intensive care unit. ∗p < 0.05.

that 10.1% of mild TBI patients have cognitive impairment even

after 1 year of injury. Similarly, our data revealed that the incidence

of cognitive impairment after 12 months of mild-to-moderate TBI

was 17.0%, i.e., 8.4% in mild and 31.3% in moderate TBI patients.

We later created two nomograms to predict cognitive

impairment in mild-to-moderate TBI patients after 3 and

12 months of TBI, based on independent risk factors

identified using the multivariable logistic regression analysis.

Through a retrospective analysis of the clinical data of 305

mild-to-moderate TBI patients, we found that older age,

low GCS score, hyperlipidemia, temporal lobe contusion,

tSAH, and ICU admission were independent risk factors for

cognitive impairment after 3 months of mild-to-moderate

TBI, while >12 years of education and VER were protective

factors. In addition, older age, low GCS score, diabetes

mellitus, tSAH, and surgical treatment were independent

risk factors for cognitive impairment after 12 months of

mild-to-moderate TBI.

Age, GCS score, and tSAHwere all closely linked with cognitive

impairment at 3 and 12 months after mild-to-moderate TBI.

Leukoaraiosis and poor neuroplasticity in elderly patients can

increase the risk of cognitive impairment after TBI (Nguyen et al.,

2019). Both aging and TBI cause the loss of brain volume and

a decline of white matter integrity, and their additive effect,
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TABLE 2 Univariable and multivariable logistic regression analyses on cognitive impairment after 12 months of mild-to-moderate TBI (n = 305).

TBI patients with
cognitive

impairment
(n = 52)

TBI patients
without cognitive

impairment
(n = 253)

Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Age (years) 58.40± 10.74 51.56± 15.55 1.034 (1.011, 1.057) 0.003 1.035 (1.003, 1.068) 0.031∗

Male sex (n, %) 41 (78.8%) 179 (70.8%) 1.541 (0.751, 3.161) 0.238

GCS scores (points) 11 (10.13) 14 (12.15) 0.701 (0.609, 0.808) <0.001 0.777 (0.637, 0.948) 0.013∗

Causes of injury (n, %)

Falling injury 21 (40.4%) 107 (42.3%) 0.848

Traffic accident 28 (53.8%) 127 (50.2%) 1.123 (0.603, 2.091) 0.714

Blunt injury 3 (5.8%) 19 (7.5%) 0.805 (0.218, 2.965) 0.744

Years of education>12 (n, %) 6 (11.5%) 62 (24.5%) 0.402 (0.164, 0.986) 0.047 0.367 (0.117, 1.156) 0.087

Diabetes mellitus (n, %) 9 (17.3%) 14 (5.5%) 3.573 (1.455, 8.772) 0.005 4.443 (1.259, 15.681) 0.020∗

Hypertension (n, %) 17 (32.7%) 51 (20.2%) 1.924 (0.999, 3.707) 0.051 0.972 (0.405, 2.331) 0.949

Hyperlipemia (n, %) 18 (34.6%) 42 (16.6%) 2.660 (1.374, 5.148) 0.004 2.224 (0.945, 5.230) 0.067

Injury side (n, %)

Right side 9 (17.3%) 75 (29.6%) 0.129 0.824

Left side 16 (30.8%) 80 (31.6%) 1.667 (0.695, 3.999) 0.253 1.376 (0.473, 4.004) 0.558

Bilateral sides 27 (51.9%) 98 (38.7%) 2.296 (1.019, 5.172) 0.045 1.121 (0.418, 3.009) 0.820

Contusions (n, %)

Temporal lobe 35 (67.3%) 107 (42.3%) 2.809 (1.495, 5.279) 0.001 1.637 (0.757, 3.540) 0.211

Frontal lobe 30 (57.7%) 127 (50.2%) 1.353 (0.740, 2.472) 0.326

Parietal lobe 1 (1.9%) 28 (11.1%) 0.158 (0.021, 1.185) 0.073 0.172 (0.021, 1.437) 0.104

Occipital lobe 6 (11.5%) 13 (5.1%) 2.408 (0.871, 6.661) 0.090

Hematoma (n, %)

Epidural hematoma 9 (17.3%) 59 (23.3%) 0.688 (0.317, 1.494) 0.345

Subdural hematoma 32 (61.5%) 97 (38.3%) 2.573 (1.393, 4.752) 0.003 1.222 (0.576, 2.590) 0.602

tSAH 41 (78.8%) 120 (47.4%) 4.131 (2.031, 8.401) <0.001 2.449 (1.046, 5.735) 0.039∗

Surgical treatment (n, %) 36 (69.2%) 112 (44.3%) 2.833 (1.495, 5.367) 0.001 2.473 (1.031, 5.932) 0.042∗

VER (n, %) 7 (13.5%) 36 (14.2%) 0.938 (0.392, 2.240) 0.885

Subdural effusion (n, %) 13 (25.0%) 30 (11.9%) 2.478 (1.189, 5.164) 0.015 1.700 (0.668, 4.327) 0.266

ICU admission (n, %) 34 (65.4%) 87 (34.4%) 3.604 (1.924, 6.750) <0.001 1.891 (0.791, 4.521) 0.152

TBI, traumatic brain injury; OR, odds ratio; GCS, Glasgow Coma Scale; tSAH, traumatic subarachnoid hemorrhage; VER, very early rehabilitation; ICU, intensive care unit. ∗p < 0.05.

notably, prolongs the negative influence of cognitive impairment

on elderly patients with TBI (Farbota et al., 2012; Arenth

et al., 2014; Kim et al., 2021). The hippocampus is a region

responsible for cognitive function, especially memory function.

Biological functions of the hippocampus can be largely impaired by

subarachnoid hemorrhage, the subsequent middle cerebral artery

spasm can reduce blood supply, block synaptic neurotransmission,

and damage plasticity (Tariq et al., 2010; Regnier-Golanov et al.,

2022). Neuroinflammation and oxidative stress in hippocampal

neurons secondary to subarachnoid hemorrhage also contribute

to cognitive impairment (Han et al., 2014; Hu et al., 2021). In

patients with aneurysmal subarachnoid hemorrhage, abnormal

changes in themicrostructure of the whitematter result in cognitive

impairment 3 months after the onset (Reijmer et al., 2018).

Cognitive outcomes vary a lot after contusion and hemorrhage

in different brain regions. Martin et al. (2017) have demonstrated

that the volume of frontal lobe contusion is not linked with

cognitive outcomes, while a larger volume of temporal lobe

contusion predicts a worse cognitive function after 6 months of

injury. A close correlation is identified between the hemorrhage

site and the incidence of dementia within 6 months of cerebral

hemorrhage rather than delayed dementia after 6 months (Biffi

et al., 2016). Our results showed thatmild-to-moderate TBI patients

with temporal lobe contusions had a higher risk of cognitive
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FIGURE 1

Nomogram predicting cognitive impairment at 3 months after mild-to-moderate TBI.

FIGURE 2

Nomogram predicting cognitive impairment at 12 months after mild-to-moderate TBI.

impairment at 3 months post-TBI, but cognitive impairment

at 12 months was not significantly correlated with the site

of contusion.

Hypertension, diabetes mellitus, and hyperlipidemia have not

been the focus of research concerning cognitive impairment

following TBI. Our data demonstrated that hyperlipidemia and
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diabetes mellitus were independent risk factors of cognitive

impairment 3 and 12 months after mild-to-moderate TBI,

respectively. The risk of cognitive impairment in patients with

diabetes mellitus is 1.5–2 times higher than that in patients without

diabetes mellitus (Cukierman et al., 2005). Lachmann et al. (2018)

have found that diabetes mellitus is linked with an increased risk of

postoperative cognitive impairment rather than hypertension. The

negative influence of diabetes mellitus on cognitive function can

be attributed to hippocampal atrophy and cerebral microvascular

damage (van Elderen et al., 2010; Hayashi et al., 2011; Vuletic

et al., 2013). Hyperlipidemia increases the incidence of carotid

intimal thickening, and meanwhile, TBI may accelerate the process

of atherosclerosis (Wang et al., 2018). A synergic effect of

hyperlipidemia and TBI causes carotid atherosclerosis, and the

subsequent cerebrovascular insufficiency or cerebral microinfarct

poses a long-term impact on cognitive function.

Mild-to-moderate TBI patients who were admitted to the ICU

were more likely to have cognitive impairment 3 months after TBI

than those without an ICU admission, which may be linked with

ICU-acquired delirium. A much higher incidence of delirium is

detected in patients admitted to the ICU, which in TBI patients,

can be as high as 60% (Wilson et al., 2023). Delirium is one of the

important causes of long-term cognitive decline (Goldberg et al.,

2020).

We further found that >12 years of education and VER

were identified as protective factors for cognitive impairment at

3 months after mild-to-moderate TBI, which, however, did not

influence cognitive function at 12months. A high level of education

provides a strong cognitive reserve to cope with TBI-induced

physical and psychological challenges (Almeida-Meza et al., 2022).

Cognitive impairment following TBI is found to be associated

with the level of apolipoprotein E ε4 (ApoE-ε4), which reduces

brain metabolism in the medial temporal and prefrontal lobe

of TBI patients (Hellstrøm et al., 2022). Interestingly, a high

FIGURE 3

ROC curves to validate the discrimination of the nomogram

predicting cognitive impairment 3 months after mild-to-moderate

TBI.

level of education is able to reverse the negative influence of

ApoE-ε4 on brain metabolism (Arenaza-Urquijo et al., 2015).

VER is an emerging concept of rehabilitation. Currently, clinical

data supporting the role of VER in TBI are controversial. In a

retrospective cohort study involving acute stroke patients in Japan,

VER is validated to reduce the disability rate of stroke (Matsui

et al., 2010). However, a multi-center randomized controlled

trial (RCT) illustrates that VER does not significantly improve

the quality of life and communication skills of stroke patients

FIGURE 4

ROC curves to validate the discrimination of the nomogram

predicting cognitive impairment at 12 months after

mild-to-moderate TBI.

FIGURE 5

Calibration curves of the nomogram for predicting cognitive

impairment at 3 months after mild-to-moderate TBI.
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FIGURE 6

Calibration curves of the nomogram for predicting cognitive

impairment at 12 months after mild-to-moderate TBI.

compared with conventional nursing care (Cumming et al., 2019;

Godecke et al., 2021). In the present study, VER protected cognitive

function inmild-to-moderate TBI patients possibly due to selection

biases resulting from differences in comorbidities of other injuries,

duration of disease stabilization, and the willingness to cooperate

with rehabilitation exercises. Rigorous-designed RCTs are needed

in future to analyze the clinical benefits of VER for mild-to-

moderate TBI patients.

We finally created two nomograms to predict risk factors

for cognitive impairment after 3 and 12 months of mild-to-

moderate TBI, in which conventional demographic, clinical, and

radiological data were incorporated. Both were accurate to predict

cognitive impairment after TBI, thusmaking it possible to design an

individualized and timely therapeutic strategy to prevent cognitive

dysfunction. There are several limitations in the present study. First

of all, we excluded TBI patients with severe combined injuries,

which limited the application of the prediction models. Second, we

did not retrospectively analyze electroencephalogram (EEG) data

and laboratory testing data in TBI patients, which may influence

the discriminative ability of the nomograms. Third, it was a single-

center retrospective study that lacked external validation. Our

findings should be further validated in multi-center clinical studies.

Conclusion

Age, GCS score, >12 years of education, hyperlipidemia,

temporal lobe contusion, tSAH, VER, and ICU admission are

independent risk factors for cognitive impairment after 3 months

of TBI; meanwhile, age, the GCS scores, diabetes mellitus,

tSAH, and surgical treatment are independent risk factors of

cognitive impairment after 12 months of TBI. Two nomograms,

based on both groups of factors, respectively, showed strong

discriminative abilities for cognitive impairment, which may

be used to assist clinical management of cognitive impairment

following TBI.
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