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Missing data is a naturally common problem faced in medical research.

Imputation is a widely used technique to alleviate this problem. Unfortunately, the

inherent uncertainty of imputation would make the model overfit the observed

data distribution, which has a negative impact on the model generalization

performance. R-Drop is a powerful technique to regularize the training of deep

neural networks. However, it fails to di�erentiate the positive and negative samples,

which prevents the model from learning robust representations. To handle this

problem, we propose a novel negative regularization enhanced R-Drop scheme to

boost performance and generalization ability, particularly in the context of missing

data. The negative regularization enhanced R-Drop additionally forces the output

distributions of positive and negative samples to be inconsistent with each other.

Especially, we design a newmax-minus negative sampling technique that uses the

maximum in-batch values tominus themini-batch to yield the negative samples to

provide su�cient diversity for themodel.We test the resultingmax-minus negative

regularized dropout method on three real-world medical prediction datasets,

including both missing and complete cases, to show the e�ectiveness of the

proposed method.
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1. Introduction

With the rapid development of deep learning techniques, deep neural networks have

gained popularity as a tool for solving complex problems in various domains. Due to its

potential to increase healthcare’s accuracy and effectiveness, the use of deep learning in

medical prediction has drawn a lot of attention (Miotto et al., 2018; Ayon and Islam, 2019).

The analysis and prediction ofmedical data is a challenging issue becausemost of themedical

data is incomplete in nature.

Missing/incomplete data is a pervasive problem inmedical research, arising from various

reasons, including non-response to questionnaires, loss to follow-up, and data entry errors

from institutions (Waljee et al., 2013; Kumar et al., 2017). However, for deep learning

methods, high data quality standards are crucial to ensure robust predictive performance,

and missing data can lead to biased estimation (Jakobsen et al., 2017). Therefore, there is a

need for model development to be more robust to keep a high accuracy in the presence of

missing data (Bell et al., 2014; Mehrabani-Zeinabad et al., 2020).

Typically, there are a variety of approaches to handling the missing data cases. List-

wise deletion (King et al., 1998), where any missing value in their categorical variables

are completely excluded from the data, is the simplest way. However, it causes a loss of

information and brings big problems in many missing data situations. Another approach to
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address missing data is imputation (Schafer and Graham, 2002);

in this method, the missing data is replaced with plausible

substitutions based on the observed data (Batista and Monard,

2003; Mazumder et al., 2010). Unfortunately, due to the

inherent uncertainty of imputation, some missing values might be

incorrectly imputed, which is considered noise. This would make

the model overfit the observed data distribution when learning

from the noise data and have a negative impact on the model

generalization performance.

Regularization is a good way to reduce overfitting in neural

networks by discouraging learning a more complex or flexible

model. By randomly dropping out different subsets of neurons

during training, the dropout (Srivastava et al., 2014) technique

prevents the network from relying too heavily on any particular

feature or combination of features, making it more robust to the

noise imputation cases. Recently, R-Drop (Wu et al., 2021) is

proposed to alleviate the inconsistency between the training and

inference stages by forcing the output distributions of different

sub-models generated by dropout to be consistent with each other,

resulting in a better model generalization ability. Nevertheless, R-

Drop often results in slower convergence and introduces some

instability during training. Moreover, R-Drop does not consider the

difference between positive and negative samples, which prevents

the model from learning robust representations and inhibits

generalization.

To handle the aforementioned problem, in this work, we

propose a novel max-minus negative regularized dropout scheme

to improve the model generalization ability, particularly in the

context of missing data. Concretely, in each mini-batch training,

we maintain the consistency between two distributions from the

same data sample (positive) by different dropout sub-models like

R-Drop. Additionally, we consider involving the inconsistency

between the output distributions of positive and negative samples.

Involving negative samples would make the model learn more

robust representations and avoid overfitting. Previous studies

(Schroff et al., 2015; Ge et al., 2021) elucidate that appropriately

choosing the negative samples is a critical component in deep

learning. We find that the traditional negative sampling strategy of

directly treating different in-batch input data as negative samples

are insufficient for imputation cases. We design a new max-

minus negative sampling technique that uses the maximum in-

batch values to minus the mini-batch to yield the negative samples

providing sufficient diversity for the model.

Themain contributions of this work are summarized as follows.

• We propose a simple, yet effective negative regularization

scheme built upon R-Drop, which maintains both the

consistency between two distributions from the same data

sample and the inconsistency between the output distributions

of positive and negative samples.

• We design a new max-minus negative sampling strategy,

which facilitates convergence and is more effective compared

to the traditional in-batch negative example sampling strategy.

• The resulting max-minus negative regularized dropout

method can be easily applied to both complete and

incomplete/missing data cases to boost model performance

and generalization ability. Extensive experiments and ablation

studies are performed on three real medical prediction

datasets to demonstrate the effectiveness of the proposed

method, particularly in the context of missing data.

The rest of the article is organized as follows: After

summarizing related work in Section 2, we describe some

preliminaries of Swin Transformer and R-Drop in Section 3. Then,

we introduce the proposed method in Section 4. In Section 5, we

conduct a series of experiments to verify the performance of the

proposed method. Section 6 concludes this work.

2. Related work

In this section, we provide an overview of the relevant

literature, focusing on the imputation of missing data,

regularization techniques, and their applications in a variety

of contexts.

2.1. Imputation for missing data

Missing data can significantly hinder the improvement of

classification accuracy (Donders et al., 2006), especially in

medical research, where missing values are common. To address

this issue, imputation has become a common method for

dealing with missing data (Graham et al., 2013), which mainly

involves mean/mode imputation, multiple imputation, Bayesian

imputation, and regression imputation techniques. Mean/mode

imputation replaces missing data with the mean/mode of the

available/observed data (Schneider, 2001; Thirukumaran and

Sumathi, 2012). Multiple imputation entails generating multiple

plausible imputations for each missing value and combining the

results to produce a final estimate (Thirukumaran and Sumathi,

2012). Based on the observed data, Bayesian imputation generates

multiple estimates for each missing value (Ma and Chen, 2018).

Regression imputation predicts missing values based on other

variables in the dataset using a regression model (Thirukumaran

and Sumathi, 2012). Note that multiple imputation, Bayesian

imputation, and regression imputation demand a significant

amount of computational resources when applied to large datasets

(Templ et al., 2011; Enders et al., 2016). For continuous data, one

common approach is mean imputation and regression imputation

(Musil et al., 2002; Zhang et al., 2022). Mode imputation, random

imputation, and Bayesian imputation are commonly used to deal

with the missing data with a boolean value (Bielza and Larrañaga,

2014; Miller et al., 2016).

2.2. Regularization methods

Deep neural networks are capable of learning complex patterns

in data, which can be used for a wide range of applications (Amit,

2019; Spoon et al., 2021; Li et al., 2022; Yang et al., 2023). However,

neural networks can be susceptible to overfitting, which occurs

when a model is trained to match the training data too closely

and consequently fails to adapt to new, unseen data. To address
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overfitting in deep models, numerous regularization techniques

have been proposed, e.g., dropout (Gal and Ghahramani, 2016),

weight decay (Loshchilov and Hutter, 2019), constraint (Teipel

et al., 2017; Fan et al., 2018; Wong et al., 2018), etc. Among

these methods, the dropout technique and its variants have

gained popularity due to their effectiveness, moderate cost, and

compatibility with other regularization methods in neural network

architecture (Moradi et al., 2020; Pham and Le, 2021). Due to

their ability to promote sparsity of weights and their stochastic

nature, dropout methods have also been adapted for use in

other applications, such as contrastive learning for sentence

representation learning (Wang et al., 2018; Gao et al., 2021) and

model uncertainty estimation (Gal and Ghahramani, 2016; Li and

Gal, 2017).

In this paper, we test different imputation techniques for

incomplete medical prediction data. Besides, we propose a simple,

yet effective max-minus negative regularization method built upon

R-Drop to improve the model generalization ability by involving

negative samples in training. Unlike previous works, we design

a new max-minus negative sampling strategy to obtain more

semantically dissimilar negative samples, which would make the

model learn more robust representations.

3. Background

3.1. Notation

Now we present some necessary notations in this paper. For

the training dataset Dtr = {(xi, yi)}
n
i=1, n is the number of the

samples, xi and yi are the input sample and corresponding label,

respectively. (xi, yi) denotes the labeled data pair. For example,

in medical treatment, xi can be the clinical features, such as

dizziness, course of treatment, etc., and yi is the corresponding

target disease. The goal of the model optimization is to learn a

model prediction P(y|x,w). The probability distribution of the

mapping function is also denoted as P(y|x,w), and the Kullback-

Leibler (KL) divergence between two distributions P1 and P2 is

represented by DKL(P
1‖P2).

For a classification task, given the training data Dtr =

{(xi, yi)}
n
i=1, the main learning objective for a deep learning model

is to minimize the cross-entropy loss function, which is as follows:

LCE = −
1

n

n
∑

i

yi log
(

P(yi|xi,w)
)

. (1)

3.2. Swin Transformer

Swin Transformer (Liu et al., 2021), which is derived from

Transformer (Vaswani et al., 2017), is an image classification

model and has been widely used in numerous scenarios. It

first adopts a hierarchical interval sampling strategy to gradually

divide the image into many local images, and each local image

produces a local feature by the Swin Transformer. The Swin

Transformer uses the patch merging module with a hierarchical

structure for reducing the resolution and adjusting the number

of channels in the image. Furthermore, this design can save a

certain amount of computational consumption. Swin Transformer

contains two mechanisms: W-MSA and SW-MSA, which could

perform multi-scale self-attention calculation on the input feature

map and increase the receptive field of the model by window

translation operation.

3.3. R-Drop

Although the introduction of dropout regularizes well in

many scenarios, it may cause inconsistencies in the training and

reasoning process. In order to alleviate this issue, R-Drop (Wu et al.,

2021) proposes a simple consistency training technique, which

forces the output distributions of various dropout-generated sub-

models to be consistent with each other, to regularize dropout.

Specifically, at each training step, R-Drop feeds the input data xi
to the network’s forward pass twice to produce two distributions

of the model predictions, denoted as P1(yi|xi,w) and P2(yi|xi,w).

Since the dropout operator randomly drops units in a model, the

distributions of P1(yi|xi,w) and P2(yi|xi,w) are different for the

same input xi. Then, R-Drop regularizes the model predictions by

minimizing the bidirectional KL divergence between P1(yi|xi,w)

and P2(yi|xi,w), such that:

L
i
KL =

1

2

(

DKL

(

P
1
(

yi|xi,w
)

‖P2
(

yi|xi,w
))

+

DKL

(

P
2
(

yi|xi,w
)

‖P2
(

yi|xi,w
)))

. (2)

Making the trained model’s error on the test set as small as

feasible is one of the main goals of machine learning research. The

test error rate of a full model, R
(

f Full
)

, is defined as:

R
(

f Full
)

≤
∣
∣R

(

Eε

(

fε
))

− RT
(

Eε

(

fε
))∣

∣

︸ ︷︷ ︸

ǫgb

+

RT
(

Eε

(

fε
))

︸ ︷︷ ︸

ǫte

+
∣
∣R

(

f Full
)

− R
(

Eε

(

fε
))∣

∣

︸ ︷︷ ︸

ǫsf

, (3)

where RT(Eε(fε)) denotes the training error of sub-models,

R(Eε(fε)) denotes the test error sub-models, ǫgb is the generalization

bound of the sub-models, ǫte denotes training error in the training

process, and ǫsf indicates the gap between the sub-models and full

model. R-Drop shows that the gap between the sub-model and full

model is upper bounded by the gap between the sub-models:

ǫsf ≤ O
(

Eε,ε′ ,ε!=ε
′

(

G
(

fε′ fε′
)))

︸ ︷︷ ︸

gap between sub-models

. (4)

R-Drop optimizes the bidirectional KL-divergence of sub-

models (shown in Equation 2) to alleviate the training-inference

mismatch in the deep neural network model with a dropout

mechanism.

4. Proposed method

In this section, we first introduce the missing data imputation

process. Then we present the negative regularization enhanced R-

Drop scheme that involves the negative samples to further improve
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FIGURE 1

The overall flow diagram of the proposed method. Firstly, the original missing data xrow will be imputed as x. Then, the negative samples xng are

generated from the proposed max-minus negative sampling technique. Finally, the input data x and negative samples xng are used to train the model.

LCE is the loss function of the classification task. LKL and LNG are used to jointly improve the model generalization ability.

the model generalization and elaborate the proposed max-minus

negative sampling technique. Finally, we give the pseudocode of

the proposed method. Figure 1 shows the overall flow diagram of

the proposed method.

4.1. Imputation for missing data

In medical research, missing data is a prevalent issue caused

by a variety of factors, including loss to follow-up, incomplete

responses to questionnaires or surveys, and data entry errors.

If missing data cannot be handled properly, they can result

in misleading estimations and have a negative impact on the

model generalization performance. To avoid bias and improve the

precision of their findings, it is essential that researchers select an

appropriate method for handling missing data.

Imputation is a widely used technique for handling missing

data cases. In medical research, some features are characterized by

continuous values, such as the course of treatment and the age of

the patient. While many other features, such as sex and dizziness,

are represented by boolean values. Hence, the imputation operation

is different for continuous and boolean values.

In this paper, we tried mode imputation, random imputation,

and Bayes imputation to deal with the boolean missing data

and employed the average imputation to impute the continuous

missing data. We evaluate the effect of different imputation

techniques through a variety of classification models. In light of

their prediction results, the mode imputation technique is applied

in our final implementation.

4.2. R-Drop with negative regularization

Based on the randomness introduced by the dropout

mechanism, R-Drop (Wu et al., 2021) is proposed to regularize

the output predictions of the model. Specifically, as shown in

Figure 2A, R-Drop forces the output distributions of different sub-

models generated by dropout to be consistent with each other,

resulting in better performance and model generalization ability.

However, R-Drop did not consider the difference between positive

and negative samples, which prevents the model from learning

diverse feature representations among different categories and

impedes the model’s generalization ability. In such cases, the model

would become overly complex and memorize the observed data

distribution, where overfitting may occur.

Negative sampling is an essential technique for preventing

overfitting and enhancing performance (Zhou et al., 2016).

Therefore, to address the drawback of R-Drop, we propose a

negative regularization-enhanced R-Drop scheme that takes the

negative instances into account. The overall framework of the

proposed negative regularization-enhanced R-Drop scheme is

demonstrated in Figure 2B. Specifically, in addition to making the

positive samples xi pass through the model twice like R-Drop

[resulting in P1(y|x,w) and P2(y|x,w)], our method will make

the negative instances xng pass through the model to obtain a

distribution Png(y|xng ,w). Intuitively, the negative distribution

Png(y|xng ,w) should be different from two positive distributions

P1(y|x,w) and P2(y|x,w), which could help the model learn

more diverse feature representations and increase the model

generalization ability.

At each training step, we aim to (1) minimize the bidirectional

KL divergence betweenP1(y|x,w) andP2(y|x,w), (2)maximize the

distance between Png(y|xng ,w) and P1,2(y|x,w), and (3) match the

predictive class to the actual class label. Specifically, for target (1),

we use the same regularization objective as R-Dropwith Equation 2.

For target (2), we maximize the mean square error (MSE) between

the negative and positive output distributions, which is:

LNG = (
1

2
(P1(y|x,w)+ P

2(y|x,w))− P
ng(y|xng ,w))

2. (5)

For target (3), we optimize the cross entropy learning objective

LCE of the two forward passes P1(y|x,w) and P2(y|x,w):

LCE = −y log
(

P
1
)

− y log
(

P
2
)

. (6)

Hence, the final training objective is to optimize L for given

data (x, y),

L = LCE + α(LKL − LNG), (7)

where α is the coefficient weight. In order to avoid the introduction

of more hyperparameters, we only use α to control the weight of
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FIGURE 2

The overall framework for R-Drop and the proposed negative regularization enhanced R-Drop scheme. The backbone is based on Swin Transformer.

(A) In R-Drop, the input data x goes through the model with a dropout mechanism twice, resulting in two di�erent distributions, i.e., P1(y|x,w) and

P2(y|x,w). d1 denotes the bidirectional KL divergence between P1(y|x,w) and P2(y|x,w). (B) R-Drop with negative regularization additionally

introduces negative samples xng to obtain a distribution Png(y|x,w). d2 and d3 represent the distance between the negative and two positive samples.

losses LKL and LNG. Compared to the loss function of the R-Drop

method, the proposed method additionally incorporates LNG into

the learning process.

Recalling the definition for the test error of the full model,

combined with the training objective in Equation 7, we have:

R
(

f Full
)

≤
∣
∣R

(

Eε

(

fε
))

− RT
(

Eε

(

fε
))∣

∣

︸ ︷︷ ︸

LNG→ǫgb

+RT
(

Eε

(

fε
))

︸ ︷︷ ︸

LCE→ǫte

+

∣
∣R

(

f Full
)

− R
(

Eε

(

fε
))∣

∣

︸ ︷︷ ︸

LKL→ǫsf

, (8)

where the LCE is used to minimize the training error. Meanwhile,

our method uses the LKL loss to alleviate the training-inference

mismatch like R-Drop. Besides, our method also optimizes the

positive and negative divergence of sub-models to reduce the

generalization error of the sub-models with LNG loss. Intuitively,

the proposed negative regularized dropout scheme could make the

model learn more robust representations by considering diverse

features from positive and negative samples. In this way, the

proposed method regularizes the model space beyond dropout

to maximize the distinction of different classification samples in

the dataset.

4.3. Max-minus negative sampling

Typically, the different subsets of the original sample are

considered positive samples, and the rest of the samples in the batch

are considered negative samples. Unfortunately, such negative

sampling does not bring sufficient diversity to the model, especially

when it comes from the context of the same source domain. To

reduce this issue, in this paper, we present a novel max-minus

negative sampling strategy where the generated negative samples

are unrelated to any category in the dataset. Generally, as shown

in Figure 3, the procedure of the proposed max-minus negative

sampling contains two stages. Concretely, the first stage is picking

up the maximum values of all features in a mini-batch xb, i.e.,

max(xb). The second stage employs the collected maximum values

minus the mini-batch to yield the negative samples xng , i.e., xng =

max(xb) − xb. In this way, the collected negative samples are

quite different from the dataset samples. Then, the negative output

distribution Png(y|xng ,w) is obtained by feeding negative samples

xng to the model with a dropout. In summary, the proposed

max-minus negative sampling strategy produces more semantically

dissimilar negative samples, ensuring sufficient diversity in the

negative samples. For example, in our generated negative samples,

after the max-minus operation, a patient who is 6 years old has

a course of treatments lasting 5 years, which is irrational. Hence,

these negative samples can help improve the model’s robustness

and avoid overfitting in the training and reasoning process.

4.4. Algorithm summary

In this paper, we utilize Swin Transformer as our feature

extraction backbone. The overall framework of the proposed

algorithm is presented in Algorithm 1. We initialize the parameters

of Swin Transformer and prepare training data Dtr = {(xi, yi)}
n
i=1.

At each training step, Lines 2–3 acquire the positive and negative

data from Dtr . Lines 4–5 obtain the model output distributions

P1(yi|xi,w), P
2(yi|xi,w), and Png(yi|xng ,w). Lines 6–8 calculate

the loss function, and Line 9 updates the model parameters.

5. Experiments

5.1. Datasets description

Three medical prediction datasets were used in our

experiments. The Pima Indian Diabetes (PID) dataset and
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FIGURE 3

The sketch for the proposed max-minus negative sampling technique.

Input: Initialize model parameters w, training

data Dtr = {(xi, yi)}
n
i=1.

Output: model parameters w.

1 while not convergence do

2 randomly sample positive data pair from

training data, (xi, yi) ∼ Dtr;

3 construct negative data xng according to

sampled training data (xi, yi);

4 feed the positive data xi twice and obtain the

positive distributions P1(yi|xi,w) and P2(yi|xi,w);

5 feed negative data xng and obtain the negative

distribution Png (yi|xng ,w);

6 calculate the KL-divergence loss LKL by

Equation 2;

7 calculate the MSE loss LNG by Equation 5;

8 calculate the cross-entropy loss LCE by

Equation 6;

9 update the model parameters by minimizing loss

L of Equation 7.

10 end

Algorithm 1. The pseudocode of the proposed algorithm.

the Wisconsin Breast Cancer (WBC) dataset were obtained from

the UCI machine learning repository (ASUNCION, 2007), which

are open-source databases. The third dataset (our dataset) was

collected from the Chinese National Science and Technology

Major Project TCM Syndrome Biological Technology Platform.

The statistics of the three datasets are shown in Table 1. Note that

WBC and PID datasets are complete, but our dataset contains

275 missing values. When making a medical diagnosis, in some

circumstances, a conclusive diagnosis might not be achievable until

more characteristics are obtained, especially for the traditional

Chinese medicine treatment situation. Hence, for analysis

purposes, any data with more than three missing values have been

excluded from our dataset.

TABLE 1 The statistics of the three datasets.

Statistics WBC
dataset

PID
dataset

Our
dataset

No. of

instances

683 768 1920

No. of

categories

2 2 7

No. of features 9 8 24

No. of missing

values

0 0 275

No. of training

instances

478 537 1,344

No. of testing

instances

205 231 576

Our dataset was collected from traditional Chinese medicine

treatments for T2DM syndrome. The diabetes syndromes are

divided into seven classes, including Qi and Yin deficiency with

blood stasis, Qi and Yin deficiency, Qi and Yin deficiency with

dampness, Qi deficiency and blood stasis, dampness and blood

stasis, dampness and heat, and Qi stagnation and blood stasis.

Our dataset consists of 24 features, where the age and course

of treatment of the patient are continuous values, and the other

features are boolean values. Note that only the boolean features

contain incomplete data. Additionally, our dataset indicates that

there are more male patients than female patients, with a higher

number of patients in the age group of 40–80 years old and a

course of 5–20 years. The primary symptoms of the disease include

dry mouth, thirst, numbness, and tingling of the lower limbs.

Note that our collected dataset does not include missing data for

continuous values.

The WBC dataset includes extracted features from images,

which comprises 683 data points, each with nine feature

descriptions. The feature values range from 1 to 10, with 1

indicating a normal or benign case and 10 indicating the most

abnormal case, based on the diagnosis. The Pima Indian Diabetes

(PID) dataset comprises 768 data points, each with eight medical
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features. Of these, 268 data points correspond to diabetic patients,

while 500 data points correspond to individuals without diabetes.

5.2. Comparison algorithm and training
details

5.2.1. Comparison algorithm
Our proposed algorithm utilizes the widely popular Swin

Transformer (Liu et al., 2021) network as the model structure. In

this paper, our experiments compare the following algorithm:

• Deep neural network (DNN): it is a type of neural network that

has multiple layers allowing it to learn and represent complex

patterns in data.

• ResNet50 architecture (He et al., 2016): it is a variant

of the ResNet model which has 50 layers and utilizes

residual connections to enable training of much deeper neural

networks.

• Transformer (Vaswani et al., 2017): it is a neural network

architecture that utilizes self-attention mechanisms to

process sequential data, commonly used in natural language

processing tasks such as language translation and text

generation.

• Swin Transformer (Liu et al., 2021): it is a recent variant of the

Transformer architecture that introduces hierarchical feature

extraction and window-based self-attention to achieve state-

of-the-art performance in computer vision tasks such as image

classification and object detection.

• R-Drop (Wu et al., 2021): the R-Drop method aims

to regularize the model predictions by minimizing the

bidirectional KL divergence to improve the model’s

generalization. Note that the R-Drop method applied in

this paper is also based on the Swin Transformer structure.

5.2.2. Implementing and training details
We directly use the open-source implementation based on

PyTorch1 for the comparison algorithms. DNN is a 5-layer deep

learningmodel with 256 hidden-size layers.We use the open source

for ResNet502 and Transformer.3 In this paper, our proposed

algorithm and R-Drop are implemented on the Swin Transformer.4

Additionally, we set the embedding size and hidden size to be the

same for all methods for a fair comparison. For Swin Transformer,

we configure the path size to 4, the window size to 7, the embedding

size to 96, the model’s depths to [2, 2, 4, 2], and the number of

classification heads to [2, 2, 2, 4]. Each method runs five trials for

obtaining the average performance.

1 https://github.com/pytorch/pytorch

2 https://github.com/wangyunje�/ResNet50-MNIST-pytorch

3 https://github.com/huggingface/transformers

4 https://github.com/microsoft/Swin-Transformer

TABLE 2 Confusion matrix.

True positive True negative

Predicted positive TP FP

Predicted negative FN TN

5.2.3. Evaluation metrics
As presented in Table 2, a confusion matrix shows how many

predictions are correct and incorrect per class. For investigating

the performance of the classification model, this paper used the

following metrics:

• Accuracy: it measures the percentage of correctly classified

instances out of all instances in the dataset, i.e., Accuracy =
TP+TN

TP+TN+FP+FN .

• F1 score: it represents the harmonic means of precision and

recall, i.e., F1 = 2×TP
2×TP+FP+FN .

5.3. Main results

The performance comparison for all methods is presented in

Table 3 and Figure 4. In Figure 4, the solid curve represents the

averaged F1 score over five random trials, while the shaded region

indicates one standard deviation. Additionally, the maximum

average performance in Table 3 is the highest average value

obtained from five trials. These results have the following

suggestion: (1) our method outperforms or matches the baselines

in terms of final performance across all datasets (including missing

and complete datasets). For example, compared with the famous

methods such as Swin Transformer, our method obtains 0.7392

(+3.81%) on accuracy and 0.6811 (+5.85%) on F1 score on the PID

dataset, respectively; (2) regularization methods (R-Drop and ours)

present better performance compared to other methods, which

clearly shows the effectiveness of the regularization technique.

Moreover, our method outperforms R-Drop (removing negative

regularization, our method reduces to base R-Drop), which directly

validates the effectiveness of the proposed negative regularization

scheme; (3) our method exhibits a superior convergence rate

compared to the baselines. Particularly, in our dataset, our method

learns significantly faster than other methods; (4) our method

achieves excellent model stability compared to other methods

across all datasets, especially in our collected dataset. These results

confirm that the proposedmax-minus negative regularized dropout

scheme improves the model generalization ability and maintains

the training stability, particularly in the context of missing data.

5.4. Ablation study

In this section, we conduct extensive ablation studies from

different perspectives to gain a better understanding of the

proposed method. The experiments are performed on the

three datasets.
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TABLE 3 Performance comparison on three datasets.

Methods
WBC PID Our dataset

Accuracy F1 score Accuracy F1 score Accuracy F1 score

DNN 0.8115 0.7989 0.6494 0.5443 0.6427 0.5703

ResNet50 0.8992 0.8788 0.7232 0.6517 0.8713 0.8244

Transformer 0.9715 0.9598 0.7013 0.6473 0.8819 0.8524

Swin Transformer 0.9633 0.9554 0.7013 0.6226 0.9019 0.8475

R-Drop 0.9781 0.9602 0.6897 0.6463 0.9349 0.8938

Our method 0.9854 0.9762 0.7392 0.6811 0.9461 0.9101

The highest metrics are bolded.

FIGURE 4

The evaluation curve of all methods on three datasets. The solid curves represent the mean of the evaluated data, while the shaded region indicates

one standard deviation over five runs.

TABLE 4 Performance evaluation of di�erent models with various imputation methods on our collected datatset.

DNN ResNet50 Transformer SwinTransformer R-Drop Ours
Imputation

F1 score F1 score F1 score F1 score F1 score F1 score

Mode 0.5703 0.8244 0.8524 0.8475 0.8938 0.9101

Random 0.5844 0.8053 0.8448 0.8281 0.8924 0.8938

Bayesian 0.4717 0.8298 0.8503 0.8299 0.8841 0.8524

NaN-replace 0.4690 0.8098 0.8349 0.8162 0.8467 0.8998

The NaN-replace imputation method means utilizing a default value to replace all missing values, such as−1. The best performance is highlighted in bold.

5.4.1. Imputation for missing data
Missing data is a common occurrence in medical

datasets for various reasons. We employed mode imputation,

random imputation, Bayesian imputation, and NaN-replace

imputation to fill in missing data with a boolean value

(since our dataset didn’t have missing data with continuous

values). To investigate the impact of imputation techniques

on performance, we tested all comparison methods with

different imputed datasets. The experimental results are

shown in Table 4. The mode imputation method achieves the

best performance compared to other imputation techniques.

Additionally, Bayesian imputation delivers a better F1 score result

on ResNet50.

5.4.2. Negative sampling techniques
The negative sampling aims to provide the model with a

wider range of examples to learn general patterns, which can

enhance its ability to accurately differentiate between target

and noise cases. In medical prediction data, different disease

symptoms may exhibit subtle differences in clinical characteristics.

Therefore, randomly selecting samples from the dataset may not

be the most effective approach for improving the model’s ability

to capture subtle differences. We designed an experiment to

evaluate the impact of different negative sampling techniques on

classification performance based on our method. The results of

our trial are presented in Figure 5, which clearly demonstrate that

the proposed max-minus negative sampling technique delivers
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FIGURE 5

Performance evaluation of di�erent negative sampling techniques on three datasets. Random generation means generating samples randomly

within a given range, but the generated samples are not existing in the dataset. In-batch data is randomly choosing samples from the dataset that are

not subject to the target class. Max-minus is the proposed negative sampling technique.

TABLE 5 Performance evaluation of our method with di�erent dropout rates.

WBC PID Our dataset
Dropout rate

Accuracy F1 score Accuracy F1 score Accuracy F1 score

0.1 0.9854 0.9647 0.6935 0.6714 0.9349 0.9028

0.2 0.9781 0.9722 0.7362 0.6811 0.9323 0.9028

0.3 0.9854 0.9762 0.7338 0.6757 0.9461 0.9101

0.4 0.9781 0.9671 0.7232 0.6757 0.9297 0.8938

0.5 0.9528 0.9368 0.6802 0.6463 0.8933 0.8524

The best performance is highlighted in bold.

the best performance on all datasets compared to other negative

sampling strategies. For example, the proposed max-minus

negative sampling technique achieves an average improvement

in accuracy by 3.49% and an F1 score by 1.37% on the PID

dataset, respectively.

5.4.3. Dropout rates
We study the performance of the proposed method with

different dropout rates. Specifically, we set various dropout values

to train our model. The experimental results are shown in

Table 5. As we can see that with a wide range of dropout

rates, our method consistently yields strong results. Even if

the dropout rate is 0.5, meaning that half of the units

are expected to be dropped randomly, our method can still

achieve a satisfactory result (0.8524 F1 score) in comparison

to the base Swin Transformer (0.8475 F1 score) on our

dataset. These results confirm the effectiveness and robustness of

our method.

5.4.4. Comparison of the KL loss and MSE loss
A well-designed loss function is essential for achieving good

performance in machine learning tasks as it ensures that the model

can learn meaningful patterns from the data and make accurate

predictions. We designed an experiment to explore the impact

of different loss functions for maximizing negative and positive

output distributions on classification performance. Specifically,

to enhance the model’s ability to distinguish different categories’

samples, we utilized bidirectional KL divergence loss and MSE

loss to measure the negative and positive prediction distributions.

The experimental results are demonstrated in Figure 6. Our results

indicate that the MSE loss function outperforms the bidirectional

KL divergence loss function in terms of the final performance.

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1221970
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hu et al. 10.3389/fnins.2023.1221970

FIGURE 6

Performance evaluation of our method with di�erent negative loss functions.

TABLE 6 Performance evaluation of our method with di�erent α.

α

WBC PID Our dataset

Accuracy F1 score Accuracy F1 score Accuracy F1 score

0.001 0.9781 0.9647 0.6958 0.6729 0.8971 0.8852

0.01 0.9854 0.9762 0.7062 0.6782 0.9349 0.9013

0.1 0.9781 0.9518 0.7062 0.6684 0.9323 0.9163

1 0.9665 0.9437 0.7338 0.6757 0.9270 0.8938

2 0.9781 0.9647 0.7362 0.6811 0.9461 0.9101

4 0.9528 0.9368 0.7332 0.6757 0.9297 0.8938

The best performance is highlighted in bold.

For instance, on PID, the MSE loss achieved a performance

improvement in accuracy by 3% and F1 score by 1.27% compared

to the bidirectional KL divergence loss function.

5.4.5. E�ect of weight α

Further, we explore the impact of the loss weight α by

varying the weight α. As shown in Table 6, we have the

following observation: (1) the best performance on each

dataset is derived from different loss weight α, (2) larger α

usually results in better performance compared to smaller

ones. These findings mean that the choice of α varies across

datasets. Different data distributions should use different

α to regularize the model, depending on the specific data

size for each task and how easily the model size can lead

to overfitting.

6. Conclusion

In this paper, we propose a simple, yet effective negative

regularization scheme built upon R-Drop to further boost

performance and generalization ability, particularly in the context

of missing data. The proposed negative regularization enhanced

R-Drop scheme maintains both the consistency between two

distributions from the same data sample and the inconsistency

between the output distributions of positive and negative samples.

Besides, we design a new max-minus negative sampling strategy,

which facilitates convergence and is more effective compared

to the traditional in-batch negative example sampling strategy.

Extensive experimental results on three real-world medical datasets

including both complete and missing data cases validate the

effectiveness of the proposed method, particularly in the context of

missing data.
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