
TYPE Original Research

PUBLISHED 14 July 2023

DOI 10.3389/fnins.2023.1221740

OPEN ACCESS

EDITED BY

Alois C. Knoll,

Technical University of Munich, Germany

REVIEWED BY

Yingbai Hu,

Technical University of Munich, Germany

Wang Juan,

South China University of Technology, China

*CORRESPONDENCE

Dan Huang

dan78huang@163.com

RECEIVED 12 May 2023

ACCEPTED 20 June 2023

PUBLISHED 14 July 2023

CITATION

Qiu H, Huang D, Zhang B and Wang M (2023) A

novel multidimensional uncalibration method

applied to six-axis manipulators.

Front. Neurosci. 17:1221740.

doi: 10.3389/fnins.2023.1221740

COPYRIGHT

© 2023 Qiu, Huang, Zhang and Wang. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A novel multidimensional
uncalibration method applied to
six-axis manipulators

Haitao Qiu1, Dan Huang2*, Bo Zhang3 and Ming Wang3

1School of Electric Power Engineering, South China University of Technology, Guangzhou, China,
2School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou,

China, 3School of Mechanical Engineering, Ningxia University, Yinchuan, China

This study proposes a multidimensional uncalibrated technique for tracking

and grasping dynamic targets by a robotic arm in the eye-in-hand mode.

This method avoids complex and cumbersome calibration processes, enabling

machine vision tasks to be adaptively applied in a variety of complex environments,

which solved the problem of traditional calibration methods being unstable in

complex environments. The specific method used in this study is first, in the

eye-in-hand mode, the robotic arm moves along the x, y, and z axes in sequence,

and images are taken before and after each movement. Thereafter, the image

Jacobian matrix is calculated from the three (or more) sets of images collected.

Finally, the robotic arm converts the target coordinates in the real-time captured

images by the camera into coordinates in the robotic arm coordinate system

through the image Jacobian matrix and performs real-time tracking. This study

tests the dynamic quasi-Newton method for estimating the Jacobian matrix

and optimizes the initialization coupling problem using the orthogonal moving

method. This optimization scheme significantly shortens the iteration process,

making the uncalibrated technology more fully applied in the field of dynamic

object tracking. In addition, this study proposes a servo control algorithm with

predictive compensation tomitigate or even eliminate the systematic error caused

by time delay in dynamic target tracking in robot visual servo systems.

KEYWORDS

image Jacobianmatrix, machine vision, uncalibrated visual servo, dynamic quasi-Newton

algorithm, robot

1. Introduction

In the 1960s, due to the development of robotics and computer technology, people began

to study robots with visual functions, and in the 1980s, the concept of robot visual servo was

proposed. In the following decades, robot visual servoing underwent rapid development.

Visual servo control mainly inputs visual information provided by visual sensors into the

control system, enabling the control system to process external information. Traditional

robot visual servo systems are mostly implemented based on system model calibration

technology (Gans, 2003; Huang et al., 2022), which mainly involves models such as camera

models, robot models, and target object models. The camera model refers to the internal

and external parameters of the camera; the robot model generally refers to the robot

kinematics model; the target model mainly refers to the depth information from the target

to the end of the robotic arm, as well as the pose and motion parameters of the target

in a fixed coordinate system. In the traditional robot visual servo system, the first step

is to complete the calibration of the camera and the calibration between the camera and

the robot (Hutchinson et al., 1996) to obtain an accurate conversion matrix between the
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image coordinate system and the robot coordinate system. Then,

based on the calibrated transformation matrix, the coordinates

of the target object in the image captured by the visual system

are converted to obtain the pose of the robot in the coordinate

system. Finally, the robot tracks, locates, and grasps the target

object in the camera’s field of view based on the converted

coordinate information (Kang et al., 2020). Throughout the entire

work process, the accuracy of the transformation matrix between

the image coordinate system and the robot coordinate system is

heavily dependent (Malis, 2004). The calibration work between the

camera and the robot is extremely cumbersome, requiring data

such as the internal and external parameters of the camera, the

motion model of the robot model, and the position relationship

between the camera and the fixed position of the robot. However,

in practical applications, replacing the camera or camera lens,

or loosening the installation position between the camera and

the robot can cause deviation in the calibration results, requiring

complex calibration work to be carried out again. The traditional

calibration methods for robot visual servo systems make it difficult

for them to operate in complex working environments, which is

currently a bottleneck limiting the development of robot visual

servo systems.

To break the bottleneck, researchers have begun to focus on

studying the “eye-in-hand” structure visual servo control method

for calculating the image Jacobian matrix without knowing system

parameters. The robot visual servo system still needs to overcome

many technical difficulties to be put into normal use in various

complex production environments.

The development of uncalibrated technology between

cameras and robots without knowing system parameters

can be divided into multiple stages: 1. The robot visual

servo system achieves precise positioning and grasping

of static targets through uncalibrated technology; 2. the

robot visual servo system achieves tracking and positioning

of dynamic targets through uncalibrated technology;

and 3. the robot visual servo system achieves practical

production applications with low latency and high accuracy

in complex environments.

The fundamental goal of implementing a robot visual servo

system is to achieve precise positioning and grasping of static

targets. Hosoda and Asada first proposed the exponential weighted

recursive least squares method to obtain the Jacobian matrix.

This method achieves servo tracking and positioning of stationary

targets in an uncalibrated state, but there are still shortcomings

in terms of system stability and accuracy of image feature

extraction (Hosoda and Asada, 1994; Cao et al., 2022a,b). Yoshimi

and Allen introduced an additional robotic arm to explore

motion and observed corresponding changes in image features

during each calculation cycle. Then, they combined the least

square method to calculate the Jacobian matrix of the current

image, achieving more accurate two-dimensional target tracking.

However, this method is too cumbersome and lacks real-time

performance, making it difficult to apply in practical work

(Yoshimi and Allen, 1995). In addition, many researchers have

obtained the image Jacobian matrix by converting the online

estimation of the Jacobian matrix into system state observation

(Jianbo, 2004) or recursive formula calculation (Longjiang et al.,

2003) and tested the algorithm from four aspects: initial value,

operating range, stability, and robustness. Simulation experiments

have been conducted to verify the reliability of the algorithm

(Hao and Sun, 2007). At this stage, it is possible to use

robot visual servo systems for positioning and grasping static

targets in industrial production applications that meet various

requirements (Singh et al., 1998). Compared to traditional

calibration methods (Jingmei et al., 2014), it avoids the tedious

process of repeated calibration.

With the development of production technology, the function

of only achieving precise positioning and grasping static targets

no longer meets the production needs of enterprises. Therefore,

Piepmeier proposed the Broyden method to estimate the image

Jacobian matrix, thereby achieving tracking and positioning of

moving targets. However, when the deviation of image features is

large, the performance of the control system will decrease, even

leading to control failure (Piepmeier and Lipkin, 2003). When the

robot visual servo system tracks irregularlymoving targets (Haifeng

et al., 2010), it is necessary to improve the real-time performance

of the system (Zaien et al., 2014) and the convergence speed of

the image Jacobian matrix (Chang et al., 2020). However, while

ensuring the real-time performance of the system, it can also lead

to problems such as slow recognition speed and low accuracy of the

visual system during high-speed movement. Many researchers have

combined BP neural networks and genetic algorithms (Samad and

Haq, 2016; Chen et al., 2020; Yuhan et al., 2021;Wu et al., 2022) and

applied them to real-time image processing in the visual system,

improving the processing speed of the visual system, improving the

processing speed of the visual system. In addition, it is necessary

to improve the robustness of the robot’s visual servo system (Li

et al., 2009; Hao et al., 2020) to adapt to stable operation in

various complex environments. For example, in the field of medical

equipment, the robot servo system needs to operate absolutely

accurately and stably (Piepmeier, 2003; Gu et al., 2018; Zhang et al.,

2020), thus improving the robustness and anti-interference of the

system is very important (Cao et al., 2021; Gao and Xiao, 2021).

This study researches the application background of tracking

and trajectory coverage of irregular dynamic targets. First, an

online estimation test of the dynamic quasi-Newtonian Jacobian

matrix was conducted in the simulation system. After analyzing

the simulation test results, the system initialization process was

targeted and optimized, significantly improving the convergence

speed of Jacobian matrix iteration. In addition, this study also

proposes a predictive compensation Jacobian matrix PI control

algorithm to solve the lag problem of the visual system in the

dynamic tracking process, effectively improving the accuracy of the

robot servo system in the dynamic tracking process.

The remainder of this article is structured as follows. In

Section 2, a detailed introduction is given to the control

system. This includes the hardware composition of the control

system, theoretical deduction of uncalibrated technology, and an

introduction to servo control algorithms. In Section 3, we present

the experimental results and discuss them. These results include the

iterative process for the proposed uncalibrated visual servo system

and the optimized iterative process. In addition, a comparative

analysis of the research and experimental data conducted in this

study is also presented in Section 4.
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FIGURE 1

Bozhilin 6-axis robotic arm platform.

FIGURE 2

Schematic diagram of the eye-in-hand model.

2. Control system

2.1. Operating platform

The robot uncalibrated servo technology reviewed in this study

is based on the application of tracking and coating trajectories

to moving targets. The technology analyzed in this study can be

applied to different fields such as the application of mobile robots

to building cracks and robot welding. The robot platform used in

this study is a six-axis industrial robot independently developed

by Bozhilin, as shown in Figure 1. A Daheng high-speed industrial

camera is installed at the end of the robotic arm to collect image

information within the working range of the robotic arm. The

camera used needs to have a large field of view, as the target

object cannot leave the camera’s field of view during uncalibrated

initialization; otherwise, it will cause the Jacobian matrix error to

increase. The camera and robot are installed in the eye-in-hand

mode, and the model diagram is shown in Figure 2.

FIGURE 3

Camera pinhole imaging model.

2.2. Process of uncalibration

Uncalibration technology, such as traditional calibration

techniques, is used to describe the relationship between the speed

of robot end effectors and the rate of feature change in the image.

Assuming a point P in three-dimensional space, based on the

traditional camera pinhole imaging model as shown in Figure 3, it

can be concluded that

{

xi =
f
zc
xc

yi =
f
zc
yc

(1)

Pc(xc, yc, zc) is the coordinate of point P in the camera

coordinate system, Pw(xw, yw, zw) is the Cartesian coordinate

of point P in the world coordinate system (robotic arm base

coordinate system), PI(xi, yi) is the projection coordinate of point

P in the camera plane coordinate system, and (ui, vi) is the pixel

coordinate in the pixel plane coordinate system.

The relationship between the camera imaging plane coordinate

PI(xi, yi) and the pixel plane coordinate (ui, vi) is

{

ui =
xi
dx

+ u0
vi =

yi
dy

+ v0
(2)

In the above equation, u0 and v0 are the pixel coordinates of

the penetration point of the camera’s optical axis in the pixel plane,

while dx and dy represent the spatial distance represented by a

single pixel in theX andY directions in the pixel plane, respectively.

Convert the above equation into a matrix equation as follows:
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FIGURE 4

Framework diagram of the robot servo system.

FIGURE 5

Simulation model of Puma560 Robot Arm Servo System.
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(3)

Assuming that the focal length of the camera is f, under the

ideal pinhole model of the eye-in-hand system, the conversion

relationship between the camera coordinate system and the pixel

coordinate system is

[

ui
vi

]

=
f

zc

[

xc
yc

]

(4)

According to the motion equation of the robot’s end effector,

we have

Pc = �c
∗ Pc + Tc (5)











xc = zcwy + Tx −
vizc
f
wz

yc =
uizc
f
wz − zcwx + Ty

zc =
vizc
f
wx −

uizc
f
wy + Tz

(6)

Converting the above equation into a matrix equation, we

obtain as follows:

[

u

v

]

=





f
zc

0 −
ui
zc

−
uivi
f

f 2+u2i
f

−vi

0 −
f
zc

−
vi
zc

−
f 2+V2

i
f

uivi
f

ui



 ·

[

Tc

�c

]

(7)

In practical applications, it is impossible to obtain the

transformation matrix between (ui, vi) and [Tc,�c]T by measuring
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FIGURE 6

Initial position of the servo system.

FIGURE 7

Position of the servo system in the end.

each variable in the above equation. Therefore, the variables in the

matrix are considered unknown:

[

u

v

]

=

[

a11 a12 a13 a14 a15 a16
b11 b12 b13 b14 b15 b16

]

·



















Tx

Ty

Tz

ωx

ωy

ωz



















(8)

On the six-axis robotic arm platform, a single feature pixel does

not meet the dimensional requirements, so three feature points are

taken and stacked up and down:
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(9)

FIGURE 8

Motion trajectory of feature points in the image plane.

Ḟ represents the rate of change of image features, J0 represents

the Jacobian transformation matrix, and Ṗ represents the motion

vector of the robotic arm end effector. The above equation can be

expressed as follows:

.
F = J0

.
P (10)

In practical applications, we need to convert the two change

rates
.
F of image features to obtain the motion vector

.
P of the

robotic arm end effector, so we need to inverse the Jacobian

matrix J = J0
−1.

.
P = J0

.
F (11)

In application, two change rates of image features are obtained

from two adjacent images, so discretization of equations is also

required. In the process of high-frequency camera image retrieval,

we assume that the Jacobian matrix of adjacent two frames of

images remains approximately unchanged. The discrete equation

can be obtained as follows:

F(n+1) ≈ F(n) + J(n) · 1P(n) (12)

P(n+1) ≈ P(n) + J(n)
-1
· 1F(n) (13)

J = 1F · 1P-1 (14)

During the initialization process of the robot visual servo

system, there is a coupling relationship between multiple

movements of the robot, which can lead to the irreversibility

and solvability of the Jacobian matrix. In order to obtain

a more accurate Jacobian matrix, this article optimized the

initialization process of the robot visual servo system. Therefore,

by standardizing the movement direction of the robotic arm

during the initialization process, the obtained feature point set is

naturally linearly uncorrelated by decomposing the movement

of the robotic arm into independent movements of each degree

of freedom
[

Tx Ty Tz ωx ωy ωz

]

during the initialization

process. When moving in the independent Tx direction,

we get
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FIGURE 9

Characteristic points error control chart. (A) Pixel error of characteristic points on the image. (B) Position error of characteristic points in reality. (C)

Angle error of the robotic arm.
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(16)

After completing the initialization of the image Jacobianmatrix,

it is necessary to update and iterate the matrix in real time to ensure

accuracy during the robot operation process. In the image plane,

the difference between the actual feature and the expected feature is

f (θ , t) = y(θ , t)− y∗, where θ is the joint angle and t is time. Taylor

expansion is performed on the deviation function f (θ , t) and the

radiation model is defined asm(θ , t).

m(θ , t) = f (θk, tk)+ J(θ − θk)+
∂fk

∂t
(t − tk) (17)

At moment k-1, we get

f (θk−1, tk−1) = m(θk−1, tk−1)

= f (θk, tk)+ Jk(θk−1 − θk)+
∂fk
∂t (tk−1 − tk)

(18)

The iterative equation can be obtained as follows:

Jk = Jk−1 +
(1fk − Jk−11θ −

∂fk
∂t 1t)1θ t

1θ t1θ
(19)

2.3. Servo control algorithm

The process of running a robot visual servo control system is

as follows: first, the visual system captures images and processes

them, and then the processed image information inputs into the

robot controller to start the robot moving. There is a time delay

between the visual system capturing images and the robot starting

tomove, which can cause systematic errors in the robot’s tracking of

dynamic targets. Therefore, in the process of robot motion control,

this study designs a Jacobian matrix PI control algorithm with

predictive compensation to reduce systematic errors caused by the

time lag.

Assuming that the expected image feature of the moving target

is f ∗(u∗, v∗) and the actual feature of the robot pose after the image

Jacobian matrix transformation is ft(ut , vt) the actual pose and

expected pose feature error of the system are as follows:

e(t) = f ∗ − ft (20)

In order to improve the real-time performance of the system

and ensure that the target motion speed is fast and can complete

effective tracking tasks, a predictive compensation method is

introduced into the Jacobian matrix control algorithm on the

inverse Jacobian matrix visual servo control algorithm, and a

Jacobian matrix PI control algorithm with predictive compensation

is designed. We define the system image feature error as follows:

eh(t) = f d − f ht (21)

TABLE 1 Characteristic point iteration error data table.

Iterations Image
error/pixel

Position
error/mm

Angle error/◦

1 133.68860 174.48133 98.2602

5 18.79910 17.89122 10.6121

10 6.10400 5.50026 3.6511

15 2.29155 1.76988 1.4074

20 0.70234 0.57714 0.3932

25 0.23001 0.18867 0.1286

30 0.07536 0.06163 0.0420

35 0.02469 0.02002 0.0137

40 0.00809 0.00639 0.0044

45 0.00265 0.00193 0.0014

50 0.00087 0.00047 0.0004

TABLE 2 Optimized feature point iteration error data table.

Iterations Image
error/pixel

Position
error/mm

Angle error/◦

1 133.68860 174.48133 98.2602

2 7.1235 7 4.1

3 2.52 2.1 1.62

4 0.70234 0.57714 0.3932

5 0.4 0.32 0.2

25 0.0043 0.0037 0.0018

50 0.00087 0.00047 0.0004

In the above equation, f ht is the current image feature, and f d is

the expected image feature. The predicted compensation amount ξ

is defined as follows:

ξ = kVimage (22)

Vimage is the rate of change in image features, and k is the

compensation coefficient.

In the process of dynamic target tracking, in order to reduce

system tracking error, the PI control algorithm is introduced into

the inverse Jacobian matrix control algorithm, with a control

amount of

uh(n) = 1f h(n+ 1) = f h(n+ 1)− f h(n) (23)

In order to reduce the impact of system image processing time

delay on the system, the compensation amount will be predicted ξ

bringing it into the control algorithm to obtain the final visual servo

control algorithm:

uh(n+ 1) = J(KPeh(n)+ KI

n
∑

i=0

eh(n))+ kVimage (24)
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FIGURE 10

Error control chart after decoupled optimization. (A) Pixel error of characteristic points on the image. (B) Position error of characteristic points in

reality. (C) Angle error of the robotic arm.

KP and KI represent the proportional and differential

coefficients, while k represents the predictive compensation

coefficient of the system, which is related to the rate of change of

image features. As shown in Figure 4, the robot control system is

combined with the visual system to form a closed-loop robot visual

servo system.

3. Experimental results

3.1. Simulation test

To verify the correctness of the uncalibrated visual servo

algorithm, a robotic arm model, a monocular camera model, and

a target object model were established in the simulation platform

MATLAB by simulating real robotic arm servo experiments. A

camera robotic arm model with “eyes in hand” was adopted,

and the Jacobian online estimation algorithm using the dynamic

quasi-Newton method was used for visual feedback. By using

a visual controller, the control amount is calculated using

image feature deviation to drive the end of the robotic

arm to move toward the target. Finally, the effectiveness of

the uncalibrated visual servo algorithm was verified through

simulation experiments, providing a theoretical basis for practical

development work.

We established a robotic armmodel, monocular camera model,

and target object model in the simulation platform MATLAB. The

robotic arm is a six-axis Puma560 robotic arm. The camera has a
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FIGURE 11

Comparison of iterative convergence before and after initialization optimization. (A) Pixel error of characteristic points on the image. (B) Position

error of characteristic points in reality. (C) Angle error of the robotic arm.

resolution of 1,024 ∗ 1,024, a focal length of 8mm, and is installed

at the end of the robotic arm (eye in hand). The target object is three

small balls located above the robotic arm.

At the initial moment, the end of the robotic arm undergoes

six exploratory movements. As shown in Figure 5, it is a simulation

model of the servo system. The robotic arm is Puma560, and the

camera is installed at the end of the robotic arm in green. The three

blue balls in the picture are the target objects. Robot movement

generates displacement 1P0 at the end of the robotic arm and the

displacement of feature points 1F0 within the image plane. The

initial value of the Jacobian matrix is

J0 = 1F0 · 1P0
-1 (25)

Using the dynamic quasi-Newton method to update the

Jacobian matrix, the update frequency of the robotic arm is set to

0.1–0.2mmpermovement until the pixel error of the image reaches

the range.

3.2. Experimental results of the dynamic
quasi-Newton method

The error of the robotic arm in this experiment

after 20 iterations is 0.31. After 35 iterations, the error

is 0.011. After 56 iterations, the error was 0.0001,

and the final image coordinates of the small ball were

761.999661.999, 761.999412.0, and 212.0661.999, respectively.

The initial expected pixel coordinates were 762662, 762412,

and 212662.

The initial posture of the robotic arm servo system and the

pixel coordinates of three small balls are shown in Figure 6. The

posture and ball pixel coordinates at the end of the servo are

shown in Figure 7. The motion trajectories of the feature points

of three small balls in the image plane are shown in Figure 8.

The error of the entire process (image error and robotic arm

end pose error) varies with the number of cycles, as shown in

Figure 9.
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FIGURE 12

Dynamic tracking error comparison.

3.3. Orthogonal initialization method test
results

According to the simulation experiment results shown in

Table 1, it can be seen that the uncalibrated system requires

multiple iterations to achieve the specified accuracy. However,

in actual production environments, there is no enough time

for iterative optimization. Looking at the simulation results

data, it was found that the Jacobian matrix obtained from

the uncalibrated initialization of the original scheme had

a significant error in conversion. Through analysis, it was

found that during the initialization process, images before and

after movement were obtained by moving the robotic arm.

In this process, there is coupling in the movement of the

manipulator, which will lead to an irreversible and unsolvable

Jacobian matrix.

To make the multiple sets of image feature points obtained

after the robotic arm moves linearly uncorrelated, it is necessary to

decouple the collected feature point set. This will be an incredibly

complex and cumbersome task. Therefore, by standardizing the

movement direction of the robotic arm during the initialization

process, the obtained feature point set is naturally linearly

uncorrelated. The iterative process error data of the uncalibrated

system after the decoupling optimization initialization process

is shown in Table 2, and the error of the entire process varies

with the number of cycles, as shown in Figure 10. In Figure 11,

it can be seen that the iterative speed of the Jacobian matrix

after decoupling optimization has been significantly improved.

Faster iterative convergence speed can effectively improve the

real-time performance of robot visual servo systems during

dynamic tracking.

In Figure 11, the vertical axis represents the error during the

robot iteration process, and the horizontal axis represents the

number of iterations. The update cycle for each iteration of the

robot is not fixed. The iterative process includes camera shooting,

image processing, and robot motion. Due to the different amount

of information in each cycle, the iteration period will fluctuate

between 20 and 30 ms.

3.4. Comparison of experimental results

The above simulation tests have verified the reliability of the

dynamic quasi-Newton method and the iterative algorithm

after decoupling optimization. Next, the two algorithms

mentioned above and the servo control algorithm with predictive

compensation will be tested on the robotic arm. During the testing

process, the robot dynamically tracks the target ball moving on

the conveyor belt. The tracking process error data is recorded by

identifying the distance between the centroid position of the target

ball in the photos captured by the camera during the tracking

process and the laser point position vertically shot by the robot

arm. The tracking error curves of the three algorithms are shown

in Figure 12.

From the tracking error curve in Figure 12, it can be observed

that the iterative algorithm after decoupling optimization and the

servo control algorithm with predictive compensation have a faster
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convergence speed than the dynamic equal Newton method. The

servo control algorithm with predictive compensation can further

reduce the tracking error in the convergence state.

4. Conclusion

This study investigates the application of the dynamic

equal Newton method, the iterative algorithm after decoupling

optimization, and the servo control algorithm with predictive

compensation in robot uncalibrated visual servo systems. However,

due to the dynamic equal Newton method requiring multiple

iterations to obtain an accurate Jacobian matrix, a decoupling

optimization method for the initialization process was proposed

by analyzing the entire process of the uncalibrated robot visual

servo system. The iterative algorithm after decoupling optimization

can effectively reduce the number of iterations and improve the

convergence speed of the Jacobian matrix through simulation

testing. Therefore, this algorithm has a high practical value in

production applications.

Due to the time lag that cannot be completely eliminated

when moving from the visual system to the robot’s active position

information in the eye-in-handmode, this study proposes amethod

called the servo control algorithm with predictive compensation to

weaken or even eliminate the tracking error caused by the time lag.

It showed a very significant effect on the experimental test results.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

HQ conducted theoretical research, algorithm

design, and paper writing for the article. DH conducted

simulation testing and built the framework of the robot

visual servo system. BZ completed the collection and

analysis of experimental data. MW has completed the

optimization and revision of the paper content. All

authors contributed to the article and approved the

submitted version.

Funding

The study was supported by the Science and Technology

Planning Project of Guangzhou City (Grant No. 2023A04J1691).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Cao, H., Chen, G., Li, Z., Feng, Q., Lin, J., and Knoll, A. (2022a). Efficient grasp
detection network with gaussian-based grasp representation for robotic manipulation.
IEEE ASME Trans. Mech. doi: 10.1109/TMECH.2022.3224314

Cao, H., Chen, G., Li, Z., Feng, Q., Lin, J., and Knoll, A. (2022b). NeuroGrasp:
multimodal neural network with euler region regression for neuromorphic
vision-based grasp pose estimation. IEEE Trans. Instrument. Measure. 71, 1–11.
doi: 10.1109/TIM.2022.3179469

Cao, H., Chen, G., Xia, J., Zhuang, G., and Knoll, A. (2021). Fusion-based feature
attention gate component for vehicle detection based on event camera. IEEE Sensors J.
21, 24540–24548. doi: 10.1109/JSEN.2021.3115016

Chang, Y., Li, L., Wang, Y., and You, K. (2020). Toward fast convergence and
calibration-free visual servoing control: a new image based uncalibrated finite time
control scheme. IEEE Access 8, 88333–88347. doi: 10.1109/ACCESS.2020.2993280

Chen, G., Cao, H., Conradt, J., Tang, H., Rohrbein, F., and Knoll, A. (2020).
Event-based neuromorphic vision for autonomous driving: a paradigm shift for bio-
inspired visual sensing and perception. IEEE Signal Process. Magazine 37, 34–49.
doi: 10.1109/MSP.2020.2985815

Gans, N. R. (2003). Performance tests for visual servo control systems, with
application to partitioned approaches to visual servo control. Int. J. Robot. Res. 22,
955–981. doi: 10.1177/027836490302210011

Gao, Q., and Xiao, W. (2021). Research on the Robot Uncalibrated Visual Servo
Method Based on the Kalman Filter With Optimized Parameters. Singapore: Springer.

Gu, J., Wang, W., Zhu, M., Lv, Y., Huo, Q., and Xu, Z. (2018). “Research on a
technology of automatic assembly based on uncalibrated visual servo system,” in 2018
IEEE International Conference on Mechatronics and Automation (ICMA). IEEE.

Haifeng, L., Jingtai, L., Yan, L., Xiang L, Lei S. (2010). Visual Servoing With an
Uncalibrated Eye-in-Hand Camera. Technical Committee on Control Theory, Chinese
Association of Automation (Beihang University Press), 3741–3747.

Hao, M., and Sun, Z. (2007). “Uncalibrated eye-in-hand visual servoing using
recursive least squares,” in IEEE International Conference on Systems, Man and
Cybernetics, IEEE (2007).

Hao, T., Wang, H., Xu, F., Wang, J., and Miao, Y. (2020). “Uncalibrated visual
servoing for a planar two link rigid-flexible manipulator without joint-space-velocity
measurement,” in IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–13.

Hosoda, K., and Asada, M. (1994). “Versatile visual servoing without knowledge of
true Jacobian. Intelligent robots and system’ 94’. ‘Advanced robotic systems and the real
world’,IROS’ 94,” in Proceedings of the IEEE /RSJ/GI International Conference on IEEE,
Vol. 1, 486–193

Huang, H., Bian, X., Cai, F., Li, J., Jiang, T., Zhang, Z., et al. (2022). A
review on visual servoing for underwater vehicle manipulation systems automatic
control and case study. Ocean Eng. 260, 112065. doi: 10.1016/j.oceaneng.2022.
112065

Hutchinson, S., Hager, G. D., and Corke, P. I. (1996). A tutorial on visual servo
control. IEEE Trans. Robot Automat. 12, 651–670. doi: 10.1109/70.538972

Jianbo, S. (2004). Uncalibrated Robotic Hand-Eye Coordination of Full
Degree-of-Freedoms Based on Fuzzy Neural NetWork (苏 剑 波), 42–44.
doi: 10.13245/j.hust.2004.s1.012

Jingmei, Z., Pengfei, D., and Tie, Z. (2014). Positioning and grasping system
design of industrial robot based on visual guidance. Machine Design Res. 30, 45–49.
doi: 10.13952/j.cnki.jofmdr.2014.0135

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1221740
https://doi.org/10.1109/TMECH.2022.3224314
https://doi.org/10.1109/TIM.2022.3179469
https://doi.org/10.1109/JSEN.2021.3115016
https://doi.org/10.1109/ACCESS.2020.2993280
https://doi.org/10.1109/MSP.2020.2985815
https://doi.org/10.1177/027836490302210011
https://doi.org/10.1016/j.oceaneng.2022.112065
https://doi.org/10.1109/70.538972
https://doi.org/10.13245/j.hust.2004.s1.012
https://doi.org/10.13952/j.cnki.jofmdr.2014.0135
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Qiu et al. 10.3389/fnins.2023.1221740

Kang, M., Chen, H., and Dong, J. (2020). Adaptive visual servoing with an
uncalibrated camera using extreme learning machine and Q-leaning. Neurocomputing
402, 384–394. doi: 10.1016/j.neucom.2020.03.049

Li, Y. X., Mao, Z. Y., and Tian, L. F. (2009). Visual servoing of 4DOF using image
moments and neural network. Control Theory Appl. 26, 1162–1166.

Longjiang, X., Bingyu, S., Dingyu, X., and Xinhe, X. (2003). Model
independent uncallbration visual servo control. Robot 25, 424–427.
doi: 10.13973/j.cnki.robot.2003.05.009

Malis, E. (2004). Visual servoing invarant to changes in camera-intrinsic
parameters. IEEE Trans. Robot. Automat. 20, 72–81. doi: 10.1109/TRA.2003.820847

Piepmeier, J. A. (2003). “Experimental results for uncalibrated eye-in-hand visual
servoing,” in IEEE, 335–339.

Piepmeier, J. A., and Lipkin, H. (2003). Uncalibrated eye-in-hand visual servoing.
Int. J. Robot. Res. 22, 805–819. doi: 10.1177/027836490302210002

Samad, A. A. I., and Haq, M. Z. (2016).Uncalibrated Visual Servoing Using Modular
MRAC Architecture. doi: 10.13140/RG.2.2.25994.34244

Singh, R., Voyles, R. M., Littau, D., and Papanikolopoulos, N. P.
(1998). “Grasping real objects using virtual images,” in IEEE Conference

on Decision and Control (Cat. No.98CH36171), Tampa, FL, USA, Vol. 3,
3269–3274.

Wu, W., Su, H., and Gou, Z. (2022). “Research on precision motion control
of micro-motion platform based on uncalibrated visual servo,” in 2022 4th
International Conference on Control and Robotics (ICCR), Guangzhou, China,
77–81.

Yoshimi, B. H., and Allen, P.K. (1995). Alignment using an uncalibrated
camera system. IEEE Trans. Robot. Automat. 11, 516–521. doi: 10.1109/70.
406936

Yuhan, D., Lisha, H., and Shunlei, L. (2021). Research on computer vision
enhancement in intelligent robot based on machine learning and deep learning.Neural
Comput. Appl. doi: 10.1007/S00521-021-05898-8

Zaien, Y., Xueliang, P., Zhengyang, L., Yi, J., and Shenglong, C. (2014).
The simulation and reconstruction of the complex robot trajectories based on
visual tracking. Machine Design Res. 30, 39–46. doi: 10.13952/j.cnki.jofmdr.2014.
01.038

Zhang, K., Yang, X., Wang, J., Song, S., and Meng, M. Q. H. (2020). “Eye-in-hand
uncalibrated visual servoing of concentric tube robot,” in 2020 IEEE International
Conference on Real-time Computing and Robotics (RCAR). IEEE.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1221740
https://doi.org/10.1016/j.neucom.2020.03.049
https://doi.org/10.13973/j.cnki.robot.2003.05.009
https://doi.org/10.1109/TRA.2003.820847
https://doi.org/10.1177/027836490302210002
https://doi.org/10.13140/RG.2.2.25994.34244
https://doi.org/10.1109/70.406936
https://doi.org/10.1007/S00521-021-05898-8
https://doi.org/10.13952/j.cnki.jofmdr.2014.01.038
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	A novel multidimensional uncalibration method applied to six-axis manipulators
	1. Introduction
	2. Control system
	2.1. Operating platform
	2.2. Process of uncalibration
	2.3. Servo control algorithm

	3. Experimental results
	3.1. Simulation test
	3.2. Experimental results of the dynamic quasi-Newton method
	3.3. Orthogonal initialization method test results
	3.4. Comparison of experimental results

	4. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


