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Selective dopaminergic 
vulnerability in Parkinson’s disease: 
new insights into the role of DAT
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One of the hallmarks of Parkinson’s disease (PD) is the progressive loss of 
dopaminergic neurons and associated dopamine depletion. Several mechanisms, 
previously considered in isolation, have been proposed to contribute to the 
pathophysiology of dopaminergic degeneration: dopamine oxidation-mediated 
neurotoxicity, high dopamine transporter (DAT) expression density per neuron, and 
autophagy-lysosome pathway (ALP) dysfunction. However, the interrelationships 
among these mechanisms remained unclear. Our recent research bridges this 
gap, recognizing autophagy as a novel dopamine homeostasis regulator, unifying 
these concepts. I  propose that autophagy modulates dopamine reuptake by 
selectively degrading DAT. In PD, ALP dysfunction could increase DAT density 
per neuron, and enhance dopamine reuptake, oxidation, and neurotoxicity, 
potentially contributing to the progressive loss of dopaminergic neurons. This 
integrated understanding may provide a more comprehensive view of aspects of 
PD pathophysiology and opens new avenues for therapeutic interventions.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder. While mainly 
characterized by motor syndrome, PD is associated with non-motor symptoms (NMS) in almost all 
patients. More than 10 million primarily older adults worldwide suffer from PD. The most common 
symptom associated with PD is tremor, which typically begins on one side before eventually affecting 
both sides over time. Other symptoms may include muscle rigidity (stiffness), gait disturbances 
(difficulty walking), slowness/decreased mobility, impaired speech/swallowing problems, 
depression/anxiety disorders, hyposmia, constipation, urinary dysfunction, orthostatic hypotension, 
pain, sleep disturbances, and cognitive decline, including dementia or psychosis later in life if left 
untreated for too long. While there is no cure for PD, symptomatic dopaminergic therapy helps 
improve the quality of life for those with the disease. PD is characterized by the presence of certain 
hallmarks in its pathology. These include progressive selective loss of dopaminergic neurons in the 
midbrain substantia nigra pars compacta (SNpc); Lewy bodies containing aggregates of α-synuclein 
protein; gliosis or inflammation around affected areas; and a dramatic decrease in dopamine, a 
neurotransmitter associated with movement and reward. While the motor syndrome of PD is related 
to nigral degeneration and dopamine depletion, NMS may be linked to the degeneration of other 
neural types, including the peripheral autonomic nervous system (Girault and Greengard, 2004; 
Tolosa et al., 2021; Haider et al., 2023). PD is a multifactorial disease with genetic and environmental 
factors that converge on common pathophysiological processes (Simon et al., 2020). Dopaminergic 
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therapy can improve motor symptoms but does not alter the underlying 
progressive neurodegeneration. As such, there is a need to develop 
disease-modifying therapeutic strategies that target underlying 
pathophysiological mechanisms to slow or arrest the progression of PD 
(Murakami et al., 2023).

The molecular pathogenesis of PD involves a complex interplay of 
several factors, such as impaired mitochondria, protein homeostasis, 
autophagy-lysosome pathway (ALP) dysfunction at the synapse, 
trafficking of the dopamine transporter (DAT), DA toxicity, oxidative 
stress, disruptions in synaptic vesicle endocytosis, autonomous 
pacemaking, calcium homeostasis imbalance, iron-content, extensive 
axonal arborization size, prion-like α-synuclein transmission, and 
neuroinflammation. The reader is referred to several review articles 
that discuss these pathophysiological mechanisms in detail (Lohr et al., 
2017; Giguère et al., 2018; Nguyen et al., 2019; Lu et al., 2020; Bu et al., 
2021). Acknowledging that neuronal loss in PD cannot be explained 
by one pathway, I  focus on uniting three of the above-mentioned 
pathophysiological mechanisms: (1) Dysfunction of the ALP. (2) High 
expression density of DAT per neuron, which strongly correlates with 
the extent of dopaminergic neuron loss. (3) Dopamine oxidation 
mediated neurotoxicity. Several groups characterized each of these 
mechanisms for their potential role in the pathophysiology of PD. Still, 
there was no apparent connection to link them together (Figure 1A). 
This minireview unites these concepts and clarifies their 
interrelationships considering our recent discovery of autophagy as a 
novel mechanism for controlling dopamine homeostasis (Figure 1B). 
Here, I  discuss how dysregulated autophagic degradation of DAT 
could be considered a contributing element in mediating selective 
dopaminergic degeneration in PD through DA toxicity.

The autophagy lysosome pathway in PD

The ALP plays a crucial role in the pathogenesis of PD. Autophagy, 
or self-eating, is a process by which cells degrade and recycle their 
cellular components, such as organelles, proteins, lipids, and nucleic 
acids, for use in metabolic processes. The autophagic process is regulated 
by several molecular pathways involving the lysosomes and other 
organelles, including the endoplasmic reticulum and mitochondria 
(Fleming et al., 2022). The lysosomes are the destination for autophagic 
cargo for degradation. There are three types of autophagy:

 1. Macroautophagy: characterized by the formation of a double 
membrane organelle, the autophagosome, which forms around 
its cargo and transports it to the lysosome. There are two types 
of macroautophagy in terms of cargo recognition: selective and 
non-selective. Relevant examples of selective macroautophagy 
include mitophagy (mitochondria) and aggrephagy (protein 
aggregates), among many others (Galluzzi et al., 2017).

 2. Microautophagy: characterized by the lysosome’s direct 
internalization of small cytoplasmic cargo. Microautophagy 
can also be selective and non-selective (Wang et al., 2023).

 3. Chaperone-mediated autophagy (CMA): characterized by 
selective recognition of cytoplasmic proteins harboring a 
KFERQ or KFERQ-like motif by chaperones that escort them 
to the lysosome where they undergo translocation through the 
lysosomal membrane to its lumen for degradation (Kaushik 
and Cuervo, 2012).

In PD, the ALP pathway has been found to be dysregulated in both 
familial (Beilina et al., 2014) and sporadic (Kabuta and Wada, 2008; Wu 
et al., 2008, 2011; Lonskaya et al., 2013; Beilina et al., 2014; Moors et al., 
2019) forms of the disease, leading to the accumulation of toxic protein 
aggregates within neurons resulting in neuronal death or dysfunction.

Several genes related to ALP have been implicated in PD due to 
their mutations. These genes have roles in various aspects of the 
pathway, from regulating autophagy initiation to the proper 
functioning of lysosomes. Here are a few examples of some key genes:

 • Leucine-rich repeat kinase 2 (LRRK2) mutations are one of the most 
common genetic causes of autosomal dominant PD. The LRRK2 
protein is involved in various cellular processes, including autophagy 
and endolysosomal functions. Mutations can lead to impaired 
autophagy and increased susceptibility to PD (Gómez-Suaga and 
Hilfiker, 2012; Orenstein et al., 2013; Ysselstein et al., 2019).

 • GBA mutations are the most frequent genetic risk factor for 
PD. GBA encodes the lysosomal enzyme glucocerebrosidase, 
which is involved in the breakdown of glucosylceramide. 
Reduced glucocerebrosidase activity is associated with impaired 
lysosomal function and α-synuclein accumulation (Pang et al., 
2022; Pradas and Martinez-Vicente, 2023).

 • Vacuolar protein sorting ortholog 35 (VPS35) is a retromer 
complex component. VPS35 mutations have been linked to 
autosomal dominant PD. VPS35/retromer complex is essential 
for the retrieving specific membrane proteins from endosomes 
to the trans-Golgi network, thereby maintaining lysosomal 
function (Zavodszky et al., 2014; Cui et al., 2021).

 • ATPase 13A2 (ATP13A2), also known as PARK9, is a lysosomal 
P-type ATPase. Mutations in this gene are associated with a rare 
form of early-onset parkinsonism (Kufor-Rakeb syndrome). 
ATP13A2 is involved in maintaining lysosomal pH and 
manganese homeostasis, and its dysfunction contributes to 
impaired autophagy (Dhanushkodi et al., 2023).

 • PTEN-induced putative kinase 1 (PINK1) mutations are 
associated with autosomal recessive early-onset PD. PINK1 is a 
mitochondrial kinase that plays a key role in mitophagy, a 
selective form of autophagy responsible for removing damaged 
mitochondria (Jones, 2010).

 • Parkin RBR E3 Ubiquitin Protein Ligase (PARKIN) mutations 
are also linked to autosomal recessive early-onset PD. PARKIN 
functions as an E3 ubiquitin ligase and works with PINK1 in the 
mitophagy pathway, promoting the clearance of damaged 
mitochondria (Herman and Moussa, 2011).

 • Protein deglycase DJ-1, also known as Parkinson’s disease protein 
7 (DJ-1), mutations are implicated in autosomal recessive early-
onset PD. DJ-1 has multiple roles in the cell, including acting as 
a redox-sensitive chaperone and a sensor for oxidative stress. 
DJ-1 is also involved in regulating autophagy and mitophagy 
(Wang et al., 2016).

 • Auxilin (DNAJC6/PARK19) is a cofactor for uncoating clathrin-
coated vesicles for the heat shock cognate protein-70 (Hsc70) 
(Nguyen et al., 2019). Its loss-of-function mutations cause early-
onset Parkinson’s disease (PD) (Olgiati et al., 2016; Ng et al., 2020), 
and its mutations also occur in late-onset PD (Gialluisi et al., 2021).

Most PD cases are sporadic and not linked to known genetic 
mutations. Sporadic PD is thought to result from a combination of 
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genetic and environmental factors, with aging being the most 
significant risk factor. Yet, recent studies implicate a significant role 
of heredity in PD that was not previously appreciated, suggesting 
that 27 to 60% is due to genetic factors (Hamza and Payami, 2010; 
Do et al., 2011; Keller et al., 2012). Many genes and genetic loci are 
now linked to the risk for PD using modern genetic methods. Many 
studies suggest that ALP might be  involved in sporadic PD 
(Orenstein et al., 2013; Zavodszky et al., 2014; Ysselstein et al., 2019; 
Cui et al., 2021; Pang et al., 2022; Shrivastava et al., 2022; Pradas and 
Martinez-Vicente, 2023). A recent meta-analysis of genome-wide 
association studies (GWAS), interrogating data from >13,000 PD 
patients and > 95,000 controls, identified 26 genetic loci across the 
genome associated with PD. Intriguingly, 16 out of these 26 genetic 
loci have 18 genes nearby that modulate ALP, namely SYT11 (Bento 
et al., 2016), RAB7L1 (Kuwahara et al., 2016; Pradhan et al., 2018; 
Shrivastava et al., 2022), NUCKS1 (Zhao et al., 2020), GBA (Murphy 
and Halliday, 2014; Pang et al., 2022; Pradas and Martinez-Vicente, 
2023), SIPA1L2 (Andres-Alonso et  al., 2019), TMEM163 
(Cuajungco et  al., 2014; Cuajungco and Kiselyov, 2017), STK39 
(Gallolu Kankanamalage et al., 2016, 2017; He et al., 2022), LAMP3 
(Tanaka et al., 2022), TMEM175 (Jinn et al., 2017; Hu et al., 2022), 
GAK (Miyazaki et al., 2021; Munson et al., 2021), SCARB2 (Velayati 
et  al., 2011), GPNMB (Robinet et  al., 2021; Zhu et  al., 2022), 
VPS13C (Cai et  al., 2022; Hancock-Cerutti et  al., 2022), RIT2 
(Obergasteiger et  al., 2023), DDRGK1 (Cao et  al., 2021), SNCA 
(Sampaio-Marques et al., 2012; Song et al., 2014), LRRK2 (Gómez-
Suaga and Hilfiker, 2012; Orenstein et al., 2013; Ysselstein et al., 
2019), and MAPT (Zhu et al., 2017; Feng et al., 2020).

Dopaminergic degeneration in PD, 
potential role of the dopamine 
transporter

DAT is a membrane-spanning protein that plays a principal role 
in regulating dopaminergic neurotransmission mainly through 
modulating the availability and duration of action of dopamine. It is 
responsible for the reuptake of released dopamine back into 
presynaptic neurons (Bu et  al., 2021). Multiple lines of evidence 
support the theory that DAT is involved in selective dopaminergic 
neurotoxicity and degeneration in PD (Storch et al., 2004). Studies 
have demonstrated a correlation between DAT expression levels and 
the extent of neurodegeneration, as well as an association between 
genetic polymorphisms of DAT and PD risk. Additionally, animal 
models have shown increased vulnerability to toxins with higher 
concentrations of DAT in striatal regions affected by PD pathology. 
These findings suggest that dysregulation or malfunctioning of DAT 
may contribute to neuronal death associated with PD pathogenesis.

DAT density per neuron correlates with 
neurodegeneration vulnerability in PD

Consistent with a role for DAT in the pathophysiology of PD, the 
positive correlation between specific dopaminergic neuron subtypes’ 
vulnerability with the relative DAT expression levels. Hence, 
hypothalamic dopaminergic neurons are spared in PD, while the ventral 
tegmental area (VTA) dopaminergic neurons are moderately affected. 

FIGURE 1

The relationship between dopamine oxidation, DAT expression density, and autophagy-lysosome pathway dysfunction in neurodegeneration in PD. (A) A 
diagram showing three separate mechanisms are proposed to contribute to neurodegeneration in PD. (B) A diagram depicting the interrelationship 
between dopamine oxidation, DAT expression density, and autophagy-lysosome pathway dysfunction in PD neurodegeneration unified by DAT autophagy.

https://doi.org/10.3389/fnins.2023.1219441
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Harraz 10.3389/fnins.2023.1219441

Frontiers in Neuroscience 04 frontiersin.org

The dopaminergic neurons in SNpc are most affected in PD. In contrast, 
the dopaminergic neurons spared in PD patients’ postmortem tissues 
show lower DAT expression per neuron than controls. For example, Uhl 
et al. reported that DAT mRNA per neuron is higher in SNpc compared 
to the adjacent nucleus paranigralis of the ventral tegmental area (VTA) 
in neurologically normal study subjects. Surviving SNpc neurons in 
age-matched PD patients is almost half that in controls (Uhl et al., 1994). 
The same finding was reproduced by other groups (Uhl et al., 1994; Joyce 
et al., 1997). These findings suggest the selective vulnerability of neurons 
expressing high levels of DAT in PD. An alternative explanation could 
be  a compensatory downregulation of DAT mRNA levels in the 
low-expressing neurons in PD. However, this alternative scenario is less 
likely since the same differential expression of DAT mRNA was 
documented in controls across species (Sanghera et al., 1994; Haber et al., 
1995; Bannon and Whitty, 1997; Afonso-Oramas et al., 2009). Along the 
same lines, a recent meta-analysis study suggests that the SLC6A3 10R 
variant, associated with relatively lower expression activity of DAT, may 
be a protective factor in susceptibility to PD (Zeng et al., 2021).

Consistent with the observations mentioned above, preclinical 
evidence demonstrates that ectopic or elevated DAT expression is 
sufficient to induce neurodegeneration. Chen et  al. generated a 
Tet-inducible forebrain DAT-transgenic mouse model under the 
calcium/calmodulin-dependent protein kinase type II alpha (CaMKIIα) 
promoter. CamDAT mice spontaneously develop motor dysfunctions 
and progressive neurodegeneration in the striatum, which l-DOPA 
accelerates (Chen et al., 2008). Masoud et al. showed that overexpression 
of DAT in dopaminergic neurons (DAT-transgenic mice) shows 
impromptu loss of midbrain dopaminergic neurons and increased 
oxidative stress. DAT protein levels are elevated in DAT-tg mice only in 
dopaminergic neurons. DAT-tg mice show a < 50% increase in 
dopamine uptake rate, increased metabolite/dopamine ratios, and 
diminished striatal VMAT2 protein expression. Interestingly, DAT-tg 
mice show l-DOPA reversible motor deficits (Salahpour et al., 2008; 
Masoud et al., 2015). These data show that a 30% DAT activity increase 
in dopaminergic neurons is sufficient to induce oxidative stress and 
spontaneous dopaminergic neurodegeneration in vivo.

Evidence showing increased DAT levels 
in DA neurons in PD or PD models

One of the hallmarks of PD progression is the reduction of DAT levels 
in the brain, which is the direct result of the loss of DA terminals. However, 
several studies observed increased DAT levels without or preceding 
dopaminergic neurodegeneration. Here I list examples of these studies.

Clinical evidence

A cross-sectional analysis in the subset of non-manifesting carriers 
of LRRK2 and GBA mutations enrolled into the Parkinson’s Progression 
Markers Initiative (PPMI) focused on 123-I Ioflupane DAT imaging 
reported that non-manifesting carriers of GBA mutation had increased 
DAT binding in all striatal regions compared with healthy controls and 
non-manifesting carriers of the LRRK2 mutation (Simuni et al., 2020). 
Interestingly, many lines of evidence show that glucocerebrosidase (the 
enzyme encoded by the GBA gene) regulates autophagy (Bento et al., 
2016; Lu et al., 2020; Kuo et al., 2022; Navarro-Romero et al., 2022). The 
biological mechanism driving increased DAT binding in 

non-manifesting carriers of GBA mutations remains unclear. Since 
PPMI is a longitudinal study, it will be important to determine whether 
the observed up-regulation of DAT in GBA non-manifesting carriers is 
associated with an increased risk of PD.

In a smaller clinical study, a significant increase in striatal DAT 
was observed in non-manifesting carriers of the 22q11.2 mutation, 
which is associated with an age-related increased risk of PD, suggesting 
that a hyperdopaminergic mechanism may be linked to manifestations 
of PD and its pathogenesis (Butcher et al., 2017).

Preclinical evidence

Data from non-human primates show a robust increase in DAT 
expression in monkeys treated with α-synuclein delivered via Adeno-
associated virus (AAV) as assessed by 123I-PE2I single-photon emission 
computerized tomography scans and confirmed by post-mortem 
immunohistochemical analyses. This non-human primate model 
induces Parkinson’s disease-like pathology, including α-synuclein 
aggregation with pathological properties such as amyloid-like Lewy body 
pathology in PD brains and nigral neuronal degeneration (Chu et al., 
2019). Similarly, AAV-mediated delivery of human A53T α-synuclein to 
the rat SN leads to behavioral deficits and PD-like nigro-striatal 
degeneration in a dose-and time-dependent manner. Human A53T 
α-synuclein expression in the SN significantly increased striatal DAT and 
DA turnover 3 weeks post-AAV injection before overt pathology. By 
6 weeks post-AAV injection, SN DA neurons, striatal DA, TH, and DAT 
were reduced, and a sustained behavioral deficit was observed (Koprich 
et al., 2011). Furthermore, α-synuclein overexpressing (SNCA-OVX) 
mice show increased DA uptake and upregulation of membrane DAT 
levels as assessed by in situ autoradiography and DAT-immunostaining, 
correlating with α-synuclein levels (Threlfell et  al., 2021). Further, 
Bellucci et al. reported a significant increase in DAT levels in the brain of 
the truncated α-synuclein (SYN120) mice (Bellucci et al., 2011).

LRRK2 G2019S mutant knock-in (GKI) mice show a significant 
increase in striatal DAT protein as assessed by western blot (Longo 
et al., 2017; Volta et al., 2017; Domenicale et al., 2022) and dopamine 
uptake (Longo et al., 2017; Domenicale et al., 2022). These changes to 
DAT levels are observed in LRRK2 G2019S mutants but not LRRK2 
kinase-dead or knock-out mice (Domenicale et al., 2022).

In DJ-1 KO mice, multiple groups found no difference in DAT 
mRNA or total DAT protein levels in striatal lysates (Chen et al., 2005; 
Goldberg et al., 2005; Manning-Boğ et al., 2007). However, the same 
studies indicate an increase in surface DAT, which is the functional pool 
of the protein. Young adult DJ-1 KO mice (4 months) show faster DA 
uptake (Vmax) in the dorsal but not ventral caudate-putamen (Chen et al., 
2005), indicating a significant increase in surface DAT since the velocity 
of DA uptake reflects the functional number of DAT molecules on the cell 
surface (Daniels and Amara, 1999; Melikian and Buckley, 1999; Sorkina 
et al., 2005). Similarly, Goldberg et al. reported increased DA reuptake in 
the dorsal striatum of 3 months old DJ-1 KO mice (Goldberg et al., 2005). 
Manning-Boğ et al. also reported increased DAT protein levels in the 
synaptosomal fraction of DJ-1 young adult mice striata (3–4 months). 
This increase in cell surface DAT was confirmed by an increased active 
DAT as assessed by [125I]-RTI-121 binding and increased [3H]-DA 
uptake in striatal synaptosomes (Manning-Boğ et al., 2007).

Auxilin KO mice recapitulate all the critical hallmarks of PD; 
age-dependent α-synuclein pathology, selective dopaminergic 
degeneration, astrogliosis, and microgliosis leading to motor deficits 
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that are reversed by L-DOPA treatment. Vidyadhara et al. demonstrate 
that the lack of auxilin leads to dopaminergic degeneration likely 
through three processes in the nigral nerve terminals: (Girault and 
Greengard, 2004) a dramatic upregulation of surface DAT in young 
mice before dopaminergic degeneration (3-month-old mice) (Haider 
et  al., 2023), toxic accumulation of cytoplasmic DA before 
neurodegeneration, and (Tolosa et  al., 2021) accumulation of 
autophagosomes in DA synaptic buttons at 3-months, which becomes 
worse later with the observation of dopaminergic degeneration 
(Vidyadhara et al., 2023). Interestingly, the auxilin KO mice replicate all 
three mechanisms united by DAT autophagy, as further explained below.

In summary, several studies show increased DAT levels before 
dopaminergic degeneration, suggesting that upregulation of DAT 
might be a part of an early pathological process in PD.

Dopamine toxicity

Dopamine is an essential neurotransmitter that plays a critical role 
in various physiological processes, including reward, motivation, 
cognition, and motor function. Dopamine toxicity refers to the 
excessive accumulation of dopamine within the cytoplasm of 
dopaminergic neurons in the brain, which can lead to their dysfunction 
and death. Dysregulation of dopamine signaling is implicated in many 
neurological and psychiatric disorders, such as PD, schizophrenia, and 
addiction. The toxic effects of dopamine may involve oxidative stress, 
mitochondrial dysfunction, and the formation of toxic metabolites. In 
addition, the accumulation of abnormal protein aggregates in the 
neurons may contribute to their degeneration (Masato et al., 2019).

Dopamine synthesis, packaging in synaptic vesicles, and reuptake are 
tightly regulated to prevent its accumulation in the cytoplasm, which 
could be deleterious. The vesicular monoamine transporter 2 (VMAT2) 
quickly loads dopamine into synaptic vesicles after its synthesis in the 
cytoplasm or reuptake in the presynaptic terminals by DAT. In addition 
to dopamine sequestration, the acidic pH ~5.6 of synaptic vesicles 
stabilizes dopamine (Mani and Ryan, 2009). Dopamine oxidation results 
from enzymatic or autooxidation (Umek et  al., 2018) and produces 
reactive oxygen species (ROS), such as hydrogen peroxide, hydroxyl 
radicals, and superoxide. Dopamine autooxidation produces reactive 
quinones, which can damage cellular macromolecules and impair neural 
processes (Stokes et al., 1999). Quinone generation is either spontaneous 
and could be accelerated by metal ions, such as iron or manganese, or is 
the product of specific enzyme-catalyzed reactions. Quinone-induced 
damage to macromolecules and oxidative stress could initiate cell death 
pathways contributing to neurodegeneration (Mor et al., 2019).

Several dopamine–quinone molecules can undergo oxidative ligation 
to α-synuclein, selectively inhibiting the protofibril-to-fibril conversion 
(Conway et al., 2001). α-synuclein protofibrils are likely the toxic form 
that disrupts neural homeostasis and induces neural cell death through 
various intracellular targets (Stefanis, 2012). α-synuclein protofibrils can 
permeabilize synaptic vesicles leading to leakage of stored dopamine into 
the cytoplasm, further worsening dopamine toxicity (Volles et al., 2001; 
Lashuel et al., 2002a,b; Volles and Lansbury, 2002).

Monoamine oxidase (MAO) enzymatically metabolizes cytoplasmic 
dopamine to 3,4-dihydroxyphenylacetaldehyde (DOPAL), a toxic 
metabolite (Burke et al., 2003). Under physiological conditions, this 
reaction also produces ROS, such as hydrogen peroxide and hydroxyl 
radicals. ROS production contributes to oxidative stress and lipid 
peroxidation inhibiting aldehyde dehydrogenase (ALDH), the main 

enzyme that eliminates DOPAL, which in turn leads to the accumulation 
of DOPAL, perpetuating a vicious cycle that contributes to dopaminergic 
neurodegeneration (Masato et al., 2019). DOPAL levels are elevated in 
PD postmortem putamen tissue. Further, VMAT2 activity is decreased 
by 89% and ALDH activity by 70%, likely leading to less synaptic vesicle 
uptake of cytosolic dopamine and decreased DOPAL detoxification 
(Goldstein et al., 2013; Pifl et al., 2014). The decrease in VMAT2 activity 
likely reflects DA neuron terminal loss in PD. On the other hand, 
VMAT2 deficiency in mice is sufficient to induce cytoplasmic DA 
toxicity, dopaminergic degeneration in SNpc, and l-DOPA-responsive 
motor deficits (Caudle et al., 2007). These lines of research inspired the 
“Catecholaldehyde hypothesis,” depicting the role of DOPAL in SNpc 
dopaminergic degeneration in PD (Masato et al., 2019).

Autophagy selectively targets DAT for 
degradation

Recently, our studies have suggested that DAT can be selectively 
targeted for autophagic degradation (Harraz et al., 2021). Our findings 
show that cocaine, a potent psychostimulant and addictive substance, 
induces autophagy in neurons with extraordinary potency. Hence, cocaine 
induces neural autophagy at sub-nanomolar levels both in vitro and in 
vivo. The rapid induction of autophagy by cocaine is evident in tyrosine 
hydroxylase-positive nerve terminals located in the nucleus accumbens 
(NAc), a brain region implicated in reward, motivation, and addiction. 
Remarkably, this induction of autophagy can be detected as early as 3 min 
after systemic cocaine injection. Cocaine administration leads to DAT 
depletion in dopaminergic nerve terminals in the NAc. The depletion of 
DAT by cocaine in the nucleus accumbens nerve terminals has been 
detected using various experimental techniques. Western blot analysis of 
isolated nerve terminals demonstrates a reduction in DAT protein levels, 
while immunostaining of brain sections reveals decreased DAT expression 
in dopaminergic neurons. Furthermore, dopamine uptake activity in 
isolated nerve terminals, assessed using radiolabeled dopamine 
(3H-dopamine), shows a reduction in the maximum velocity of dopamine 
uptake, confirming the depletion of DAT from the nerve terminals’ 
membranes. Interestingly, pharmacological inhibition of autophagy 
reverses the depletion of DAT induced by cocaine. This suggests that 
cocaine-mediated autophagy plays a significant role in modulating DAT 
levels and dopaminergic neurotransmission (Harraz et al., 2021).

Selective degradation of DAT by autophagy represents a novel 
mechanism for regulating dopamine signaling and dopaminergic 
neurotransmission. By modulating DAT levels, autophagy can control 
dopamine reuptake, its availability in the synaptic cleft, and its 
potential accumulation in the dopaminergic neurons’ cytoplasm in 
case of sustained elevated dopamine reuptake. This has important 
implications for the strength and duration of dopaminergic signaling 
and dopamine neurotoxicity.

The interplay of dopamine oxidation, 
DAT density per neuron, and 
autophagy-lysosome pathway 
dysfunction

The above-mentioned abnormal mechanisms have been proposed 
to contribute to PD pathophysiology. These include:
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FIGURE 2

Unifying dopamine oxidation, DAT expression density, and autophagy-lysosome pathway dysfunction by autophagy regulation of dopamine homeostasis. (A) An 
illustration showing dopaminergic terminals with low basal DAT expression. These terminals are spared in PD since the increase in DAT levels due to dysfunction 
of the ALP leads to elevated but compensated dopamine reuptake. (B) An illustration showing dopaminergic terminals with high basal DAT expression. These 
terminals likely degenerate in PD since the increase in DAT levels due to dysfunction of the ALP leads to elevated uncompensated dopamine reuptake.

 1. Dopamine oxidation-mediated neurotoxicity. The catechol 
structure of dopamine makes it particularly susceptible to 
enzymatic and non-enzymatic oxidation, generating dopamine 
quinones and other ROS. These oxidative species can damage 
cellular components, disrupt mitochondrial function, and 
initiate cell death pathways, contributing to the 
neurodegeneration seen in PD.

 2. High expression density of DAT per neuron in SNpc. The 
extent of dopaminergic neuron loss in PD has been found to 
correlate strongly with the expression density of DAT per 
neuron. High DAT density could increase dopamine reuptake 
and intracellular accumulation, promoting dopamine 
oxidation and associated neurotoxicity. However, the precise 
role and regulation of DAT in PD pathogenesis have 
remained unclear.

 3. Dysfunction of the autophagy-lysosome pathway. The ALP has 
also been implicated in PD. Dysregulation of this pathway can 
lead to the accumulation of damaged proteins and organelles, 
including potentially neurotoxic dopamine metabolites. 
Although the connection between autophagy dysfunction and 
PD has been established, its implications for dopamine 
homeostasis and DAT regulation were not fully understood.

However, until recently, these mechanisms have been studied in 
isolation, with no apparent connection to link them together.

Unifying the concepts: autophagy as a 
regulator of dopamine homeostasis

Our recent research has provided a unifying framework that 
integrates these previously separate mechanisms. We have discovered 
that autophagy is a novel mechanism for controlling dopamine 
homeostasis, directly linking autophagy-lysosome pathway dysfunction, 
DAT density, and dopamine oxidation. Autophagy declines with aging 
(Miki et  al., 2018), an observation further complicated by ALP 
dysfunction in familial and sporadic PD (Kabuta and Wada, 2008; 
Beilina et al., 2014). Autophagic degradation of DAT is likely reduced 
due to PD pathology-mediated decline in autophagy. Chronic elevation 
of DAT density per neuron could lead to a sustained elevation in 
dopamine reuptake, disrupting the tight regulation of cytoplasmic vs. 
vesicular dopamine, leading to enhanced dopamine oxidation and 
neurotoxicity, especially in neurons with already preexisting high DAT 
expression. This interplay could contribute significantly to dopaminergic 
neuron loss and the progression of PD (Figures 2A,B).
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Conclusion

In conclusion, our research bridges the gap between three previously 
separate concepts in PD pathophysiology, providing a more 
comprehensive understanding of aspects of the disease’s pathogenesis. 
By recognizing autophagy as a novel regulator of dopamine homeostasis, 
a missing link is recognized between dysfunctional ALP, high expression 
density of DAT per neuron, dopamine oxidation-mediated neurotoxicity, 
and correlation with vulnerability of dopaminergic neurons in PD.
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