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Birds-Eye-View (BEV) maps provide an accurate representation of sensory cues

present in the surroundings, including dynamic and static elements. Generating

a semantic representation of BEV maps can be a challenging task since it relies

on object detection and image segmentation. Recent studies have developed

Convolutional Neural networks (CNNs) to tackle the underlying challenge.

However, current CNN-based models encounter a bottleneck in perceiving

subtle nuances of information due to their limited capacity, which constrains the

e�ciency and accuracy of representation prediction, especially formulti-scale and

multi-class elements. To address this issue, we propose novel neural networks for

BEV semantic representation prediction that are built upon Transformers without

convolution layers in a significantly di�erent way from existing pure CNNs and

hybrid architectures that merge CNNs and Transformers. Given a sequence of

image frames as input, the proposed neural networks can directly output the BEV

maps with per-class probabilities in end-to-end forecasting. The core innovations

of the current study contain (1) a new pixel generation method powered by

Transformers, (2) a novel algorithm for image-to-BEV transformation, and (3)

a novel network for image feature extraction using attention mechanisms. We

evaluate the proposed Models performance on two challenging benchmarks,

the NuScenes dataset and the Argoverse 3D dataset, and compare it with

state-of-the-art methods. Results show that the proposed model outperforms

CNNs, achieving a relative improvement of 2.4 and 5.2% on the NuScenes and

Argoverse 3D datasets, respectively.
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1. Introduction

The advancement in deep learning has facilitated a better understanding of semantic

representation and contributed to more accurate prediction of object locations. This line of

research has a wide range of applications in autonomous driving (Ohn-Bar et al., 2020; Yi

et al., 2021; Cao et al., 2022a; Wang et al., 2022).

Recent studies have made significant strides in mapping multiple side-view images to

Birds-Eye-View (BEV) semantic maps, aiming to predict the positional probability of each

element. These BEV maps have proven to be potent tools for environment perception,

fundamental to autonomous navigation and driver assistance systems. As illustrated
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in Figure 1, cameras strategically positioned around the vehicle

capture RGB images from all directions. Surrounding-aware

systems then model these images to generate comprehensive 360-

degree BEV maps, offering a panoramic understanding of the

vehicle’s environment. However, creating BEV maps is challenging;

it represents a complex, multi-stage processing flow encompassing

ground plane estimation, road segmentation, lane detection, and

object detection, as described in Chen et al. (2020), Pan et al. (2020),

and Roddick and Cipolla (2020). It’s a laborious process with

challenges, yet its importance for safe and efficient autonomous

navigation cannot be overstated. The ideal scenario is to design an

end-to-end framework powered by deep learning. This approach

would directly predict the desired map representation from

sensor observations, providing a comprehensive understanding

of the environment in a single step. In this context, semantic

segmentation emerges as an indispensable tool, particularly in

autonomous driving. Semantic segmentation helps distinguish

various environmental elements, like roads, pedestrians, vehicles,

etc., enabling the system to interpret and interact safely with its

surroundings. By integrating this with our proposed end-to-end

BEV map generation, we aim to facilitate a more robust, efficient,

and safer autonomous driving system.

Several studies, such as Hendy et al. (2020), Mani et al. (2020),

Wu et al. (2021), Cao et al. (2022b), and Han et al. (2022), have

shown that CNNs are capable of capturing a large receptive field;

however, this comes with a trade-off involving deepening the neural

network structure. Despite being highly discriminative, semantic

features extracted from deeper convolution layers are not suitable

for representing small-sized/multi-class elements, which limits the

accuracy of predicting multi-element BEV representations. Recent

studies, including Yi et al. (2021) and Yu et al. (2021), have

indicated that shallow feature maps are more effective for small-

scale object detection as they provide rich spatial information.

As a result, balancing the need for capturing large receptive field

and extracting highly discriminative features can be challenging

for CNNs. Current studies have shown that Transformers are

able to achieve feature extraction with a large receptive field in a

shallow structure.

Exploring various strategies for developing high-quality

Bird’s Eye View (BEV) maps has become increasingly essential in

technology and science, particularly with the rise of autonomous

navigation and robotics. While several methodologies have

been presented, they tend to rely on large training samples and

display less resilience when faced with varying circumstances.

Furthermore, these previous studies primarily utilized

Transformers for tasks involving classification, which output a set

of per-class probabilities as exhibited by Han et al. (2022), Hu et al.

(2022), and Li et al. (2022). This leaves a significant area within the

transformative potential of Transformers untapped—generating

BEV semantic representation. We venture into relatively uncharted

territory, exploring the potential of using Transformers exclusively

to generate a BEV semantic representation, thereby bypassing

the necessity for convolution layers. Unlike the conventional

approaches, which focus on “classifying” image-based data, our

approach looks at both input and output as images—a procedure

we refer to as “image generation.” This shift from classification

tasks to generation tasks, utilizing Transformers, might pave the

way to more efficient, scalable, and diverse applications, ultimately

expanding the possibilities of BEV mapping technologies.

Comprehensive semantic feature extraction is the bedrock for

constructing high-quality BEV maps. To improve this process, the

research community must be willing to test novel approaches. Our

proposed use of Transformers as a sole agent for generating BEV

semantic representation stands as a pioneering endeavor in this

domain, challenging the conventional paradigms that have been

established. As such, it will contribute to the broader discourse

on effective BEV mapping and extend the functional capabilities

of Transformers. The outcomes of this study could potentially

guide further developments and improvements in autonomous

navigation systems, robotics, and other related areas where BEV

maps are paramount. This research is not merely a theoretical

experiment but a concrete step forward in the practical application

of Transformers in the real world.

To achieve this goal, the paper addresses two main

challenges: (1) how to extract global-local discriminative

features using Transformers, and (2) how to generate pixels

from image features without the use of convolution layers. A

main challenge for Transformers is their high dependence on

data availability for training the model to achieve promising

performance. Additionally, the way attention-a core component of

Transformers-is applied to image generation is still under-explored.

In the paper, we propose a Transformer-based framework that

generates BEV semantic representations in an end-to-end process.

To fully capture features, a new attention mechanism is employed

for spatial relationships. Traditional neural networks always

overlook a large number of semantic features due to the projections

of features in different planes. To overcome this limitation,

we design a new plane transformation algorithm. Previous

methods have relied mostly on convolution layers for multi-class

representation generation. However, since Transformers and

convolution would restrict the performance improvement of

each other, a pure Transformer-powered generator is proposed to

address the issue. Alongside this, a stable training scheme is also

developed to specifically target the new framework.

The contributions of this study can be summarized as follows.

• We propose a new framework purely powered by

Transformers for predicting BEV semantic representations.

The framework achieves this objective in an end-to-end

manner without convolution layers. This approach differs

dramatically from the existing CNN-based methods, greatly

simplifying the pipeline and improving perceptual details.

• We propose a feature extractor based on a Transformer to

memorize global clues and further mine local clues. The

extractor contains an overlapping patch generation method

and multi-head attention-based blocks.

• We design a new generator powered by Transformers to

generate pixels based on per-class prediction probabilities.

The carefully-designed pipeline is essential for generating

successful BEV semantic representations. In addition, a simple

trick is proposed that can transform image features into

BEV features.

• We achieve competitive results on two challenging datasets,

namely 19.9% Mean IoU on the NuScenes dataset and 19.1%
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FIGURE 1

Schematic illustrating the process of BEV semantic representation prediction in environment perception. A set of surround-view monocular cameras

are used to capture the surrounding environment (RGB images). These images are passed through a road-aware system to generate BEV maps

containing the location and shape information of various elements.

Mean IoU on the Argoverse 3D dataset. Compared with

leading CNN-based methods, our model demonstrate an

improvement of 2%–6 % in Mean IoU, and about 1% IoU

improvement is achieved on challenging prediction tasks.

The remainder of the paper is structured as follows. Section 2

reviews deep learning-powered studies. Section 3 provides details

on the proposed frameworks and technologies. Section 4 presents

the experimental results and discussion. Section 5 concludes the

works and shows the future research direction.

2. Related work and basics

2.1. Surrounding-aware system in
autonomous driving

The surrounding-aware system plays a crucial role in

connecting road conditions and driving assistance systems.

However, current technologies, such as sensing, detection, and

segmentation, are limiting the development of these systems

Predicting BEV representation based on monocular images is a

challenging problem for several reasons including multitasking,

complex 3D estimation, and multi-class prediction. Traditional

studies have proposed neural networks based on semantic

segmentation for BEV representation prediction (Pan et al.,

2020; Lu et al., 2021). However, these 2D representations lack

spatial relationships and are not effective in complex 3D spatial

scenarios. Recent studies have reported two categories of solving

this challenge: camera geometry and transformation implicitly, as

reported by Lu et al. (2021) and Yao et al. (2021). The former

has achieved significant performance by using on multi-type data

input, while the latter is more suitable for building a simple learning

framework in an end-to-end manner.

Although current methods are effective based on single data

input, they are not able to fully mine the spatial dependency,

which severely hinders the performance of multi-scale/multi-

class element prediction. In the paper, the proposed neural

networks are specifically developed to exploit rich spatial clues

by considering the global spatial relationship in a shallow

framework, instead of focusing on particular regions in a deep

structure. The purely Transformer-based neural networks are

proposed in the paper, and several related or derived techniques

are developed.
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FIGURE 2

Architecture of CNN-based networks for BEV representation prediction.

2.2. CNN-based studies

In previous studies, Convolutional Neural networks (CNN)

have been widely used for image processing. As shown in

Figure 2, the process typically contains three steps: (1) extracting

features from input images, (2) projecting planar image

features to BEV features, and (3) generating pixels under the

BEV map. Current studies have utilized leading CNN-based

backbones for feature extraction, such as ResNet (He et al.,

2016), Feature Pyramid Network (FPN) (Lin et al., 2017),

and DeepLab network (Yang et al., 2018). In addition, recent

works by Hendy et al. (2020) and Mani et al. (2020), have

incorporated BEV view transformation based on FPN and

employed adversarial loss to optimize BEV representation.

Inspired by the Generative Adversarial Network (GAN), some

studies have proposed Top-down networks, with the Inverse

Perspective Mapping (IMP). The front view image is mapped to

the ground plane by homography (Zhu et al., 2018; Hu et al.,

2023).

However, a significant issue has arisen in these CNN-based

studies. While the accurate prediction of large-size objects has

reached a saturation point, the forecast of small-size things still

remains an unresolved challenge. The majority of CNN-based

networks excel in local semantic segmentation. Still, they need to

catch up when predicting global BEV maps. The reason for this

lies in the inherent trade-off between network depth and the range

of the receptive field. In CNN-based networks, the receptive field

can access the depth of the network. While this sounds beneficial

in theory, allowing the network to capture more complex patterns

with more layers, it also escalates the challenges associated with

model training. Deeper networks tend to suffer from difficulties in

training due to issues such as vanishing and exploding gradients.

Moreover, as the web grows in depth, it becomes increasingly

computationally intensive, which might not be sustainable in

real-world, resource-limited applications. In light of this, there is

a pressing need for novel solutions that can accurately predict

large and small objects in BEV maps while also addressing the

computational and training challenges associated with deep CNN-

based networks. We can only unlock the full potential of BEV

mapping for autonomous navigation and related applications by

overcoming these hurdles.

2.3. Transformer-based studies

In 2020, Google AI introduced Vision Transformer (ViT) for

image classification without convolution layers (Dosovitskiy et al.,

2020). ViT divides the input image into square patches of equal

sizes, followed by the pure Transformer architecture processing

directly on the patch sequence to mine global-local features and

output per-class probabilities. Originally, Transformers were

proposed for Natural Language Processing (NLP) tasks (Vaswani

et al., 2017), but ViT has achieved impressive performance

on multiple image recognition benchmarks. Transformers

have also been used to solve other vision-related problems,

including object detection, semantic segmentation, and image

processing, where they outperformed CNN-based networks

including object detection, semantic segmentation, and image

processing (Han et al., 2022). Typical studies by Carion et al.

(2020), Chen et al. (2021a), Misra et al. (2021), and Mazzia

et al. (2022), have reported that self-attention mechanism used

in Transformers help model long-term features effectively.

Furthermore, some studies, such as Ba et al. (2016), Liu et al.

(2021), and Zheng et al. (2021) have extended Transformers

to the field of semantic segmentation by designing the encoder

based on Transformers, then adding other existing decoders to

model the image context. However, the following limitations

exist in recent Transformers-based studies: (1) the global

modeling scheme leads to high computational costs and

requires a large amount of data, and (2) the decoder design

still relies on convolutional layers. To the best of our knowledge,

no prior studies have explored a pure Transformer-based

framework for predicting BEV semantic representations without

convolution layers.
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FIGURE 3

Architecture of the proposed approach. The end-to-end framework contains three modules: (1) Feature extraction from input images, (2) Image

features are projected to BEV features, and (3) BEV semantic representation prediction. A Transformer-based network encodes global-local spatial

features powered by multi-head attention. The image-plane features can be transformed to BEV-plane features with the smallest possible loss of

feature information. A generative network further processes BEV global-local spatial features and predicts the final classification probabilities.

3. Method

We approach the prediction of BEV representation by framing

it as a global-local spatial relationship mining problem. Given a set

of look-around image inputs, the proposed method generates the

corresponding BEV representations in order. These representations

can be simply synthesized into full-space BEV maps. In this

section, we present the technical details of our proposed method

according to the processing order in the end-to-end framework,

as shown in Figure 3. We begin by explaining a Transformer-

based extractor that achieves image encoding, while balancing

the global spatial attention and receptive field. Next, we describe

how we transform the side views into BEV views and mine

the relationship of the inter-frame through a homography-based

algorithm. We also present a new Transformer-based predictor

for making predictions in BEV views. To represent the state of

the world, including vehicles, drivable areas, and land boundaries,

we use the semantic occupancy grid, which is an extension of

occupancy grid maps. We then introduce an association training

scheme that ensures the stable convergence of Transformer-based

neural networks.

3.1. Image encoding

In alignment with the conventional Vision Transformer

(ViT) method, our proposed model uses a backbone to extract

image features crucial for generating Bird’s Eye View (BEV)

semantic representations. The extraction process is mathematically

outlined in Equation (1), with the details underpinning this

method comprehensively discussed in Dosovitskiy et al. (2020).

Our feature extractor incorporates several vital components:

multi-head self-attention, multilayer perceptrons (MLPs), residual

connections, layer normalization, positional encoding, and

meticulously structured network topology. Each component plays

an instrumental role in the overall process of BEV generation. The

multi-head self-attention mechanism is particularly crucial in this

process. It enables the model to focus on different parts of the

input image simultaneously, thus allowing it to capture complex

patterns and dependencies in the input data. This capability is vital

for tasks like BEV prediction, where various aspects of an image

contribute to the final output. Multilayer perceptrons further

enhance the model’s capability to understand complex patterns

in the data. At the same time, residual connections help combat

the vanishing gradient problem, enabling the model to learn more

effectively from the data. Layer normalization ensures that the

model’s training remains stable and efficient by standardizing the

inputs to each network layer. Meanwhile, positional encoding is

employed to provide the model with information about the relative

positions of the pixels in the input image, which is crucial for

tasks involving spatial data. Finally, the network topology defines

the overall structure of the model and is designed in a way to

optimize the information flow and processing within the model. By

intertwining these components, our feature extractor presents an

effective means of obtaining and interpreting image data, fulfilling

the essential role in BEV generation.

z0 = [xclass; x
1
pE; x

2
pE; ......; x

N
p E]+ Epos,

E ∈ R(P
2·C)×D,Epos ∈ R(N+1)×D

zℓ
′ = MSA(LN(zℓ−1))+ zℓ−1, ℓ = 1......L

zℓ = MLP(LN(zℓ
′))+ zℓ

′, ℓ = 1......L

(1)
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For image encoding, we design a Transformer-based network

considering the requirements of feature transformation. First, the

input of the network X takes an image with three dimensions

(C × H × W) as input and converts it into a 2D vector [xp ∈

HW/P2 × (P2 · C)]. To achieve the conversion, we split the image

into multiple patches of fixed-size (size: P × P) that is carefully

designed tomine local cuesmore effectively. Specifically, each patch

is extended by i pixels to create overlap between patches, so the size

of each patch is (P+2i)× (P+2i). Our research has shown that this

careful design achieves regular training and robust optimization.

Moreover, the embedding matrix Ecan covert each patch to the

(N × D) dimensions, and the Epos is the position code to prevent

the patch order from being disrupted. MSA means the operation

powered by the multi-head self-attention (MSA) whose technical

details are similar to that of the ViT. TheMLP consists of the Linear

layer (LN) and the tanh function.

Due to poor inductive bias performance, Transformer-based

models show high sensitivity to input perturbations. However, to

enhance their generalization performance, the proposed neural

networks are expected to be insensitive to input perturbations.

To achieve this, a new attention (AEd(X)) is introduced in the

transformer encoder process. This new attention model draws

inspiration from the contributions in Kim et al. (2021), and

recomputes the dot product similarity in attention using Euclidean

distance, as illustrated in Equation (2), where Pq, Pk, and Pv
respectively denote the important parameters in the projection

process i.e., Query, Key, and Value; and dn denotes the dimension

of features in multi-head attention.

AEd(X) = Softmax(Ed(XPq,XPk)/
√

dn)XPv (2)

Our proposed approach diverges significantly from typical

Transformer-based classification models in terms of its output.

In conventional models, the multilayer perceptrons (MLPs)

output within the Transformer is typically a set of classification

probabilities. However, in our work, the MLPs output image

features. These features, rich in semantic information, are then

transformed into Bird’s Eye View (BEV) features, as further detailed

in the following sub-section. This innovation has multiple potential

benefits. Most importantly, it has a considerable impact on the

computational efficiency of our model. Given that image features

contain essential information in a condensed form, this method

dramatically reduces the volume of data to be processed in

subsequent stages. Instead of classification probabilities, the output

features bring the significant advantage of lowering the model’s

complexity and reducing the computation load. Furthermore, the

model can bypass the computationally intensive step of converting

probabilities back into image features by directly working with

image features instead of possibilities. This further economizes

the computational resources required, making the model more

efficient and quicker. In essence, our approach is designed to

effectively extract and utilize image features for BEV mapping,

all while maintaining computational efficiency. This streamlined

process, which provides detailed BEV features without the usual

computational burdens, is a key advancement over traditional

Transformer-based classification models.

3.2. Image-to-BEV

The process of converting a side view captured by the vehicle

camera to the BEV perspective is significantly challenging, largely

due to the fundamental differences between the two coordinate

systems. Unfortunately, the feature extraction network can only

output image-plane features. Hence, the main objective is to

reduce feature loss during the feature transformation process. An

image-plane feature map that has a height H and width W is

transformed into a BEV-plane that has a depth Z and width X, with

channel C unchanged.

Motived by the Hough transform, we design an effective

method for projecting features from image-plane to BEV-plane

features (FIP → FBEV ), as shown in Equation (3). Where rl, θl, and

cl denote horizontal plane, azimuth, and elevation in a feature map

location, respectively; andw(rl ,θl) denotes the weights learned by the

framework. Technically, we first collapse the vertical and channel

dimensions into a transition dimension and keep the horizontal

dimension unchanged. We then reset the transition features to get

a new tensor with the size (C × Z ×W). Finally, we resample into

a Cartesian coordinate system, namely, the BEV of the trapezoid,

thus establishing a new camera geometry.

FBEV(rl ,θl ,cl)
=

∑

w(rl ,θl)×FIP(rl ,θl ,cl) (3)

Compared with recent studies, such as Pan et al. (2020) and

Philion and Fidler (2020), the proposed method utilizes a cost-

saving operation to address the challenge of retaining the depth

features of the input.

3.3. BEV semantic representation
generation

Generating semantic features entirely using Transformer-based

model can be a huge challenge because the Transformers need to

generate pixels in spatial regions instead of traditional predicted

class labels. Inspired by studies of combining Transformers to

GANs, such as Chen et al. (2021b), Jiang et al. (2021), an Lee et al.

(2021), we proposed a new projector to generate BEV semantic

representation without convolution and pooling layers through two

stages: BEV semantic representation generation from single image

and BEV representation fusion. Unlike GANs, the discriminator (a

special Loss of GAN) is not required, and we design an associate

training scheme to supervise the end-to-end framework.

We develop the Transformer Encoder module to generate new

pixels in spatial space. We first introduce an affine transformation

A to each image feature patch, followed by the use of the Fourier

function for patch embedding. In technical terms, the architecture

is represented by Equations (4) and (5), where (x, y) denotes the

values of patch pixel obtained from the patch embedding, L is

the length of the input sequence, Efou is the Fourier encoding to

compute the spatial position of the pixel, and Mθ is the MLP

operation. The results show that the proposedmodule is effective in
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generating BEV pixels, as shown in the details presented in Figure 6.

z0 = Epos, Epos ∈ R(N+1)×D

zℓ
′ = MSA(LN(zℓ−1,w))+ zℓ−1, ℓ = 1......L

zℓ = MLP(LN(zℓ
′,w))+ zℓ

′, ℓ = 1......L

(4)

y = LN(hL,w)

x = [Mθ (Efou, y
1), ......,Mθ (Efou, y

L)]
(5)

Motivated by the multiple observation information methods

(Wang et al., 2019; Roddick and Cipolla, 2020), we propose a

Bayesian-based information natural fusion method. The main

objective is to build a wraparound BEV representation by

calculating the occupancy probability of each view feature in the

global coordinate system. First, we use the Log-odds operation

(denoted as lci,t) to equate the occupancy probability p(mc
i |ot) that

are the output of the network, where mc
i is the i-th observation of

an object of class cin network output. Next, The combination of

observations from the 1st to the t-th is shown in Equations (6) and

(7).

lci,1 : t = lci,1 : t−1 + lci,t − lc0

lc0 =
p(mc

i )

1−p(mc
i )

(6)

lc0 =
p(mc

i )

1−p(mc
i )

(7)

3.4. Training

We design an association training scheme to obtain more

accurate predicted probabilities containing three Loss functions,

as shown in Equation (8). First, the Binary cross-entropy (Lbce)

is used to train semantic occupancy probabilities P(·), as shown

in Equation (9). Second, to stimulate the framework to achieve

efficient convergence on complex images, such as small object-

contained images and partial occlusions, we introduce another Loss

function (Lcomp), as shown in Equation (10). Finally, we design

a feature transformation loss Lft to train Hough transfom-based

process, as shown in Equation (11). Here, D is a discriminant that

distinguishes between the ground-truth and the predictions, and

gcls denotes the prediction ground-truth. The proposed framework

is programmed in an end-to-end manner.

Lasso = Lbce + Lcomp + Lft (8)

Lbce =

N
∑

i=1

αmi · log(p(mi))+ (1−α)(1−mi) · log(1− p(mi)) (9)

Lcomp = 1− P(mi)log2P(mi) (10)

Lft =
∑

D(fIP→BEV · fip(X), gcls) (11)

4. Experiment and discussion

In this subsection, we first empirically compare CNNs with

Transformers and discuss the results. Next, we empirically assess

the effectiveness of the proposed method on two challenging

benchmarks and compare it with state-of-the-art methods.

Moreover, we show the performance of neural networks on typical

challenging tasks.

4.1. Experimental settings

4.1.1. Database
We choose two particularly challenging benchmarks to evaluate

the proposed model, i.e., the NuScenes dataset (Caesar et al.,

2020) and the Argoverse 3D dataset (Chang et al., 2019). They

are large-scale datasets in the field of autonomous driving. For

data selection, we follow the standard procedures used in most

previous studies (Philion and Fidler, 2020; Roddick and Cipolla,

2020). From the NuScenes dataset, we select four categories of

maps predicted by images, which contain 14 elements. From the

Argoverse 3D dataset, we select eight out of 15 elements for

map prediction. Additionally, since both datasets are designed

for object detection, and the labels are provided in vectorized

and 3D bounding boxes, we regenerate labels to fit the map

prediction task. As for technical details, we follow the recent

works Philion and Fidler (2020) and Roddick and Cipolla (2020).

The main approach we apply is generating annotations for

rasterized BEV images via vector label mapping and binary

mask generation. The predicted elements consist of Drivable

(Dri.), Pedestrian Crossing (Ped.C.), Vehicle (Veh.), Large Vehicle

(L.Veh.), Walkway (Wal.), Carpark (Carp.), Car, Truck, Bus,

Trailer (Tra.), Construction Vehicle (Con.V.), Pedestrian (Ped.),

Motorcycle (Mot.), Bicycle (Bic.), Traffic cone (Tra.C.), and Barrier

(Bar.).

4.1.2. Evaluation
To ensure fairness in comparison, we select the Intersection

over Union (IoU) score as the main evaluation metric. The IoU

evaluation shows the similarity between the element prediction

area and the ground truth area, with higher values indicating more

accurate predictions.

4.1.3. Implementation
We first pre-train the proposed network with the ImageNet

dataset using SGD, with a batch size of 512. Considering that

the smaller the input patch size is, the more computationally

expensive it is, we choose a patch size of 64 × 64. The number

of attention heads is 6, and the number of the transformer

blocks is increased to 6 (typically 4). The Adam algorithm is

utilized for training, with a weight decay of 0.1 and a batch size

of 32.
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FIGURE 4

The loss function curves for three methods on the NuScenes.

4.2. Ablation study

Our first step is to conduct ablation study on the NuSences

dataset (14 elements) to evaluate the effectiveness of two proposed

fundamental techniques: Transformer-based feature extraction

model (ViT-FE) and the Transformer-based BEV semantic

representation generation model (ViT-RG). The main purpose of

this study is to assess how well Transformers perform in BEV

representation prediction. In most CNN-based studies, ResNet-

based networks are used for feature extraction, and networks with

a Top-down structure are used for BEV representation generation.

Hence, we mix and match the proposed different modules and the

leading CNN-based networks.

In the ablation study, we select three leading deep modules for

mixing and matching, including a ResNet-50 backbone (R) (He

et al., 2016), a ResNet-50 with the FPN structure (R-FPN) (Yu

et al., 2022), and an IPM-based Top-down network (IPM) (Deng

et al., 2019). We train the above three models using SGD with a

momentum of 0.9, a batch size of 32, and a wight decay of 0.1.

Table 1 shows the results of the ablation study, and all of

the Abbreviated names are listed above for reference. The results

clearly indicate that the proposed ViT-FE and ViT-RG show a

considerable improvement in performance as compared to CNN-

based models, with an increase of around 6% higher (Mean IoU).

These findings highlight the effectiveness of using Transformer-

based to predict BEV semantic representation. Specifically, the

Transformer-based modules can gradually improve the prediction

accuracy for large-scale objects by about 2% and significantly

improve it for challenging small-scale objects by about 1% IoU.

Ensuring stable training is important for neural networks,

especially for Transformer-based networks. We propose a new

framework based purely on Transformers. To evaluate the

training effect of the proposed neural networks, we conduct

empirical experiments on a challenging benchmark (NuScenes).

As depicted in Figure 4, our method achieves comparable

training performance to other CNN-based methods. We suppose

that the proposed Transformer-based neural networks can be

generalized for the BEV semantic prediction task. Stable training

serves as the basis for further improving the performance of

Transformer-based methods.
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4.3. Main results and comparison to
state-of-the-art works

In this subsection, we present a comparison of the proposed

model with three recent works, including a View Parsing Network

(VPN, published in IEEE RAL, 2020) (Pan et al., 2020), a Top-

down network with transformer layer (DPT, published in CVPR

2020) (Roddick and Cipolla, 2020), and Lift-Splat-Shoot network

(L-S-S, published in ECCV 2020) (Philion and Fidler, 2020). The

CNN-based baseline [R-FPN (Yu et al., 2022) + IPM (Deng et al.,

2019)] is also shown for reference. It should be noted that the sub-

datasets chosen for each study are not identical due to the large scale

of autonomous driving datasets. To ensure a fair comparison, we

follow the part of the results reported by the DPT, and then we train

and test the L-S-S using the same experimental setup.

4.3.1. Main results
The NuScenes dataset contains a greater variety of objects

than the Argoverse 3D dataset, making it more challenging.

As demonstrated in Table 2 our proposed network achieved a

significant improvement in the Mean IoU metric, with 0.8% higher

than the DPT, 1.4% higher than the L-S-S, and 2.4% higher than

the VPN. Table 3 shows that the proposed network attains the

leading performance on the Argoverse 3D dataset. Specifically,

the proposed network exhibits further improvements in the

prediction rate of large-scale objects by about 2% in the prediction

rate of large-scale objects. The main result is breaking through

the bottleneck of small-scale object prediction. In comparison,

the prediction accuracy based on the CNN networks remains

essentially unchanged. Figure 5 shows the Precision-recall curves

of four interesting elements selected from the NuScenes dataset.

The closer these curves are to the upper right, the better the models

prediction performance for positive samples.

4.3.2. Discussion
Through an extensive examination of our experimental

results, several key insights have been gleaned, reaffirming the

innovative nature and potential of the method. First, Transformer-

based networks substantially improved the prediction of BEV

semantic features. This represents a significant stride forward

compared to traditional methods, suggesting that Transformers

hold great promise in advancing BEV mapping capabilities. This

marked performance enhancement demonstrates the effectiveness

of Transformer-based approaches. It provides a valuable reference

point for future research endeavors, opening up new avenues for

exploration and innovation. Second, our proposed Transformer-

based feature extractor demonstrated a superior ability to extract

finer features than CNN-based networks. This superiority is

particularly significant in predicting small-scale objects. In this

task, the extraction of intricate details is of utmost importance.

This underlines the capacity of Transformer-based models to

outperform their CNN counterparts in tasks that require a keen

discernment of finer details, thus broadening their potential

applications in related fields such as object detection and

recognition. Last, our unique contribution is the introduction T
A
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TABLE 3 Main results (IoU) on the Argoverse 3D dataset.

Method Dri. Bus Tra. L.Veh. Ped. Mot. Bic. Veh. Mean

R-FPN + IPM 54.2 5.2 0.3 8.5 2.7 0.8 0.2 15.8 11

VPN (Pan et al., 2020) 64.9 3 0.4 9.7 6.2 1.9 0.9 23.9 13.9

L-S-S (Philion and Fidler, 2020) 65.2 13.7 1.8 11.7 8 5.7 3.4 30.8 17.5

DPT (Roddick and Cipolla, 2020) 65.4 11 0.7 11.1 7.4 5.7 3.6 31.4 17

Proposed 66 17.5 2.9 13.8 8.6 6.4 4.2 33.7 19.1

A larger value indicates better performance.

FIGURE 5

Precision-recall tradeo� on the NuScenes dataset.

of a Transformer-based feature generator capable of outputting

pixel points instead of per-class probability. This novel approach

has exhibited superior performance compared to traditional Top-

down networks. By moving from per-class possibilities to pixel

point outputs, the proposed model offers a more nuanced and

detailed understanding of the input image, essential for complex

image generation tasks like BEV mapping. It also presents a more

versatile and granular output format that can be more readily

adapted to various applications. These observations demonstrate

the superiority and innovation of our proposed Transformer-based

approach to BEV semantic feature extraction and generation. This

research has not only bridged a significant gap in the field but

also paved the way for further advancements and applications

of Transformer-based models in the broader domain of image

processing and analysis.

4.4. Performance on challenging scenarios

This paper aims to making contribution to the discussion of

global-local spatial relationship learning, which is better at multi-

class and multi-scale element prediction. To further show the

performance of the proposed method on challenging tasks, we

evaluate its performance using challenging samples, i.e., complex

lanes, small-scale pedestrian, dark environments, two key traffic

signals, and multi-class element.

Figure 6 shows the qualitative results on the NuScenes dataset.

Two state-of-the-art methods are introduced for comparison. The

key conclusions are as follows. (1) The proposed method predicts

BEV semantic representation that closely matches ground-truth

labels. (2) The proposed method can effectively perceive more

detailed features, such as vehicle contours, subtle changes in

lane lines, and small-sized pedestrians. For example, the VPN

fails to predict small-size elements like pedestrians, and the DPT

only predicts elements that are close to the camera, while the

proposedmethodworks well. (3) The proposedmethod can achieve

state-of-the-art performance in complex field situations, including

illuminant-changed scenarios and occlusion. For example, in the

night driving, the prediction result of the VPN does not contain

vehicles, and the DPT can only predict parts of vehicles. In

comparison, the proposed method can still accurately predict the

number and location of vehicles in occlusion scenarios.

Furthermore, we test our proposed method by examining

its performance on multi-class element prediction, as shown in

Figure 7. We deployed the technique to generate Bird’s Eye View

(BEV) semantic representations for each element in scenarios that

pose significant challenges, such as occlusion, the presence of

multi-class/multi-scale objects, and dim illumination. The results

have been highly encouraging, demonstrating that our model

can accurately predict the position and shape of each element.

These positive results confirm our method’s effectiveness and

point toward its high computational efficiency and scalability,

particularly in large-scale environments. Despite the complexity

introduced by multi-class/multi-scale objects and conditions like

occlusion and dim lighting, the model maintains an impressive

performance. This attests to themodel’s robustness and adaptability

in diverse and challenging situations. Notably, the computational

efficiency of our method does not compromise its scalability.

Our model can seamlessly handle an increased number of classes

or a larger scale of images without requiring a proportional
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FIGURE 6

Qualitative results on the NuScenes dataset. For a fair comparison, we follow the color scheme utilized in the DPT. We evaluate methods on six

challenging scenarios and compare the proposed method with two baselines.

increase in computational resources. This computational scalability

is crucial for real-world applications where the model might need

to operate in vast and complex environments. This capability

could be highly beneficial in numerous practical applications,

from autonomous navigation systems to robotics, which requires

a nuanced understanding of their surroundings.

5. Conclusions

The paper presents novel neural networks powered by

Transformers for BEV representation prediction, which is

substantially different from CNN-based networks which are

commonly reported in existing works. Our method focuses on

map generation through image-plane feature extraction and

transformation, without the use of convolution and pooling layers.

In this way, per-class element prediction and BEV map generation

are implemented through an end-to-end framework. Results

demonstrate strong performance on two large-scale benchmarks,

i.e., the NuScenes dataset and the Argoverse 3D dataset. The

model attains greater accuracy improvement for large-size object

prediction (about 2 % IoU) and a breakthrough for small-scale

object prediction (about 1 % IoU). Furthermore, the proposed

method shows a leading performance in challenging scenarios.

In the future, we will study (1) train Transformer-based

networks with less data, (2) memorize more distant global clues,
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FIGURE 7

Visualization of the multi-class element prediction results on the NuScenes. An autonomous vehicle predicts a BEV representation with six elements

in a cloudy scene. The BEV representation of the six elements is present separately.

and (3) build a Transformer-based temporal framework. We

argue that the boost in performance of BEV representation

prediction depends on spatiotemporal relationship mining, and

balancing between data-driven approaches and performance-

boosting techniques is key for deep learning.
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