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Purpose: While 3D MR spectroscopic imaging (MRSI) provides valuable 
spatial metabolic information, one of the hurdles for clinical translation is its 
interpretation, with voxel-wise quality control (QC) as an essential and the most 
time-consuming step. This work evaluates the accuracy of machine learning (ML) 
models for automated QC filtering of individual spectra from 3D healthy control 
and patient datasets.

Methods: A total of 53 3D MRSI datasets from prior studies (30 neurological 
diseases, 13 brain tumors, and 10 healthy controls) were included in the study. 
Three ML models were evaluated: a random forest classifier (RF), a convolutional 
neural network (CNN), and an inception CNN (ICNN) along with two hybrid 
models: CNN  +  RF, ICNN + RF. QC labels used for training were determined 
manually through consensus of two MRSI experts. Normalized and cropped 
real-valued spectra was used as input. A cross-validation approach was used to 
separate datasets into training/validation/testing sets of aggregated voxels.

Results: All models achieved a minimum AUC of 0.964 and accuracy of 0.910. In 
datasets from neurological disease and controls, the CNN model produced the 
highest AUC (0.982), while the RF model achieved the highest AUC in patients 
with brain tumors (0.976). Within tumor lesions, which typically exhibit abnormal 
metabolism, the CNN AUC was 0.973 while that of the RF was 0.969. Data quality 
inference times were on the order of seconds for an entire 3D dataset, offering 
drastic time reduction compared to manual labeling.

Conclusion: ML methods accurately and rapidly performed automated QC. 
Results in tumors highlights the applicability to a variety of metabolic conditions.
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Introduction

MR spectroscopy (MRS) is a valuable tool to measure in vivo information of cellular 
metabolism, thus enabling noninvasive monitoring of metabolic changes due to disease 
progression, therapeutic response, and treatment effects. Numerous research studies have 
highlighted its applicability to a variety of diseases, such as cancers, neurodegeneration, 
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developmental disorders, and ischemic injuries (Preul et al., 1996; 
Nelson et al., 1999; Carhuapoma et al., 2000; Kurhanewicz et al., 2000; 
Schuff et al., 2006; Bejjani et al., 2012; Li et al., 2015b). While most 
clinical applications favor single voxel acquisitions due to the 
simplicity in interpretation and limited data, multi-voxel acquisition, 
also called MR spectroscopic imaging (MRSI), improve signal-to-
noise ratios (SNR), spatial coverage, and provide flexibility in 
acceleration. Recently, active efforts in high field MR and significant 
advances in both accelerated acquisitions and post-processing signal 
enhancement methods have greatly improved the new generation of 
whole-brain, high-spatial resolution MRSI (Nelson et al., 2013; Bogner 
et al., 2021).

Accurate metabolite concentration quantification depends on 
the spectral quality of the voxel. SNRs of metabolites, linewidths 
of peaks, and quantitative error estimates such as Cramér-Rao 
lower bounds, which are derived from metabolite fitting to 
describe errors in the computed metabolite concentrations, are 
typically used to determine spectral quality (Jiru et al., 2006; Oz 
et al., 2014; Wilson et al., 2019; Maudsley et al., 2021). However, 
additional quality control (QC) is still required to filter artifacts 
such as lipid contamination and inadequate water suppression, 
which are typically performed manually through voxel-wise visual 
inspection. For a single 3D dataset, hundreds of voxels are 
individually reviewed by MRS experts to identify and exclude 
those of poor quality or containing artifacts. This time-consuming 
process poses a severe hindrance to the adaptation of 3D MRSI to 
clinical and translational studies.

Recently, machine learning (ML) approaches, which can quickly 
triage large amounts of imaging data, have also been applied for 
spectral QC. Menze et al. introduced the use of a random forest (RF) 
classifier trained on magnitude spectral data to label spectral quality 
based on patterns in the spectra (Menze et al., 2008). This method 
achieved an AUC of 0.950 for voxels within the acquisition volume 
and, when compared to human experts, outperformed the use of 
decision rules based on SNR and Cramér-Rao-bound estimates 
derived from spectral fitting. Rather than using the magnitude spectra 
as input, RF classifiers were later evaluated in patients with 
glioblastoma using spectra-derived parameters (Tensaouti et  al., 
2022), resulting in an AUC of 0.955. Similarly, Wright et al. proposed 
the use of a support-vector machine that was trained on features that 
were first extracted using independent component analysis on the 
spectra (Wright et al., 2008). Pedrosa de Barros et al. then used a RF 
classifier trained on both time-domain and frequency-domain features 
to perform QC and achieved an area under the curve (AUC) of 0.998 
(Pedrosa de Barros et al., 2016). Apart from the RF classifier proposed 
by Menze et  al. (2008), the ML methods described work by first 
extracting features from the spectral data. The ML models for 
automated classification were then trained using the extracted features 
as input.

Although the RF model proposed for QC has the advantage of 
ease of implementation and few hyperparameters to be  selected, 
recent work has highlighted the potential of improvements with more 
complex neural network models. In such methods, rather than relying 
on a set of features derived through fitting algorithms or spectral 
decomposition, the spectral waveform is used as the direct input to a 
deep neural network. Meaningful features can then be  implicitly 
learned during model training via hidden layers of deep networks. A 
large and diverse dataset covering the variance seen in real data is 

required for training such complex models. Kyathanahally et  al. 
successfully applied fully connected neural networks (FCNNs) and 
convolutional neural networks (CNNs) to the complete 2D time-
frequency spectrogram representations of raw 1D spectra to identify 
and remove ghosting artifacts on simulated and healthy volunteer 
datasets (Kyathanahally et al., 2018). Gurbani et al. developed a CNN 
model for QC labeling which takes as input the spectral waveforms 
pre-filtered by linewidth directly and achieved an AUC of 0.951 when 
evaluated on 9 patients with glioblastoma (Gurbani et  al., 2018). 
Despite the small sample size and limited scope of disease, these 
studies demonstrated the potential of using ML-based methods for 
automatic 3D MRSI QC for clinical applications without the need for 
feature engineering.

In this study, we  evaluated the performance of deep neural 
networks in comparison to the RF classifier for QC of short-echo 3D 
MRSI datasets collected from patients with various neurological 
diseases. Using expert classifications of spectra as voxel-wise labels, 
five ML approaches were trained and evaluated. These models 
circumvent the need for both feature engineering and spectra filtering 
based on metabolite linewidth and SNR as they all take as input the 
complete spectra. A simple RF classifier was first evaluated (Menze 
et al., 2008) and compared to a 6-layer CNN (Gurbani et al., 2018). 
Then, the introduction of more hidden layers to the model architecture 
to represent higher-order features was explored via the more complex 
inception CNN (ICNN) module (Szegedy et  al., 2015). Finally, 
we evaluated the use of the two deep learning models (CNN and 
ICNN) to determine abstract features that were then used as input to 
the RF classifier. In these hybrid methods (CNN + RF, ICNN + RF), 
the DL-derived features are used forwarded as input to the RF 
classifier. All 5 classifiers (RF, CNN, ICNN, CNN + RF, ICNN + RF) 
were trained and evaluated on data acquired from healthy volunteers, 
patients with neurological disorders (including major depressive 
disorder, multiple sclerosis, and Parkinson’s disease), and patients with 
brain tumors.

Materials and methods

3D MRSI data and imaging

A total of 53 7 T MR datasets from prior studies [10 from healthy 
controls, 10 from patients diagnosed with major depressive disorder 
(Li et al., 2016), 10 from patients with multiple sclerosis (Henry et al., 
2015), 10 from patients with Parkinson’s disease, and 13 from patients 
with brain tumors (Li et al., 2015a)] were retrospectively analyzed 
after appropriate approval from our Institutional Review Board and 
informed consent from subjects. Data from patients with Parkinson’s 
disease with low quality spectra was included in the analysis to balance 
the ratio of good to bad quality spectra during ML training. These 
datasets are hereafter referred to as the ND dataset (all data obtained 
from healthy controls and patients with neurological disorders, 
N = 40) and the BT dataset (all data obtained from patients with brain 
tumors, N = 13).

MR data were obtained on a GE 7 T MR950 scanner (GE 
Healthcare, Waukesha, WI). 3D MRSI datasets were acquired with 
TE = 30 ms (BT) or 20 ms, TR = 2,000 ms, 1 cm isotropic spatial 
resolution, and (18–20) × 22 × 8 matrix size (Henry et al., 2015; Li 
et  al., 2015a, 2016). Anatomic images included 3D T1-weighted 
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inversion recovery-prepared spoiled gradient echo (IRSPGR) images 
[TR/TE/ inversion time (TI) = 6/2/600 ms, matrix size = 256 × 256 × 192, 
FOV = 256 × 256 × 192 mm3] and 2D T2-weighted fast spin echo [TR/
TE/TI = 6,000/86/600 ms, matrix size = 512 × 512, field of 
view = 241 × 241 mm2, 19–21 slices, slice thickness/gap = 3/1 mm]. For 
each BT dataset, an additional MR examination was performed on a 
3 T MR750 scanner (GE Healthcare, Waukesha, WI), which included 
T2-weighted fluid attenuated inversion recovery (FLAIR) images 
(TR/TE/TI = 6,250/139/1,699 ms, slice thickness = 1.2 mm, 
FOV = 25.6 × 25.6 cm, matrix = 256 × 256) and T1-weighted ISPRGR 
images (TR/TE/TI = 6.6/1/450 ms, slice thickness = 1.5 mm, field of 
view [FOV] = 25.6×25.6 cm, matrix = 256 × 256). T2 hyperintense 
lesions (T2L) were identified manually on the 3 T FLAIR images 
which were then rigidly registered linearly to 7 T T1 images using 
FLIRT (Jenkinson et al., 2012, FMRIB Software Library, fsl.fmrib.
ox.ac.uk/fsl/fslwiki/FSL). The registration transformation matrix was 
applied to the T2L masks to convert to 7 T space. The T2L masks were 
down-sampled to the MRSI resolution and voxels containing any 
overlap (>0%) with the high resolution T2L ROI were classified as 
tumor (Li et al., 2018).

QC manual labeling

The 3D MRSI datasets were reconstructed and processed as 
described previously (Li et  al., 2015a). Prior to metabolite 
quantification, the coil-combined and frequency and phase corrected 
spectra within the excitation region were labeled for quality 
independently by two experts. Both experts had over 15 years of 
experience evaluating brain metabolism with MRS. Manual labeling 
took on the order of 10–15 min per dataset and was based on 
subjective evaluation of SNR, linewidth, presence of lipid artifact, and 
incomplete water suppression. Following the conservative approach 
taken in Menze et al. (2008), voxels were labeled “good” if both raters 
labeled it as such. Voxels labeled as poor quality by either rater was 
labeled as “bad.” The final aggregated ND data set consisted of 9,030 
voxels labeled as “good” and 7,723 as “bad.” The aggregated BT dataset 
consisted of 3,863 voxels labeled as “good,” 1,548 as “bad.” Of these 
voxels, 1,053 were within the T2L (684 “good,” 369 “bad”).

Pre-processing of spectral data for model 
input

Voxel-wise real-valued spectra were extracted from complex 
signals and cropped to 1.4 to 4.1 ppm (850 spectral points). Cropped 
spectra were normalized to have mean 0 and standard deviation 1 for 
input to ML models.

Network architectures

All computational work was performed on a custom-built 
workstation with AMD 3900× 12-core CPU with a Nvidia Titan X 
GPU, utilizing Python 3.8 and Tensorflow 2.2. Three base models were 
constructed using: (1) an RF classifier, (2) a standard CNN, and (3) an 
inception CNN (ICNN). For all models, the 850-point normalized 
real-valued spectra was used as input. The RF classifier was built using 

200 estimators and the standard number of features to grow each tree 
for classification [ 850 30( ) ≈ ;  Liaw and Wiener, 2002]. The CNN 
was modeled as a tile-free modification of the network in Gurbani 
et al. (2018) and consisted of 6 convolution layers with max pooling, 
2 fully connected layers. The ICNN consisted of 2 convolutional layers 
with max pooling, 2 inception module layers (Szegedy et al., 2015) 
followed by max pooling, 2 fully connected layers, and a final output 
layer. The CNN and ICNN are depicted in Figure 1. Finally, the CNN 
and ICNN were combined with the RF classifier to build two 
additional hybrid models as follows: the CNN + RF and ICNN+RF 
models were created by first training the CNN and ICNN and then 
extracting the features generated prior to the final output layers (64 
nodes for both CNN and ICNN). These nodes were then used as input 
nodes to an RF classifier, which produced the final QC prediction. 
Hybrid model input nodes are indicated by the red arrows in Figure 1.

Model training and evaluation of prediction 
accuracy

For the ND dataset, each model was cross-validated by reserving 
data from 4 subjects for testing model (one of each type: healthy 
volunteer, major depressive disorder, multiple sclerosis, and 
Parkinson’s disease). Another 4 subjects were similarly reserved for 
model validation to prevent any leakage. Voxels from the remaining 
datasets were aggregated and used for training. This was repeated a 
total of 10 times using a different set of patients for the validation and 
testing sets and results in an approximate 75%/12.5%/12.5% split of 
voxels in the training/validation/test datasets. For the BT dataset, 
cross-validation was performed using leave-one-out analysis for each 
of the 13 patient dataset. The validation set was made of two randomly 
selected patients to prevent leakage. Voxels from the remaining 
datasets were aggregated and used for training. This results in an 
approximate 75%/12.5%/12.5% split of voxels in the training/
validation/test datasets. For the CNN and ICNN, the Adam optimizer 
was used with the categorical cross-entropy error of class labels to 
output probabilities and the initial learning rate was set to 1e − 4 
(Kingma and Ba, 2014; Gurbani et al., 2018). Models were trained 
with a batch size of 64 and with 15 epochs. Model AUC (i.e., 
ROC-AUC) and accuracy were evaluated on the test datasets. The 
AUC of the precision-recall curve (AUC-PR) was also calculated 
(Buckley and Voorhees, 2000; Davis and Goadrich, 2006). For the BT 
dataset, each model was further evaluated based on AUC, AUC-PR, 
and accuracy calculated using T2L voxels only. To evaluate the 
importance of spectral regions on DL results, the method of integrated 
(IG) gradients (Sundararajan et al., 2017; Wargnier-Dauchelle et al., 
2021) was used to visualize feature importance for the base models in 
tumor lesions.

Results

The ND dataset

The model training times, AUC, AUC-PR, and accuracy are given 
in Table 1, and sample ROC curves for all models along with CNN and 
ICNN training/validation loss and accuracy curves are illustrated in 
Figure 2A. Average prediction times for a single dataset (~300–500 
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brain voxels) were 0.022 ± 0.004 s (RF; mean ± standard deviation), 
0.094 ± 0.010 s (CNN), 0.119 ± 0.017 s (CNN + RF), 0.169 ± 0.055 s 
(ICNN), and 0.205 ± 0.150 s (ICNN+RF), respectively. Of these 
models, the CNN achieved the highest AUC (0.982 ± 0.004). Sample 
voxels that were correctly and incorrectly predicted using the CNN 
are shown in Figure  3. Compared to a typical good spectrum 
(Figure  3A), spectra that were incorrectly predicted “bad” often 
exhibited wide peaks and significant frequency shifts (Figure 3B, left). 
Voxels that were incorrectly predicted “good” may exhibit multiplets 
in the spectral peaks (Figure  3B, middle) or low SNR and lipid 
contamination in the spectra (Figure 3B, right).

The BT dataset

The model training times, AUC, AUC-PR, and accuracy values 
are given in Table 1, and sample ROC for all models along with CNN 
and ICNN training/validation loss and accuracy curves are illustrated 
in Figure 2B. Average prediction times for a single dataset of size 

(~300–500 brain voxels) were 0.021 ± 0.003 s (RF), 0.102 ± 0.010 s 
(CNN), 0.132 ± 0.018 s (CNN + RF), 0.174 ± 0.074 s (ICNN), and 
0.255 ± 0.184 s (ICNN+RF), respectively. As with the ND data, all 
models performed well. The RF achieved the highest AUC 
(0.976 ± 0.016); however, when evaluated only in T2L voxels, the CNN 
achieved the highest AUC (0.973 ± 0.018). Additionally, the AUC-PR 
and accuracy of the CNN and both hybrid models were higher than 
that of the RF.

Using the CNN, examples of correctly and incorrectly predicted 
T2L voxels are shown in Figure 4 along with their spectra, IG curves, 
and attribution masks. The voxels correctly predicted as “good” 
typically exhibited prominent N-acetyl-aspartate (NAA), choline, and 
creatine peaks, which strongly influenced the CNN prediction as 
demonstrated by the IG curve and attribution mask (Figure  4A). 
Voxels correctly predicted “bad” either lacked these peaks or 
demonstrated greater dispersion in the spectral importance as seen in 
the attribution mask (Figure 4B). The voxel highlighted in Figure 4C 
lacks a prominent NAA peak along with an elevated Cho peak and 
was incorrectly predicted as “bad.” The attribution mask for this voxel 

FIGURE 1

Network architecture for CNN model (A) and ICNN model (B). The nodes forwarded to RF for the CNN  +  RF and ICC  +  RF models are indicated by the 
red arrow.
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demonstrates how this spectral location for NAA did not strongly 
influence the prediction, as is typical of “good” voxels. Finally, the 
voxel in Figure 4D was incorrectly labeled “good” and its attribution 
mask indicates strong influences in spectral locations for choline 
and creatine.

Discussion

To adopt 3D MRSI into routine clinical practice, careful 
inspection of spectra quality is required before interpreting 
metabolic maps from quantification results. This study examined 
the performance of several ML models to rapidly and automatically 
label spectra data. In contrast to previous studies, clinical datasets 
with varying quality and disease were used to train and evaluate 
ML models. The inclusion of various disease types in the ND 
dataset helped to create a more balanced training set. The models 
evaluated included a random forest classifier and two deep learning 
convolutional neural network models (CNN, and ICNN) as well as 
their hybrid models (CNN + RF and ICNN + RF).

All ML models performed exceptionally well, achieving AUCs 
of at least 0.964, AUC-PR of at least 0.881, and accuracies of at least 
0.910. These results demonstrate such methodologies can be readily 
implemented in clinical MRSI processing workflows. Because of 
the aberrant metabolism seen in tumor lesions and resulting 
atypical spectra, we chose to separate the data into the ND and BT 
datasets. For both datasets, the simple RF classifier produced 
similar AUC compared to the more complex models. However, 
comparing metrics such as AUC-PR and prediction accuracies, the 
CNN and hybrid classifiers outperformed the RF. Overall, 
prediction accuracies for the ND dataset were higher than the BT 
dataset. This was, in part, due to the difference in training sizes. 
Together, these results suggest that the more complex models may 
require both more comprehensive training sets and further 
refinement of network architecture.

In a 3D whole brain MRSI dataset with 1 cc spatial resolution, the 
number of voxels within the brain is about 300–500. In this study, 
expert raters estimated the process of labeling spectral quality of all 
voxels in a single dataset took at least 10–15 min. With the application 
of the ML approaches, labeling for all voxels of a single examination 
was performed in under a second with an AUC of at least 0.964 for all 
models evaluated. This dramatic reduction in labeling time would 
allow for on-the-fly processing to extract quantitative metabolite 
concentrations and thus provide rapid feedback to the clinical team.

Overall, spectral quality mispredictions with ML methods could 
be due to several influencing factors. As seen in Figure 3, spectra with 
significant frequency offsets were mispredicted, as were voxels that 
with wide spectral peaks and low SNR. The IG curves and attribution 
masks allowed us to more specifically explore areas of the spectra 
which influence CNN model predictions. The CNN model predictions 
appeared to be  heavily influenced by spectral peaks for choline, 
creatine, and NAA. In the BT dataset, attribution masks for voxels 
with incorrect QC classifications underscore the importance of 
preprocessing steps such as baseline correction and phase and 
frequency correction, which can distort spectra causing spurious 
peaks that bias ML predictions. The tissue heterogeneity exhibited in 
tumor voxels (i.e., elevated choline coupled with a decrease in NAA) 
may also result in mispredictions, as seen in Figure 4C.

It is important to note that the ML classification was evaluated 
in a conservative manner as voxels were labeled as “good” only if 
both raters labeled it as “good” and were labeled as “bad” if either 
rater labeled it as “bad.” Classification results are expected to 
improve with a training set built with a third tie-breaking rater that 
minimizes subjective bias. In the future, a three-class model may 
also be explored in which voxels are classified as “good,” “bad,” or 
“uncertain.” A human-ML hybrid framework in which an expert 
classifier manually examines only voxels for which a ML classifier 
predicted the “uncertain” label may be considered as a middle-
ground between automated and manual QC. With the current 
models, additional automated filtering of voxels based on set SNR 

TABLE 1 Model training time, AUC scores, AUC-PR scores, and accuracy results.

Dataset Model Training time (s) AUC AUC-PR Accuracy

ND RF 64 ± 2 0.974 ± 0.006 0.971 ± 0.009 0.910 ± 0.016

CNN 158 ± 4 0.982 ± 0.004 0.985 ± 0.005 0.928 ± 0.015

CNN + RF 160 ± 3 0.977 ± 0.006 0.975 ± 0.011 0.926 ± 0.012

ICNN 195 ± 38 0.981 ± 0.004 0.984 ± 0.005 0.926 ± 0.011

ICNN + RF 199 ± 38 0.972 ± 0.004 0.975 ± 0.011 0.926 ± 0.012

BT RF 16 ± 0 0.976 ± 0.016 0.881 ± 0.069 0.920 ± 0.060

CNN 52 ± 1 0.970 ± 0.016 0.982 ± 0.007 0.930 ± 0.026

CNN + RF 54 ± 1 0.965 ± 0.023 0.984 ± 0.014 0.932 ± 0.024

ICNN 86 ± 7 0.967 ± 0.017 0.986 ± 0.010 0.914 ± 0.024

ICNN + RF 88 ± 7 0.964 ± 0.019 0.975 ± 0.053 0.926 ± 0.029

BT—evaluated in T2L voxels RF - 0.969 ± 0.020 0.888 ± 0.139 0.830 ± 0.239

CNN - 0.973 ± 0.018 0.976 ± 0.021 0.912 ± 0.041

CNN + RF - 0.972 ± 0.139 0.977 ± 0.012 0.918 ± 0.022

ICNN - 0.965 ± 0.019 0.975 ± 0.030 0.890 ± 0.047

ICNN + RF - 0.963 ± 0.026 0.954 ± 0.077 0.908 ± 0.045

Mean and standard deviation values are based on 10 separate runs with randomly selected training, validation, and test sets. The bold values represent the ones with the highest AUC.
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FIGURE 2

Sample ROC curves for all models trained on (A) ND dataset and (B) BT dataset, and Sample CNN and ICNN loss and accuracy evaluated in training 
(blue) and validation (green) sets (C).

FIGURE 3

ND dataset examples of normalized spectra with data quality predictions using CNN  +  RF. (A) A representative “good” voxel that was correctly predicted 
as “good” using the CNN  +  RF. (B) Example of mispredicted voxels using the CNN  +  RF: a voxel labeled “good” but predicted “bad” (left) and two voxels 
labeled as “bad” but predicted “good” (middle, right).
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or peak width criterion may help account for voxels with B1 
inhomogeneity or chemical shift misregistration errors. 
Optimization of model hyperparameters is also expected to 
improve ML-based QC. Although the ND training dataset was 
relatively balanced (54:46 for “good”:“bad” voxels), the BT dataset 
was comparatively less balanced (71:29). Thus, the accuracy of 
models trained for brain tumor data is expected to improve either 
via the use of transfer learning (initializing models with parameters 
trained using the ND data), or, as noted above, with the availability 
of a larger brain tumor training dataset more representative of 
abnormal metabolism exhibited in tumor spectra. Complex 
network architectures that have shown success with labeling of 1D 
data, such as the bi-directional LSTM-CNN hybrid models (Zhu 
et al., 2019), may also be explored for this data. Finally, the addition 
of anatomical information may be  explored using a 4D neural 
network (3 spatial and 1 spectral dimension), to filter out B1 
inhomogeneities and chemical shift misregistration. However, such 
models may be  considerably more computationally intense 
compared to the 1D networks evaluated here.

Conclusion

The ability of ML methods to predict spectral quality was 
evaluated on 3D MRSI datasets acquired from healthy volunteers, 
patients with neurological disorders, and patients with brain tumors. 
A 6-layer CNN and a simple RF classifier produced high AUC for 

determining quality of data from neurological and brain tumor 
patients. The models have the appeal of both simplicity and 
performance that is comparable to more complex architectures which 
performed similarly.
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