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Purpose: Central precocious puberty (CPP) is puberty that occurs at an unusually 
early age with several negative psychological outcomes. There is a paucity of 
data on the morphological characteristics of the brain in CPP. This study aimed to 
determine the structural differences in the brain of patients with CPP.

Methods: We performed voxel- and surface-based morphometric analyses of 
1.5 T T1-weighted brain images scanned from 15 girls with CPP and 13 age-matched 
non-CPP controls (NC). All patients with CPP were diagnosed by gonadotropin-
releasing hormone (GnRH) stimulation test. The magnetic resonance imaging 
(MRI) data were evaluated using Levene’s test for equality of variances and a two-
tailed unpaired t-test for equality of means. False discovery rate correction for 
multiple comparisons was applied using the Benjamini–Hochberg procedure.

Results: Morphometric analyses of the brain scans identified 33 candidate 
measurements. Subsequently, increased thickness of the right precuneus was 
identified in the patients with CPP using general linear models and visualizations 
of cortical thickness with a t-statistical map and a random field theory map.

Conclusion: The brain scans of the patients with CPP showed specific morphological 
differences to those of the control. The features of brain morphology in CPP 
identified in this study could contribute to further understanding the association 
between CPP and detrimental psychological outcomes.
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1. Introduction

Puberty is the onset of reproductive capability in humans accompanied by the 
development of secondary sexual characteristics and accelerated bone maturation. Central 
precocious puberty (CPP) is puberty that occurs at an unusually early age. Unusually early 
is defined for CPP diagnostic purposes as earlier than 8 years of age in girls and earlier than 
9 years of age in boys (Bradley et al., 2020). It is usually idiopathic and is more prevalent in 
girls (Rosenfield et al., 2000). The prevalence of CPP was 193.2 per 100,000 persons (girls, 
410.6; boys, 10.9) in an Asian country (Kim et al., 2019). In patients with CPP, levels of 
follicle-stimulating hormone (FSH), luteinizing hormone (LH), and sex hormones 
dramatically increase at an early age.
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Although the increase of these hormones is the same as that during 
the normal process of puberty, timing of the increase of these hormones 
is inappropriately early, which is a distinct condition in CPP. CPP has 
several adverse effects, such as shorter final height as a result of early 
bone maturation, having difficulties in social life and psychosocial/
behavioral sequelae due to an early menarche (De Sanctis et al., 2019). 
Moreover, CPP has been associated with several psychological problems 
that can have significant long-term impacts. These problems include 
depression, substance abuse, eating disorders, body dissatisfaction, 
externalizing behavior, risky sexual behavior, abortion, and certain 
aspects of academic achievement (Udry, 1979; Graber et al., 1997; Stice 
et al., 2001; Graber et al., 2004). Given the significant impact that these 
psychological problems can have on an individual’s subsequent life, it 
is essential to understand the causal relationships and mechanisms 
underlying CPP and its associated negative outcomes (Soriano-Guillen 
and Argente, 2019). While intracranial tumors are involved in some 
CPP cases, most CPP cases showed no abnormalities on MRI imaging 
as qualitative image analysis (Cantas-Orsdemir et al., 2018). Regarding 
quantitative analysis, several reports suggest that pituitary volume is 
significantly higher in CPP patients than in age-matched non-CPP 
controls (NC; Sharafuddin et al., 1994; Wu et al., 2020) as the pituitary 
gland is a hormone-producing site. However, pituitary changes are 
unlikely to be directly related to psychiatric symptoms because it is not 
a site responsible for higher nervous functions. Moreover, the reports 
have focused on pituitary imaging and not a comprehensive quantitative 
analysis of the entire brain.

Recently, there has been an increasing emphasis on detailed 
investigations of changes in brain morphology as a means of 
enhancing our understanding of neurological disorders (Shiohama 
et al., 2019a,b, 2020). This is particularly relevant in the case of CPP 
because female patients with CPP exhibit a heightened vulnerability 
to psychiatric disorders in comparison to typically developing 
children. Our hypothesis posited that this association might stem 
from the early and excessive exposure of the brain to sex hormones, 
resulting in distinct structural modifications within the cerebral cortex 
that deviate from the normative trajectory of brain maturation. To 
substantiate this hypothesis, our investigation aimed to 
comprehensively examine and characterize the structural aspects of 
the brains of CPP patients, utilizing region- and surface-based 
measurements obtained through advanced structural MRI techniques.

2. Methods

2.1. Patients

We assembled a sample of 15 female patients with CPP from 
electronic medical records between 2016 and 2020 at Chiba University 
Hospital, a tertiary medical center. The clinical diagnoses of CPP for all 
patients in our sample were confirmed by a certified pediatric 

endocrinologist using the clinical course and GnRH stimulation tests. 
Patients with intracranial tumors and those on other mediations, 
including growth hormone, were excluded. Because gender and age 
differences were critical issues relevant to the design of this study, 
we focused our analyses on the brain morphology of girls aged between 
6 and 12 years at the time of MRI scan. We obtained the medical records 
and MRI datasets for all participants. We also identified 13 age-matched 
girls from our database as NC. These were selected on the basis of age 
and gender and the absence of neurological disorders, neuropsychological 
disorders, or epilepsy. Both the CPP and NC MRI datasets were acquired 
at Chiba university Hospital on the same suite of MRI scanners. The 
main reason for MRI examination in NC was to rule out intracranial 
pathologies (n = 5/13, 38%), headaches (n = 3/13, 23%), orthostatic 
dysregulation (n = 3/13, 23%), and sleep problem (n = 2/13, 15%).

2.2. Structural MRI acquisition and 
processing

Three-dimensional (3D) spoiled gradient-echo T1-weighted 
sagittal images (repetition time/echo time, 7–22/2–5 ms, slice 
thickness, 1.0–1.4 mm, voxel size 0.5 × 0.5 × 1 mm, matrix 256 × 256) 
were obtained from all participants included in this study using 
clinical 1.5 T MRI scanners (GE Signa HDxT 1.5 T, GE Healthcare, 
Milwaukee, WI, United States). DICOM files were analyzed with the 
CIVET v. 2.1.0 pipeline (Zijdenbos et al., 2002) on the Canadian Brain 
Imaging Research (CBRAIN) platform (Sherif et  al., 2014). 
Corrections for nonuniform intensity artifacts were made using the 
N3 algorithm (Sled et al., 1998), stereotaxic registration (onto the 
icbm152 nonlinear 2009 template; Fonov et  al., 2009), and brain 
masking (Smith, 2002). Voxel-based volumetric analysis was 
performed with tissue classification using an artificial neural network 
classifier (INSECT; Tohka et al., 2004), and segmentation of brain 
regions was performed with Automatic Nonlinear Image Matching 
and Anatomical Labeling (ANIMAL; Collins et al., 1999). For our 
surface analysis, the surfaces of gray and white matter were extracted 
using 40,962 vertices per hemisphere with the t-Laplace metric (Kim 
et  al., 2005; Boucher et  al., 2009). Cortical surface parameters, 
including the gyrification index (GI), average cortex thickness, cortical 
surface area, and cortical volumes, were calculated for each 
hemisphere. Desikan–Killiany–Tourville surface parcellation was used 
for registration to the anatomical regions. The output of the CIVET 
pipeline (brain mask shapes, linear and nonlinear registration to the 
template, tissue classification, and brain segmentation) was manually 
inspected for quality.

2.3. Statistical analyses

Each structural measurement was evaluated using Levene’s test for 
equality of variances, a two-tailed unpaired t-test for equality of 
means, and Cohen’s d. Cohen’s d = 0.8 was recognized as the cutoff 
value for large size effects. False discovery rate correction for multiple 
comparisons was performed using the Benjamini–Hochberg 
procedure (Benjamini et al., 2001; Reiner et al., 2003). Benjamini–
Hochberg critical values (q = 0.15) were determined for 241 repeating 
t-tests as p < 0.025 in both surface- and voxel-based measurements. 
SPSS v. 28 (IBM Corp. Armonk, NY, United States) software was used 

Abbreviations: ANIMAL, Automatic Nonlinear Image Matching and Anatomical 

Labeling; CBRAIN, Canadian Brain Imaging Research; CPP, Central precocious 

puberty; FSH, Follicle-stimulating hormone; GI, Gyrification index; GnRH, 

Gonadotropin-releasing hormone; HPA, Hypothalamus–Pituitary–Adrenal; LH, 

Luteinizing hormones; MRI, Magnetic resonance imaging; NC, Non-CPP controls; 

RFT, Random field theory; RH, Right hemisphere; WM, White Matter.
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for all statistical analyses. Regional cortical thicknesses were 
statistically analyzed and visualized as t-statistical maps, and random 
field theory (RFT) maps using the SurfStat toolbox1 with MATLAB 
R2016a (MathWorks, Natick, MA, USA). The thresholded p-value for 
RFT at cluster-level was determined as 0.02.

3. Results

3.1. Participants’ background

Table 1 shows the relevant characteristics of both the 15 CPP 
participants and the 13 NC. In fact, no one with brain tumors and 
seizures who fit the exclusion criteria was included in the current 
study. In addition, there were no intellectual disabilities, ASD, ADHD, 

1 http://www.math.mcgill.ca/keith/surfstat/

or epilepsy. All participants were female and born at full-term 
gestation. Participants’ ages at the time of their MRI scans were not 
significantly different (T (14) = −1.63, p = 0.126) between the CPP 
(N = 15) and the NC (N = 13) (mean ± standard deviation = 9.3 ± 1.0 
and 10.7 ± 3.1 years old in CPP and NC participants, respectively). 
Qualitative analyses of the brain MRIs showed no abnormal 
parenchymal findings in either the CPP or NC participants. The mean 
LH and FSH peaks in patients with CPP, as determined by luteinizing 
hormone-releasing hormone tests, were 32.6 and 14.1 mIU/ml, 
respectively. The mean basal level of estradiol was 16.5 pg./mL. These 
fulfilled the criteria for puberty (Tanaka et al., 2005).

3.2. Global brain measurements

Cortical volume, surface area, cortical thickness, and GIs showed 
no significant differences between the CPP and NC participants, 
except for decreased global white matter volume in CPP participants 
(p = 0.013, Cohen’s d = 1.01; Table 2).

3.3. Voxel- and surface-based cortical 
analyses

The surface-based analyses found no significant differences 
between the CPP and NC groups in the surface area, thickness, 
volume, or GI of the cerebrum (Tables 3, 4).

Figure 1 shows a cortical thickness map superimposed on a 3D 
brain surface template. T-tests showed increased thickness in the right 
precuneus and decreased thickness in the left superior temporal 
cortex in the CPP group (Figure 1A). After correction for age with 
RFT (p < 0.02), the right precuneus region was confirmed as 
significantly different between the two groups in the cortical surface 
maps (Figure 1B), but there were no significantly thinner regions in 
the CPP group than the NC group (not shown). Scatter plots showed 

TABLE 1 Demographics and clinical characteristics CPP (N = 15).

Characteristics CPP 
(N = 15)

NC (N = 13) p

Age (years) 9.3 (1.0) 10.7 (3.1) 0.13

Height SDS 1.8 (1.2) 0.0 (1.0) <0.01

BMI SDS 0.9 (0.7) 0.2 (0.8) 0.02

Estradiol (pg/mL) 16.5 (14.9) N.A. N.A.

<LH-RH test>

LH peak (mIU/mL) 32.4 (30.5) N.A. N.A.

FSH peak (mIU/mL) 13.8 (13.6) N.A. N.A.

Mean (Standard Deviation), Student’s t-test was used to compare the means between two 
groups. BMI, Body mass index; CPP, Central precocious puberty; FSH, Follicle-stimulating 
hormone; LH, Luteinizing hormone;LH-RH, Luteinizing hormone-releasing hormone; SDS, 
Standard Deviation Score.

TABLE 2 The global brain volume and cortical surface measurements in CPP and NC participants.

CPP (N = 15) 
Mean [SD]

NC (N = 13) Mean 
[SD]

The rate of 
CPP/NC

p Absolute Cohen’s d

CSF (mm3) 37,381 [6536] 40,730 [7127] 0.92 0.21 0.49

Cortical GM (mm3) 608,940 [40030] 579,491 [52639] 1.05 0.11 0.64

WM (mm3) 371,446 [39881] 422,482 [60952] 0.88 0.013 1.01

Subcortical GM (mm3) 36,919 [3133] 37,118 [3948] 0.99 0.88 0.06

Gyrification Index 3.62 [0.10] 3.65 [0.14] 0.99 0.56 0.22

L gyrification index 2.65 [0.06] 2.67 [0.11] 0.99 0.62 0.19

R gyrification index 2.68 [0.07] 2.68 [0.12] 1.00 0.98 0.01

L cortex average thickness (mm) 3.08 [0.07] 2.96 [0.21] 0.97 0.068 0.79

R cortex average thickness (mm) 3.11[0.09] 2.95 [0.22] 0.97 0.025 0.99

L cortex surface area (mm2) 94,162 [6076] 97,567 [6702] 1.04 0.17 0.53

R cortex surface area (mm2) 94,898 [6238] 97,688 [7288] 1.05 0.28 0.41

L cortex volume (mm3) 278,687 [19224] 275,209 [17279] 1.01 0.62 0.19

R cortex volume (mm3) 283,489 [17947] 276,445 [16779] 1.03 0.30 0.4

Bold indicates statistically significant. CS, CHARGE syndrome; NC, Normal control; SD, standard deviation; L, left hemisphere; R, right hemisphere; GM, gray matter; WM, white matter; CSF, 
cerebrospinal fluid
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TABLE 3 The candidate measurements using t-test in CPP and NC participants.

Category Measurements CPP (N = 15) 
Mean [SD]

NC (N = 13) 
Mean [SD]

The rate of 
CPP/NC

p Absolute 
Cohen’s d

Global WM (mm3) 371,446 [39881] 422,482 [60952] 0.88 0.013 1.01

ANIMAL Rt frontal GM (mm3) 145,253 [9290] 135,683 [115134] 1.07 0.022 0.92

ANIMAL Lt occipital GM (mm3) 41,405 [4686] 36,521 [5054] 1.13 0.013 1.0

ANIMAL Rt occipital GM (mm3) 41,345 [3635] 35,759 [6347] 1.16 0.012 1.1

ANIMAL Lt frontal WM (mm3) 75,111 [8208] 84,753 [12318] 0.89 0.0205 0.94

ANIMAL Lt temporal WM (mm3) 40,170 [3916] 45,949 [7037] 0.87 0.017 1.04

ANIMAL Lt occipital WM (mm3) 17,651 [3186] 21,491 [4797] 0.82 0.018 0.96

Area Rt Transverse Temporal (mm2) 541 [55] 608 [80] 0.89 0.019 0.99

Area Rt Superior Temporal (mm2) 4,954 [414] 5,391 [526] 0.92 0.021 0.93

Thickness Lt Caudal Middle Frontal (mm) 3.27 [0.08] 3.08 [0.25] 1.06 0.018 1.08

Thickness Lt Pericalcarine (mm) 2.76 [0.10] 2.53 [0.28] 1.09 0.018 1.07

Thickness Lt Cuneus (mm) 2.84 [0.08] 2.67 [0.22] 1.06 0.02 1.04

Thickness Lt Isthmus Cingulate Gyrus (mm) 2.83 [0.09] 2.63 [0.26] 1.07 0.022 1.03

Thickness Lt Inferior Ocippital Cortex (mm) 2.85 [0.08] 2.69 [0.22] 1.06 0.0245 1.00

Thickness Lt Precuneus (mm) 3.20 [0.07] 3.00 [0.23] 1.07 0.0083 1.23

Thickness Rt Caudal Middle Frontal (mm) 3.26 [0.10] 3.05 [0.28] 1.07 0.021 1.04

Thickness Rt Post Central Gyrus (mm) 2.90 [0.11] 2.73 [0.21] 1.06 0.021 0.99

Thickness Rt Lateral Orbitofrontal (mm) 3.38 [0.12] 3.14 [0.28] 1.08 0.01 1.16

Thickness Rt Pericalcarine (mm) 2.78 [0.10] 2.55 [0.27] 1.09 0.012 1.14

Thickness Rt Paracentral Gyrus (mm) 3.09 [0.15] 2.88 [0.24] 1.07 0.015 1.05

Thickness Rt Medial Orbitfrontal (mm) 3.16 [0.13] 2.96 [0.25] 1.07 0.019 1.02

Thickness Rt Cuneus (mm) 2.88 [0.07] 2.73 [0.18] 1.05 0.016 1.09

Thickness Rt Rostral Middle Frontal (mm) 3.30 [0.11] 3.08 [0.27] 1.07 0.015 1.09

Thickness Rt Isthmus Cingulate Gyrus (mm) 2.83 [0.10] 2.62 [0.20] 1.08 0.0031 1.36

Thickness Rt Inferior Occipital Cortex (mm) 2.94 [0.12] 2.77 [0.20] 1.06 0.015 1.04

Thickness Rt Lingual Gyrus (mm) 2.98 [0.08] 2.76 [0.23] 1.08 0.0065 1.28

Thickness Rt Lateral Frontal Opercularis (mm) 3.28 [0.10] 3.13 [0.18] 1.05 0.02 1.00

Thickness Rt Fusiform Gyrus (mm) 3.30 [0.16] 3.11 [0.23] 1.06 0.016 0.98

Thickness Rt Precuneus (mm) 3.23 [0.07] 3.03 [0.19] 1.07 0.0032 1.42

Thickness Rt Inferior Parietal (mm) 3.24 [0.12] 3.07 [0.22] 1.05 0.024 0.97

Volume Rt Lateral Frontal Oribitalis (mm3) 2,667 [276] 2,433 [189] 1.1 0.016 0.97

Volume Rt Pericalcarine (mm3) 4,093 [496] 3,629 [499] 1.13 0.021 0.93

Volume Rt Lingual Gyrus (mm3) 7,878 [838] 7,122 [832] 1.11 0.024 0.91

CS, CHARGE syndrome; NC, Normal control; SD, standard deviation; L, left hemisphere; R, right hemisphere; GM, gray matter; WM, white matter; CSF, cerebrospinal fluid. Benjamini-
Hochberg critical values (q = 0.15) for 241 repeating t-tests was determined as p < 0.025.

age-dependent downward trends in global gray matter volume, global 
cortical thickness, and cortical thickness of the right precuneus in 
both the CPP and NC groups. Conversely, global white matter 
exhibited an age-dependent upward trend in both groups (Figure 2).

4. Discussion

We analyzed surface and voxel measurements from structural 
brain MRI scans of patients with CPP and age-matched controls. 
Thorough regional analyses and surface cortical maps found that 

the cortical thickness of the precuneus area of the right 
hemisphere was significantly higher in the CPP than in the NC 
group. The volume of the right precuneus and global cortical 
thickness showed age-dependent downward trends in both 
groups, suggesting the increased thickness of the right precuneus 
in the CPP group was not simply due to the acceleration of global 
brain development resulting from early sexual hormone 
increases. A previous observation study reported that the thinner 
right rostral middle frontal cortex in the CPP group as compared 
with that in the NC was a distinct feature of CPP (Yang 
et al., 2019).
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The precuneus is located in the posteromedial cortex of the 
parietal lobe, which is numerous complex tasks, including 
visuospatial processing, episodic memory recall, and self-
processing operation, i.e., the sense of volition (Cavanna and 
Trimble, 2006). The precuneus is also involved in the network 
governing consciousness of the self (Cavanna and Trimble, 2006; 
Cheng et  al., 2018). Puberty is a crucial period for the 
development of neurocognitive functions (Laube et al., 2020) and 
the functions of the precuneus are affected by age in adolescents 
(Killanin et al., 2020). The specific alterations to the precuneus 
seen in patients with CPP in this study may be related to some of 

the functions under its control, which show rapid development 
during puberty. Cortical thickness in the precuneus tends to thin 
with age in normal adolescent females (Levman et  al., 2017), 
while our findings indicate a thicker cortex in CPP. This suggests 
that age-related maturation of precuneus function may 
be  affected or altered in CPP. A previous study revealed 
differences in the brain architecture between CPP and NC in the 
anterior, middle frontal lobe, with decreased cortical thickness in 
that region in patients with CPP. The same study also found a 
significant correlation between cortical thickness and estrogen 
levels on the basis of surface-based measurements (Yang et al., 

TABLE 4 The effects of covariates on candidate brain morphologic measurements; univariate general linear model.

Category Measurements Adjusted R 
square

Corrected model The presence of 
CPP

Age

Global WM (mm3) 0.295 F = 1.5, p = 0.43 F = 2.4, p = 0.22 F = 1.2, p = 0.52

ANIMAL Rt frontal GM (mm3) 0.433 F = 1.9, p = 0.34 F = 1.8, p = 0.27 F = 1.6, p = 0.405

ANIMAL Lt occipital GM (mm3) 0.954 F = 24.3, p = 0.011 F = 2.2, p = 0.23 F = 19.9, p = 0.015

ANIMAL Rt occipital GM (mm3) 0.939 F = 18.5, p = 0.017 F = 0.74, p = 0.45 F = 14.5, p = 0.024

ANIMAL Lt frontal WM (mm3) 0.209 F = 1.3, p = 0.48 F = 2.48, p = 0.21 F = 1.1, p = 0.56

ANIMAL Lt temporal WM (mm3) −0.110 F = 1, p = 0.6 F = 3.23, p = 0.17 F = 0.8, p = 0.70

ANIMAL Lt occipital WM (mm3) 0.626 F = 2.9, p = 0.21 F = 0.69, p = 0.47 F = 2.4, p = 0.26

Area Rt Transverse Temporal (mm2) 0.065 F = 1.1, p = 0.56 F = 0.22, p = 0.67 F = 0.9, p = 0.65

Area Rt Superior Temporal (mm2) 0.169 F = 1.2, p = 0.50 F = 0.63, p = 0.49 F = 1, p = 0.58

Thickness Lt Caudal Middle Frontal (mm) 0.673 F = 3.3, p = 0.18 F = 0.38, p = 0.58 F = 2.6, p = 0.23

Thickness Lt Pericalcarine (mm) 0.588 F = 2.6, p = 0.23 F = 0.36, p = 0.59 F = 2.1, p = 0.31

Thickness Lt Cuneus (mm) 0.870 F = 8.5, p = 0.051 F = 0.06, p = 0.82 F = 6.9, p = 0.069

Thickness Lt Isthmus Cingulate Gyrus (mm) 0.915 F = 13.0, p = 0.028 F = 1.9, p = 0.26 F = 10.6, p = 0.038

Thickness Lt Inferior Ocippital Cortex (mm) 0.635 F = 3.0, p = 0.20 F = 0.038, p = 0.86 F = 2.4, p = 0.26

Thickness Lt Precuneus (mm) 0.868 F = 8.4, p = 0.052 F = 0.18, p = 0.70 F = 6.2, p = 0.079

Thickness Rt Caudal Middle Frontal (mm) 0.808 F = 5.7, p = 0.087 F = 0.0045, p = 0.95 F = 4.6, p = 0.12

Thickness Rt Post Central Gyrus (mm) 0.510 F = 2.2, p = 0.29 F = 0.16, p = 0.71 F = 1.8, p = 0.36

Thickness Rt Lateral Orbitofrontal (mm) 0.703 F = 3.7, p = 0.16 F = 0.054, p = 0.83 F = 2.8, p = 0.22

Thickness Rt Pericalcarine (mm) 0.808 F = 5.7, p = 0.088 F = 2, p = 0.26 F = 4.4, p = 0.12

Thickness Rt Paracentral Gyrus (mm) 0.958 F = 26.4, p = 0.01 F = 0.23, p = 0.66 F = 21.2, p = 0.014

Thickness Rt Medial Orbitfrontal (mm) 0.473 F = 2.0, p = 0.30 F = 0.004, p = 0.96 F = 1.6, p = 0.39

Thickness Rt Cuneus (mm) 0.713 F = 3.8, p = 0.15 F = 0.035, p = 0.86 F = 3.0, p = 0.20

Thickness Rt Rostral Middle Frontal (mm) 0.750 F = 4.4, p = 0.12 F = 0.007, p = 0.94 F = 3.4, p = 0.17

Thickness Rt Isthmus Cingulate Gyrus (mm) 0.891 F = 10.2, p = 0.039 F = 0.86, p = 0.42 F = 7.1, p = 0.066

Thickness Rt Inferior Occipital Cortex (mm) 0.373 F = 1.7, p = 0.38 F = 0.25, p = 0.65 F = 1.3, p = 0.47

Thickness Rt Lingual Gyrus (mm) 0.898 F = 10.9, p = 0.036 F = 4.5, p = 0.13 F = 7.9, p = 0.057

Thickness Rt Lateral Frontal Opercularis (mm) 0.245 F = 1.4, p = 0.46 F = 0.39, p = 0.57 F = 1.1, p = 0.55

Thickness Rt Fusiform Gyrus (mm) 0.210 F = 1.3, p = 0.48 F = 0.47, p = 0.54 F = 1.05, p = 0.57

Thickness Rt Precuneus (mm) 0.967 F = 33.5, p = 0.007 F = 10.2, p = 0.0497 F = 22.7, p = 0.013

Thickness Rt Inferior Parietal (mm) 0.327 F = 1.6, p = 0.41 F = 0.003, p = 0.96 F = 1.3, p = 0.49

Volume Rt Lateral Frontal Oribitalis (mm3) −1.112 F = 0.4, p = 0.91 F = 0.26, p = 0.64 F = 0.3, p = 0.96

Volume Rt Pericalcarine (mm3) 0.345 F = 1.6, p = 0.40 F = 1.3, p = 0.34 F = 1.3, p = 0.47

Volume Rt Lingual Gyrus (mm3) 0.505 F = 2.2, p = 0.29 F = 2.04, p = 0.25 F = 1.8, p = 0.35

Bold indicates statistically significant. CPP, Central precocious puberty; NC, Normal control; SD, standard deviation; L, left hemisphere; R, right hemisphere; GM, gray matter; WM, white 
matter; CSF, cerebrospinal fluid.
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FIGURE 1

Visualized cortical thickness with a t-statistical map (tmap) (A), and a random field theory (RFT) map (B, p < 0.02) showing thicker lesions in patients with 
central precocious puberty (CPP, N = 15) than non-CPP controls (NC, N = 13). (A) The blue color indicates lower mean cortical thickness and the red 
color indicates higher mean cortical thickness in CPP participants than that in the controls. (B) Blue regions denote areas in which CPP participants had 
significantly thicker cortex at the cluster level than NC. The thresholded p-value for RFT at cluster-level was determined as 0.02.

FIGURE 2

Scatter plots and regression lines (between age and volume) for the global gray matter volume (A), the global white matter (B), the right hemisphere 
cortical thickness (C), and the right precuneus cortical thickness (D) in CPP (closed circle and solid line) and NC (x and dotted line) participants. CPP, 
central precocious puberty; NC, non-CPP controls; Rt, right.
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2019). However, our study did not see any substantial differences 
between groups in the cortical thicknesses, volumes, and surface 
areas of the frontal cortex. The ages of participants may explain 
this disparity. Patients in our study investigated were older 
and further into puberty. Our data may indicate features that 
appear later in puberty in patients with CPP than those 
identified in the previous report. Animal studies have shown that 
prolonged exposure to higher levels of estrogen can affect 
neurons differently from short-term exposure (Woolley, 2007). 
Our study indicates that other frontal area thicknesses can 
be indicative of CPP.

Regarding mechanisms, estrogen is a candidate that induces 
alterations in brain morphology, such as those observed in our 
study. CPP causes activation of the hypothalamus–pituitary–
adrenal (HPA) axis at an inappropriately early age. Increased 
estrogen levels are an outcome of this and induce the pubescent 
changes observed in female patients with CPP. GnRH stimulation 
tests of our patients with CPP verified both increased 
estrogen level increases and HPA axis activation. Estrogen 
receptors are expressed throughout the body, including the 
synapses of the prefrontal cortex. Nevertheless, the effects of 
estrogen on neurons are debated. Some studies have reported 
adverse effects on gray matter (Herting et al., 2014; Brouwer et al., 
2015), leading to decreased prefrontal cortex volume. By contrast, 
other research has shown estrogen to have favorable effects on the 
survival of neurons, the development of dendritic spines, and the 
formation of synapses (Romeo, 2003). In the present study, the 
correlation between estrogen levels in the LH-RH test and right 
precuneus thickness in CPP was 0.17, which was not statistically 
significant. Estrogen levels exhibit diurnal and daily variations, 
making it challenging to establish a clear relationship with a single 
value. Hence, the fundamental mechanisms involved in 
estrogen-induced alterations to brain morphology require 
further investigation.

There were several limitations to this study. First, the number 
of participants was limited. However, patients had similar CPP 
etiologies and ages of onset. This homogeneity between patients 
facilitated a detailed evaluation of brain morphology. Further 
analysis with a larger sample of patients will be required to confirm 
our results. Second, since this is a cross-sectional study, it does not 
allow us to infer causal effects. Finally, no psychological scales were 
administered to our patients with CPP to reveal whether the 
alterations in brain morphology related to the altered moods and 
sensitivity observed in patients with CPP. Further prospective 
studies are warranted to elucidate the effects of brain structure 
changes in CPP on psychological development. Despite its 
limitations, we think that this study adds to our understanding of 
the effects of CPP on brain structure.

5. Conclusion

Patients with CPP showed specific morphological brain changes 
compared with NC. Sex steroids may be involved in the observed 
structural brain differences in patients with CPP. The features of brain 
morphology in CPP identified in this study could contribute to further 
understanding the association between CPP and detrimental 
psychological outcomes.
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