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As an important branch in the field of affective computing, emotion recognition 
based on electroencephalography (EEG) faces a long-standing challenge 
due to individual diversities. To conquer this challenge, domain adaptation 
(DA) or domain generalization (i.e., DA without target domain in the training 
stage) techniques have been introduced into EEG-based emotion recognition 
to eliminate the distribution discrepancy between different subjects. The 
preceding DA or domain generalization (DG) methods mainly focus on 
aligning the global distribution shift between source and target domains, 
yet without considering the correlations between the subdomains within 
the source domain and the target domain of interest. Since the ignorance of 
the fine-grained distribution information in the source may still bind the DG 
expectation on EEG datasets with multimodal structures, multiple patches 
(or subdomains) should be reconstructed from the source domain, on which 
multi-classifiers could be learned collaboratively. It is expected that accurately 
aligning relevant subdomains by excavating multiple distribution patterns 
within the source domain could further boost the learning performance of 
DG/DA. Therefore, we  propose in this work a novel DG method for EEG-
based emotion recognition, i.e., Local Domain Generalization with low-rank 
constraint (LDG). Specifically, the source domain is firstly partitioned into 
multiple local domains, each of which contains only one positive sample 
and its positive neighbors and k2 negative neighbors. Multiple subject-
invariant classifiers on different subdomains are then co-learned in a unified 
framework by minimizing local regression loss with low-rank regularization 
for considering the shared knowledge among local domains. In the inference 
stage, the learned local classifiers are discriminatively selected according 
to their importance of adaptation. Extensive experiments are conducted 
on two benchmark databases (DEAP and SEED) under two cross-validation 
evaluation protocols, i.e., cross-subject within-dataset and cross-dataset 
within-session. The experimental results under the 5-fold cross-validation 
demonstrate the superiority of the proposed method compared with several 
state-of-the-art methods.
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Introduction

In the field of affective computing research (Mühl et al., 2014), 
automatic emotion recognition (AER; Dolan, 2002) has received 
considerable attention from computer vision communities (Kim et al., 
2013). Many EEG-based emotion recognition methods have been 
proposed so far (Musha et al., 1997; Jenke et al., 2014; Zheng, 2017; 
Niu et al., 2018; Pandey and Seeja, 2019; Chang et al., 2021, 2023; 
Zhou et  al., 2022). From the viewpoint of machine learning, 
EEG-based AER can be  modeled as a classification or regression 
problem (Kim et al., 2013; Zhang et al., 2017), in which state-of-the-
arts for AER usually tailor their classifiers trained on multiple subjects 
and apply them to individual subjects. From both qualitative and 
empirical observations, the generalizability of AER could be attenuated 
partly due to the individual differences among subjects (Jayaram et al., 
2016; Zheng and Lu, 2016; Lan et  al., 2018). That is, the subject-
independent classifier usually achieves an inferior generalization 
performance since emotion patterns may significantly vary from one 
subject to another (Pandey and Seeja, 2019). As a possible solution, 
subject-specific classifiers are usually impractical due to insufficient 
training data (Li X. et al., 2018; Zhou et al., 2022). While conspicuous 
progress has been made to conquer this issue by improving feature 
representations and learning models (Zheng and Lu, 2015; Song et al., 
2018; Li et al., 2018a,b; Li Y. et al., 2019; Du et al., 2020; Zhong P. et al., 
2020; Zhou et al., 2022), there still exists a long-standing challenge 
incurred by individual diversities in EEG-based AER. This challenge 
is primarily attributed to the fact that the learned classifiers should 
be generalized into previously unseen subjects that may obviously 
differ from those on which the classifiers are trained (Ghifary et al., 
2017). To this end, numerous domain adaptation (DA) learning 
algorithms for AER have emerged by exploiting EEG features (Zheng 
et al., 2015; Chai et al., 2017; Li J. et al., 2019; Pandey and Seeja, 2019; 
Zhang et al., 2019b; Li et al., 2020; Chen et al., 2021; Dan et al., 2021; 
Tao et al., 2022). For instance, Pandey and Seeja (2019)) and Li X. et al. 
(2018) successively proposed two subject invariant models for 
EEG-based emotion recognition; following the deep network 
architecture, in the researchers (Chai et al., 2016; Li H. et al., 2018; Luo 
et al., 2018; Li et al., 2018c, 2021; Wang et al., 2022; Zhou et al., 2022) 
designed several deep learning models for EEG-based 
emotion recognition.

Unfortunately, in some practical AER applications, the whole 
target data of interest may be unavailable in the stage of training a 
subject-specific classifier (Wang et al., 2022). In this case, domain 
generalization (DG; Muandet et al., 2013), an effective variant of DA 
(Bruzzone and Marconcini, 2010), is proved to be a feasible solution 
for DA emotion recognition (Tao et al., 2022). With no need to focus 
on the generalization of some specific target domain, DG methodology 
could better acquire out-of-the-distribution effects on test samples 
from other previously unseen target domains (Wang et al., 2022). 
While DA and DG are closely related in learning scenarios, DA 
algorithms generally cannot be directly applicable to DG since they 
rely on the availability of the target domain in the stage of training. In 
this sense, DG is more challenging than DA as no target data can 
be used for fine-tuning in the training stage (Ghifary et al., 2017).

In DA/DG, one major problem is how to reduce or eliminate the 
distribution discrepancy between different domains (Patel et al., 2015; 
Wang et  al., 2022). First of all, one needs to design a robust and 
effective criterion that can measure the domain discrepancy. Due to 

its simplicity, effectiveness, and intuition, Maximum Mean 
Discrepancy (MMD; Gretton et al., 2009) is a commonly adopted 
distribution distance measure criterion. Preceding MMD-based DA 
methods (Pan et al., 2011; Duan et al., 2012; Tao et al., 2012, 2017, 
2019; Chen et al., 2013; Long et al., 2014a; Ding et al., 2018a,b,c), 
however, generally focused on the global statistical distribution shift 
between/among different domains without considering the 
complementarities and diversities between two subdomains 
constructed with local structures within the same/different domains 
(Gao et al., 2015; Zhu et al., 2020). This could result in attenuated 
adaptation performance to some extent, since not only could all the 
samples from both source and target domains be confused together, 
but also the local discriminative structures could be trimmed without 
capturing the fine-grained local structures (Zhu et al., 2020). That is, 
while the global distribution alignment may lead to approximate zero 
distribution distance between different domains, a common challenge 
that exists in preceding global methods is that the samples from 
different domains are pulled too close to be accurately classified. An 
intuitive example is shown in Figure 1, where the source domain 
presents a certain multimodal structure (as shown in Figure 1A). After 
global domain adaptation, as shown in Figure 1B, the distributions of 
the two domains are approximately the same, but the data in different 
semantic structures are too close to be classified accurately. This is a 
common problem in previous global DA methods. Hence, matching 
the global source and target domains may not work well in 
this scenario.

Concerning the challenge of global domain shift, several works 
pay attention to semantic alignment or matching conditional 
distribution (Long et al., 2014a, 2017). There are other works proposed 
to discover multiple latent domains by decomposing the source 
domain (Judy et al., 2012; Gao et al., 2015). While they have presented 
the effectiveness of DA by exploring multiple subdomains potentially 
existing in the source domain, discovering multiple representative 
latent domains is still a non-trivial task by explicitly dividing the 
source samples into multiple blobs (Zhu et  al., 2020). Further, to 
overcome the shortages that exist in the global distribution measure, 
numerous deep subdomain adaptation methods have focused on 
accurately aligning the distributions between different subdomains 
(Gao et al., 2015; Zhu et al., 2020). For instance, the recent work in 
Zhu et al. (2020) focuses on aligning the distribution of the relevant 
subdomains within the same category in the source and target 
domains. These deep learning methods, however, usually contain 
several updatable loss functions and converge slowly. Moreover, it is 
still an unexplained open problem whether the success of deep DA 
methods really benefits from the feature representations, fine-tuned 
classifiers, or effects of the adaptation regularizers (Tao et al., 2022).

Motivated by the idea of subdomain adaptation, we propose in 
this work a Local Domain Generalization (LDG) scheme to implicitly 
align the relevant local domain distributions from a single source with 
that of the target domain. A key improvement of LDG over previous 
DG/DA methods is the capability of the fine-grained alignment of a 
domain shift by capturing the local discriminative structures in the 
source domain by excavating multiple subdomains as per each positive 
sample with its two k-NN subsets (as shown in Figure 1C). In these 
local domains, multiple classifiers can be jointly trained in a unified 
framework by aligning them with a referenced model. Under this 
framework, the model discrepancies between the relevant subdomains 
from the source and the target domain could be  measured by 
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considering the weights as per different distribution distances. After 
local domain adaptation, as shown in Figure 1D, each local domain 
distribution from the source domain is approximately the same as that 
of the target domain. Therefore, multiple local classifiers jointly 
learned with these local domain adaptations could be integrated and 
generalized into the target domain.

Specifically, we present an LDG framework for AER with EEG 
features with low-rank constraints. Under this framework, the source 
domain is firstly divided into multiple local domains, each containing 
only one positive sample (or exemplar; Zhang et al., 2016) and its 
positive and k2 negative neighbors. Intuitively, the distribution 
structures of these local domains for those exemplars are expected to 
be relatively closer and simpler than that of the global one. In LDG, 
multiple subject-invariant classifiers on different local domains are 
co-learned in a joint framework by minimizing local regression loss. 
Instead of evaluating the importance of each classifier individually, 
LDG selects models in a collaborated mode by considering the shared 
knowledge among local domains by additionally imposing a nuclear-
norm-based regularizer on the objective function. The learned local 
classifiers are discriminatively selected according to their weights in 
the inference stage. While the DG performance of LDG also can 
be boosted with most feedforward network models by exploiting the 
deep feature representations, it does not need iterative deep training 
and converges fast, thus being very efficient and effective.

Different from the existing DG methods that only focus on 
global distribution alignment in the source domain(s), we consider 
the local distribution structures of the source domain and their 

relevance with the target domain to further enhance the 
effectiveness and generalizability of the learned adaptation model. 
Our algorithm can adapt as much knowledge as possible from a 
certain source domain, even if the EEG features between domains 
are partially distinct but overlapping. To the best of our knowledge, 
there is no prior work imposing DG with multiple local domains 
on solving AER problems. The main contributions of this paper are 
summarized as follows.

 1. We propose a local domain generalization framework (LDG) 
for EEG-based emotion recognition by leveraging multiple 
structure-similar local domains from the source domain with 
multi-model distribution patterns. Using this framework, the 
capacity of MMD-based DA methods can be  extended by 
excavating the local discriminative structures for each domain 
by aligning KNN-based local domain distributions.

 2. We present a subdomain division strategy, i.e., splitting the 
source domain into multiple local domains, each of which is 
composed of each positive (exemplar) sample (Zhang et al., 
2016; Li W. et al., 2018; Niu et al., 2018) and its k1 positive and 
k2 negative neighbors. Multiple local classifiers can be, 
respectively, trained on each local domain. We then formulate 
a new objective function by imposing a nuclear-norm-based 
regularizer on the model matrix in the objective function to 
further enhance the discriminative capability of the learned 
local classifiers by exploiting the intrinsic discriminative 
structure in the source domain.
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FIGURE 1

Global domain adaptation might lose some fine-grained information (A,B). Local domain adaptation can exploit the local discriminative structures to 
capture the fine-grained information for each category (C,D).
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 3. An iterative optimization algorithm is presented for solving the 
objective of LDG that can be  applied to EEG-based AER 
problems. The convergence of the optimization procedure can 
be  guaranteed in terms of the proof of the proposed 
convergence theorem.

 4. Extensive experiments are conducted on two benchmark 
databases (DEAP and SEED) under two cross-validation 
evaluation protocols (cross-subject within-dataset and cross-
dataset within-session). The remarkable experimental results 
show that our method outperforms other state-of-the-art 
methods on emotion recognition tasks.

The rest of the paper is organized as follows. Section 2 reviews 
several related works in emotion recognition, DG, and subdomain 
adaptation. Section 3 introduces our LDG framework including the 
overall objective function, and then the optimization algorithm and 
its convergence analysis are successively provided in Section 4. Section 
5 provides a series of experiments to evaluate the effectiveness of LDG 
for AER. Finally, we summarize the entire paper in Section 6.

Related work

In recent decades, increasing attention has been given to 
emotion recognition with brain-computer interfaces (BCI; Dolan, 
2002; Kim et  al., 2013; Mühl et  al., 2014) in the affective 
computing community. A vanilla aBCI system using spontaneous 
EEG signals firstly extracts sufficient discriminative features 
from the EEG data by a certain feature extractor and then trains 
an optimal classifier using these features and the corresponding 
emotion states for AER. Therefore, a proper design of EEG-based 
emotion recognition models helps facilitate the data processing, 
benefits from discriminant feature characterization, and lightens 
the model performance. The latest works about affective BCI 
(aBCI) usually adopt machine learning algorithms on automatic 
emotion recognition (AER) using extracted discriminative 
features (Musha et al., 1997; Jenke et al., 2014; Chang et al., 2023). 
However, the traditional machine learning method has a major 
disadvantage in that the feature extraction process is usually 
cumbersome, and relies heavily on human experts. Then, 
end-to-end deep learning methods emerged as an effective way 
to address this disadvantage with the help of raw EEG signals and 
time-frequency spectrums (Han et al., 2022). More details can 
be  found in Zhang et  al. (2020c), which investigated the 
application of several deep learning models to the research field 
of EEG-based emotion recognition, including deep neural 
networks (DNN) (Chang et  al., 2021), convolutional neural 
networks (CNN), long short-term memory (LSTM), and a hybrid 
model of CNN and LSTM (CNN-LSTM; Zhong Q. et al., 2020; 
Mughal et al., 2022; Xu et al., 2022).

While preceding methods have obtained remarkable achievements 
on EEG-based AER (Zheng, 2017; Li et al., 2018a,b; Li Y. et al., 2019; 
Pandey and Seeja, 2019), the performance expectation for cross-
subject/dataset recognition could be lowered due to the diversities of 
emotional states among subjects/datasets (Jayaram et al., 2016; Zheng 
and Lu, 2016; Li X. et al., 2018). While subject-specific classifiers may 
be a possible solution for these cases, they are usually infeasible in real 
tasks due to insufficient training data. Moreover, even if they are 

feasible in some specific scenarios, it is also an indispensable task to 
fine-tune the classifier to maintain a sound recognition capacity partly 
because the EEG signals of the same subject sometimes change (Zhou 
et al., 2022). Fortunately, the recently proposed domain adaptation 
(DA) technique (Patel et al., 2015) can be leveraged to surmount these 
challenges for EEG-based emotion recognition. As a well-focused 
research direction, the unsupervised domain adaptation (UDA) 
methodology has promoted a large amount of research effort devoted 
to generalizing the knowledge learned from one/multiple labeled 
source domain(s) into a different but related unlabeled target domain 
(Wang and Mahadevan, 2011; Gong et al., 2012; Long et al., 2014b, 
2015, 2016; Ganin and Lempitsky, 2015; Ganin et al., 2016; Judy et al., 
2017; Tzeng et al., 2017; Ding et al., 2018a,b,c). Over the past decade, 
DA-based emotion recognition methods have been a hot topic (Lan 
et al., 2018), almost fully covered in the literature of aBCI (Zheng 
et al., 2015; Chai et al., 2016, 2017; Jayaram et al., 2016; Zheng and Lu, 
2016; Li H. et al., 2018; Li X. et al., 2018; Luo et al., 2018; Li et al., 
2018c, 2020, 2021; Li J. et al., 2019; Chen et al., 2021; Dan et al., 2021; 
Tao et al., 2022; Zhou et al., 2022). Existing methods explore tackling 
different challenges in AER with EEG datasets by excavating a certain 
latent subspace shared by different domains for filling the domain 
distance among subjects or sessions.

In some real DA-based AER applications, the whole target data of 
interest may be unavailable in the stage of training (Ghifary et al., 
2017). In this scenario, domain generalization (DG; Muandet et al., 
2013), an effective variant of DA, has been proven to be a feasible 
solution for DA emotion recognition since it need not focus on the 
generalization of a certain specific target domain. While DA and DG 
are closely related in learning scenarios, DA algorithms generally are 
not directly applicable to DG since they rely on the availability of the 
target domain in the stage of training. In this sense, DG is more 
challenging than DA as no target data can be used for fine-tuning in 
the training stage. The extant works about DG can be divided into two 
research lines in terms of different strategies, i.e., feature-centric DG 
(Judy et al., 2012; Muandet et al., 2013; Ghifary et al., 2017; Motiian 
et al., 2017) and classifier-centric DG (Xu et al., 2014; Ghifary et al., 
2015; Niu et al., 2015, 2018; Gan et al., 2016; Li W. et al., 2018). The 
former aims to mine domain-invariant features, while the latter uses 
multi-classifiers adaptation by regulating their weights. More research 
progress on DG can be found in the recent survey on DG (Wang 
et al., 2022).

As is known, a major task in vanilla UDA/DG methodology is to 
mitigate the domain discrepancy either by aligning the statistical 
moments (Pan et al., 2011; Duan et al., 2012; Tao et al., 2012; Chen 
et al., 2013; Long et al., 2014a,b; Xiao and Guo, 2015; Ding et al., 
2018a,b,c) or by using domain adversarial learning (Ganin and 
Lempitsky, 2015; Ganin et al., 2016; Tzeng et al., 2017; Long et al., 
2018; Pei et  al., 2018) benefited from the powerful deep neural 
networks. Traditional DA/DG methods usually assume a global 
distribution shift between different domains and expect 
approximately the same global distribution of two domains after 
adaptation (Mansour et al., 2009). However, most of the preceding 
DA/DG methods face a common problem in that they only pay 
attention to matching the global statistical distribution between 
domains without considering the complementarities and diversities 
among subdomains constructed using several local structures within 
the same/different domains (Zhu et al., 2020). This could result in 
attenuated adaptation performance in part because the samples from 
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different domains are pulled too close to be accurately classified in 
those global methods. As a result, not only will all the data from the 
source and target domains be confused, but also the discriminative 
structures can be  mixed up. Subdomain adaptation can to some 
extent conquer the shortcomings in aligning global domain 
discrepancy. For instance, several related works have been proposed 
to excavate multiple latent domains from the source domain (Judy 
et  al., 2012). To discover multiple representative latent domains, 
however, is a non-trivial task done by explicitly dividing the source 
samples into multiple blobs. Aiming at the disadvantages of global 
domain adaptation, considerable works (Gao et al., 2015; Zhu et al., 
2020) have explored subdomain adaptation, which focuses on 
aligning the local domain discrepancies. Most deep DA/DG methods 
belong to the deep adversarial learning methodology and converge 
slowly due to several loss functions. To this end, Zhu et al. (2020) 
recently presented a deep subdomain adaptation network (DSAN) 
based on the proposed local maximum mean discrepancy (LMMD), 
which learns a DA network by aligning the related distributions of 
subdomains across different domains.

It is worth noting that the discriminative structures could still 
be  mixed up in extant subdomain adaptation schemes when the 
source (or target) domain presents a multimodal distribution structure 
(as shown in Figure 1). Different from these works on aligning global/
sub-domain(s) shift(s), we propose a novel fine-grained DG method 
for EEG-based emotion recognition, in which multiple patches (local 
domains) are firstly reconstructed from the source dataset and 
multiple local classifiers are then learned collaboratively for effective 
generalization into the target domain even with multiple kinds of 
distribution pattern (Gao et al., 2015). Our method does not need 
deep training and converges fast, while its adaptation expectation can 
be  easily boosted with deep feature representations from most 
feedforward network models.

Proposed framework

Preliminary notations

In the context of this paper, we, respectively, denote by small and 
capital letters the column vectors and matrices. The frequently used 
notations are summarized in Table 1. The concatenation operations of 
matrices along the row (horizontally) are denoted as A A Ak1 2, , ,  �� � ,  
and their concatenation along the column (vertically) are 
denoted as A A Ak1 2, , ,  �� � .

Definition 1 (Local domain): For a certain domain X xi i
m� � � �1 

with some probability distribution P, a local domain for one 
positive example x Xv ∈  is composed of its k1 positive nearest 
neighbor set N x x xk v v vk

1
1 1

� � � � �� �, ,  and k2 negative neighbor set 
N x x xk v v vk k k2 1 1 1 2

� � � � �� �� �
, ,  , i.e., X x N x N xv v k v k v� � � � �� �� �

, ,
1

2
.

According to Definition 1, for any source domain X xs
i
s
i

ns
� � �

�1
 

with p positive samples xvs d
v

p
�� �

�


1
 and ns – p negative samples, one 

can reconstruct p local domains X x N x N xv
s

v
s

k v
s

k v
s� � � � �� �� �

, ,
1

2
, 

1≤ ≤v p , by finding the positive nearest neighbor set 

N x x xk v
s

v
s

v
s
k1 1 1

� � � � �� �, ,
 and k2 negative neighbor set for each positive 

sample xvs (1≤ ≤v p).

Definition 2 (Local domain adaptation, LDA): Let 
� � �� �X Xs

m
s

1
, ,  be a set of m local domains and X t ��  be a 

target domain. The task of LDA is to learn an ensemble function 
fX t : ��  by co-learning multiple classifiers f Xv v

s� � 
(1≤ ≤v m) given Δ and Xt as the training examples by alleviating 
the distribution difference between source and target domains.

Definition 3 (Local domain generalization, LDG): In this 
scenario, the target domain is inaccessible in the training stage. 
Given m local domains � � �� �X Xs

m
s

1
, , , and denoted by 

X x ya
s

i
a

i
a
i

na
� � �

�
,

1

 
the samples drawn from the a-th subdomain, 

the task of LDG is to co-learn multiple adaptive functions 
fXa

s : ��  only given X a ma
s
, , ,� � �1  as the training 

examples, which could be well-generalized to a certain unseen 
target domain.

Motivation

As is known, a major task in vanilla UDA/DG methodology is to 
diminish the domain discrepancy either by aligning the statistical 
moments (Koelstra et al., 2012; Gao et al., 2015; Li et al., 2018a, 2020) 
or by domain adversarial learning (Gong et al., 2012; Lan et al., 2018; 
Li X. et al., 2018; Ding et al., 2018a) benefited from the powerful deep 
neural networks (Zhu et al., 2020; Zhou et al., 2022). While extensive 
exploration of cross-subject/session has been conducted effectively in 

TABLE 1 Notations and descriptions.

Notations Descriptions

n Data size.

d Feature dimensionality of data.

χ Data space.

Γ Label space.

a a a ad
T d� �� � �1 2, , ,  

Feature vector.

A n d� � Data matrix.

Ai,j The (i, j) entry of A.

Ai and Aj The i-th row and j-th column of A.

AT and aT The transpose of matrix A and vector a.

tr(A) The trace of a matrix A.

A A tr A AT1 2 1 2, � � � The inner product of two matrices A1 and 

A2.

a ap i
p

i
d p

� �
�
�

�
�
��� 1

1/ The p-norm of a vector a.

A AF i jj
d

i
n� �� �� ,

2
11

The Frobenius norm of A.

Ir Identity matrix of size r × r.

1d d-dimensional vector of ones.

0d d-dimensional vector of zeroes.
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the prior works by leveraging various domain adaptation tricks, one 
obvious shortage in these works is they usually assume a global 
distribution shift between different subjects and expect an 
approximately similar global distribution of two subjects after 
adaptation. In other words, these DA-based AER methods only focus 
on matching the global statistical distribution between subjects 
without considering the complementarities and diversities among 
local domains constructed using some intrinsic structures within the 
same/different subjects. This leads to attenuated adaptation 
performance since the real-world EEG data is usually quite diverse 
and the distribution of emotion data is complex. It is challenging to 
reduce the global distribution discrepancy between different domains.

As far as we know, limited effort, however, has been witnessed in 
improving DA/DG performance by leveraging local knowledge 
among multiple subdomains from a single source. The ignorance of 
the fine-grained local discriminative structures may result in 
unsatisfying generalization capacity in DA/DG. Exploiting the 
relationships among multiple local domains to match their 
distribution divergences could not only align the global statistical 
distributions but also the local discriminative patterns. In many real 
applications, the local structure is more important than the global 
structure (Ding et al., 2018a), and the local learning algorithms often 
outperform global learning algorithms (Ding et al., 2018b). Because 
of this, LDA/LDG is able to compensate for the limitation of global 
DA since the diversities of domain distributions intrinsically exist in 
real applications.

Motivated by this idea, we propose in this paper a novel domain 
generalization framework for EEG-based emotion recognition, i.e., 
Local Domain Generalization (LDG) with low-rank constraints. 
Under this framework, LDA is a relaxed extension of LDG, where the 
target domain of interest is provided during the training process. 
Specifically, the source domain of the auxiliary is firstly partitioned 
into multiple local domains, each of which contains only one positive 
sample (or called exemplar sample) and its k1 positive neighbors and 
k2 negative neighbors. Each local domain is expected to be relatively 
more similar and possess a simpler distribution structure. Then 
multiple subject-invariant local classifiers are co-learned on these local 
domains by minimizing a unified local regression loss. Instead of 
evaluating the importance of each classification model individually, 
LDG selects models in a collaborated mode for considering the shared 
knowledge among local domains by additionally introducing a 
nuclear-norm-based regularizer into the objective function. In the 
inference stage, the learned local classifiers are discriminatively 
selected and reweighted according to the distribution distance 
between each local domain and the target domain of interest.

In the following sections, we will present the objective formulation 
of our framework followed by its effective optimization algorithm.

General formulation

In LDA/LDG learning, however, there still exists two challenges 
worthy to be effectively addressed: (1) how to divide one source into 
multiple local domains and (2) how to compute the weight of each 
sample in its local domain. Until now, little research has been reported 
to address these challenges for EEG-based emotion recognition 
through local regression learning by decomposing the source domain 
into multiple local domains. To address these challenges, in this 

section, we  propose the general formulation of our framework 
underpinned by the robust local regression principle and the 
regularization theory. Concretely, our proposed method will possess 
several complementary characters, which can be combined into one 
unified optimization formulation so that a more effective target 
learning model and distribution alignment between local domains 
and the target domain can be jointly achieved.

For LDA of m local domains Xvs
v

m� �
�1

 from the source domain 
Xs, we  define the v-th (1≤ ≤v m) local classifier as f w Xv v v

s,� �  
corresponding to the v-th local domain, where wv d∈  is the v-th 
local classifier model. If we consider kernel learning and assume that 
there is a feature map � �v vH: � 1 that projects the training data from 
the original feature space into a certain reproducing kernel Hilbert 
space (RKHS; Gretton et al., 2009) Hv, then the predictor model wv can 
be kernelized. We denote the kernel matrix as K x xv i j i

v
j
v� � � � � � �,

,� � ,  
where x x Xi

v
j
v

v
s, ∈ . We  introduce the empirical kernel map as 

discussed in Pan et al. (2011):

 

� �v
d

v
v
x x

for linear nel mapping

x K x
v v

: ,

,
, , ,

�

� �� �
�

    

     

ker

1 2 xx
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v v
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for nonlinear ne
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, , , ( , ) ,  

      ker ll mapping 

We therefore have kernelized data matrices K Xv
s

v v
s� � ��  for 

nonlinear projection. For simplicity of expression, we  uniformly 
express the data in linear and nonlinear space as follows:

 
X

X linear
K x nel

v
s v

s

v
s�
�� �

�
�
�

��

,

, ,  ker

In the sequence, we  also refer to it as Xvs (linear) and Kvs  
(nonlinear) if without special denotation. We  further denote by 
W w wm� �� �1;; ;;  the concatenated local model matrix. We  then 
endeavor to find m local adaptation models parameterized by jointly 
exploiting correlation information among local domains.

We first formulate our method with classical regularized empirical 
error (Zhang et al., 2019c), which leads to a classifier fv based on a set 
of training data Xv:

 
min , ,

v

m
v v v v vloss f w X y f

�
� � �� � � � �

1

 �
 

(1)

where � fv� �  is a regularization term that guarantees good 
generalization performance and loss � �� �,  is a regression loss function. 
Although other complex nonlinear models can be used, the linear 
model has the following characteristics: (1) It is fast and more suitable 
for practical applications and (2) The local structure of the manifold 
is approximately linear (Feiping Nie et  al., 2010). So, we  use the 
following linear transformation:

1 It is worthy to note that the feature mapping function øv (1≤ v ≤ m) with 

respect to each local domain can be completely different from each other.
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 f w X X w bv v v v
T
v v,  � � � �  (2)

where, bv ∈ is the bias term. The model vectors for all local 
domains should be highly correlated. So, we further get the following 
objective function.

 

min

.

, ,�
� � �

v v vw b v

m
v
r

v
T
v v k k v vX w b y w W

s

�
� � �� � � ��

�
�

�
�
�
�

1

1 2

2

2

2
1

1 2

tt
v

m
v v. , ,

�
� � �� �

1

1 0 1� �
 

(3)

where α, β is the regularization parameters and the coefficient θv 
is the contribution of each local model. The third term in Eq. (3) is the 
trace norm of W d m� � , which is the convex hull of the rank of W, 
thus enhancing the correlation between different local weight vectors 
(Yang et al., 2013).

Essentially, it is expected that a bridge needs to be established 
between different local model vectors. Therefore, we can add a global 
model vector w

Ü
 and require each local model vector to be aligned with 

it (Zhang et al., 2019a). Furthermore, to avoid some noise information, 
we replace the real label vector yv in Eq. (3) with the pseudo label 
vector fv k∈ . This pseudo-label vector can be  obtained by the 
subsequent optimization. Therefore, the objective function can 
be represented in the following formulation:
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(4)

where η is another regularization parameter. The reason for 
adding the fifth term is that the predicted results should be consistent 
with the actual label (Zhang et al., 2020a). We also expect that the local 
prediction label should be globally consistent, which is obtained by 
the global weight vector w  on each local domain. In other words, the 
label information should be consistent with the nearby samples.

Given our objectives mentioned above, we propose the following 
general formulation of LDG:
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(5)

where λv is the contribution of different subdomains. In the above 
equation, the maximum entropy regularization λ λv vlog  is added to 

avoid a trivial solution. L E E S Ev v v v v� � � �� �� �� �1 2 1 2/ /  is a 
normalized Laplacian matrix corresponding to the v-th local domain 
(Yan et al., 2006), and Ev is a diagonal matrix with a diagonal element 

of E Sv i i
j

k
v i j� � � � ��, , . The graph weight matrix Sv of Xv is defined 

as follows:

 

S
x x

x x x x
v i j
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v
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exp ,

,
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�
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�

�
��

�
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,

where k x� � denotes the k-NN of x.

Remark
In our objective formulation, one could adapt the knowledge 

obtained from multiple local domains to facilitate the target task 
of interest, which has been empirically demonstrated to be better 
than learning each local domain task independently in emotion 
recognition. In other words, it is expected to be  beneficial to 
leverage the common knowledge shared by multiple local domain 
tasks for AER. However, most of the existing state-of-the-art 
algorithms uncover some optimal classifier models for the source 
and/or target domain independently. Moreover, in these state-of-
the-art methods, joint multiple local adaptation learning has 
been largely unaddressed, and little or limited efforts have yet 
been devoted to the utilization of the correlation information 
among multiple local domains.

Optimization

Our objective function is non-smooth, so we  propose an 
alternative algorithm to solve it.

Optimize b w f f bv v v, , , ,  and w  by fixing � �v v, .
By setting the bv derivative to 0, we have:

 

w X kb f

b
k
f w X

k
f X w

v
T

v k v v
T
k

v v
T
k v

T
v k

k
T
v v

T
v
T
v

1 1

1 1

1 1

� � �
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0

1

1 ��  

(6)

By setting the b derivative to 0, we have:
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(7)

Substituting Eq. (6) and Eq. (7) into Eq. (5), then setting its 
derivative on wv to 0, we get the following formula:

 
w Q X H f X X wv v v

r
v k v v v

T� �� ��1 � 

 
(8)
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where H I
kk k k k

T� �
1 1 1 , Q X H X X X V Iv v

r
v k v

T
v v
T

d� � � �� � � ,  

and V W W T� � �� ��1 2/

. By setting the derivative on w  to 0, we get:
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f B H X Q X X A XH fv v v

r
k v

T
v v v

T
v n� � �� � �1 1 1�

 
(10)

where B H H X Q X X A X X Q X
H H X Q

v v
r
k v

r
k v

T
v v v

T
v v
T
v v

k v
r
k v

T
v

� �

�

� � �

�
� �

�

2 1 1 1

2 1
 XX Hv k

. 

By setting its derivative for f to 0, we get:
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Optimize θvr by fixing b w f f bv v v v, , , , ,λ  and w .
After fixing b w f f bv v v v, , , , ,λ  and w , the objective function in eq. 

(5) can be reformulated as
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By using the Lagrange multiplier δ, we convert the above problem 
into a Lagrange function as follows:
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By setting its derivative for θi to 0, we get:
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Since 
v

m
v

�
� �

1
1� , we obtain:
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Optimize λv by fixing b w f f bv v v v, , , , ,θ  and w .

When fixing b w f f bv v v v, , , , ,θ  and w , the objective function in 
Eq. (5) is equivalent to:
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By using the Lagrange multiplier φ, we convert the above problem 
into a Lagrange function as follows:
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By setting its derivative for λv to 0, we have:
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(18)

Overall algorithm and convergence 
analysis

According to the above objective function optimization process, 
we summarize the following algorithm for LDG.

Below, we  will demonstrate that the alternating optimization 
procedure converges to the optimal solution of wv v

m� � �1 corresponding 
to the optimization problem (5) according to Lemma 1.

Lemma 1. For any invertible matrices M and V , the following 
inequality holds (Nie et al., 2010):
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(19)

Next, we  verify that the proposed iterative approach in 
Algorithm 1 can converge to the optimal solutions by the 
following theorem:

Theorem 1. Algorithm 1 will monotonically decrease the objective 
of the problem in Eq. (5) in each iteration and will converge to the 
optimum of the problem.
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Proof. For ease of representation, we  denote the updated 
b w fv v v v v, , , ,� � , b, and w  in each iteration as 
b w f f bv
l

v
l

v
l
v
l
v
l l l, , , , , ,� �  and wl , respectively. The inner loop to 

update in Step 2 of Algorithm 1 corresponds to the optimization 
of the following problem.
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According to the definitions of the matrix V, we obtain:
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Eq. (21) is equivalent to the following form:

Algorithm 1: Local domain generalization and adaptation

Input: Domain training dataset X y v mv v, , , ,� � � �� �1 ; the number of nearest neighbors k1, k2, and parameters α, β, and μ.

Initialization: Set t = 0, and initialize wv0, fv0 , bv0, w0
, θv0, λv0, b0, f 0  randomly, and set Vv0 as identity matrix.

1: Construct the k-nearest neighbor graph and calculate Lv v
M� � �1;

2:Compute Hk according to H I
kk k k k

T� �
1 1 1 ;

3:Compute Hn according to H I
nn n n nT� �
1 1 1 ;

4: For each v in 1, ,�� �m

 {

  4.1: Let t = 0;

  4.2: repeat

  {

   4.2.1:Compute λvt  according to Eq. (18);

   4.2.2:Obtain θvt  by Eq. (15);

   4.2.3: Compute Qvt  as Q X H X X X V Ivt vt
r
v k vT v vT t d� � � � � �� � � ;

   4.2.4: Update Avt  as A XH X X X A X X X X I X L Xvt n T v vT vt v vT v vT d vt v v vT� � � � � � �
�1

� � ;

   4.2.5: Update Bvt  as 
B H H X Q X X A X X Q Xvt vt

r
k vt

r
k vT vt v vT vt v vT vt v� � � � � � � � � � � �� � �

� �
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2 1
;

   4.2.6: Compute f 0  according to Eq. (11);

   4.2.7: Compute fvt according to Eq. (10);

   4.2.8: Update w
tÜ
 as w A XH f X X Q X H f

t
v n t vt

r
v vT vt v k vt

Ü
� � � � � ��
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��

�
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� �
1

1
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   4.2.9: Update wvt  as w Q X H f X X wvt vt vt
r
v k vt v vT

t
� � � � � �

�

�

�
�
�

�

�

�
�
�

�1
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Ü
;

   4.2.10: Update bvt  as b
k

f X wvt k
T vt vT vT vt� �� �1 1 1 ;

   4.2.11: Update bvt  as b
n

f X wt nT t nT T
t

� �
�

�

�
�
�

�

�

�
�
�

1 1 1
Ü

;

   4.2.12: Update Vvt ;

   4.2.13: Set t t� �1;

   } until max min / max© © ©t t t� � �
10

4 ;

  4.3 Next v;

 }

Output: Converged λv, θv , wv , bv, bv, w
Ü

, f , fv .
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Subtracting (23) from (22), we have:
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The above formula is equivalent to:
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Therefore, we have proved the theorem. Because of the updating 
rule in Algorithm 1, the objective function shown in (5) monotonically 
decreases, and it is easy to see that the algorithm converges.

Target inference

After training the LDG, we get m local classifiers. In the following 
sections, we  will separately propose ways to effectively use these 
learned classifiers in two cases.

 1. LDG: The first is a domain generalization scenario where the 
target domain samples are not available during training. The 
other is the domain adaptation scenario with a specific target 
domain in which we  have unlabeled data in it during the 
training process. In the domain generalization scenario, under 
the premise that we have no prior information about the target 
domain, we can only fuse the m local classifiers to achieve the 
prediction of the test sample by assigning different weights. 
Given a target sample x, the predictive label y can be obtained 
by the following formula.
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 2. LDA: When there is unlabeled data in the target domain, 
we  can assign different weights to each local classifier by 
measuring the similarity between the target domain and each 
locality in the source domain to achieve a better prediction 
effect. In other words, when a certain local domain is closer to 
the target domain, we should assign a higher weight to the 
classifier trained on this subdomain, and vice versa.

Given a set of target domain samples X x x xK� �� �1 2, , , , where K 
is the number of samples in the target domain. By measuring the 
distance between the training sample and the target domain by the 
Maximum Mean Discrepancy (MMD), we get the following formula:
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where Xv, X are the v-th local source domain and target domain 
datasets respectively, and Dist X Xv ,� �  represents the distribution 
distance of Xv and X, and HK denotes a regenerative kernel Hilbert 
space. ( )·φ  is a Gaussian kernel nonlinear feature mapping function. 
Using MMD we can get the weight of each local classifier by:
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Then we can predict the test sample xj by the following formula:
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Experimental results

In this section, we will conduct comprehensive experiments to 
validate the effectiveness of our method compared with several state-
of-the-art ones.

Benchmark datasets

Two widely used benchmark databases, i.e., SEED (Zheng and Lu, 
2015) and DEAP (Koelstra et al., 2012), are adopted for systematic 
experiments of EEG-based emotion recognition (Dan et al., 2021; Tao 
et al., 2022). More detailed descriptions of these two benchmarks can 
be  found in Lan et  al. (2018). As reported by references (Zhong 
P. et al., 2020; Zhong Q. et al., 2020) and (Lan et al., 2018), some 
obvious differences between these two benchmarks are that they may 
be sampled from multiple different sources such as different sessions, 
subjects, experimental schemes, EEG devices, and emotional stimuli, 
etc. Following the same practice in literature (Shi et al., 2013; Zheng 
et al., 2015; Chai et al., 2016, 2017; Zheng and Lu, 2016; Lan et al., 
2018; Zhong P. et al., 2020; Zhong Q. et al., 2020; Tao and Dan, 2021; 
Tao et  al., 2022) for domain adaptation emotion recognition, 
differential entropy (DE; Lan et al., 2018; Zhong P. et al., 2020; Zhong 
Q. et  al., 2020) is adopted as the data feature in our 
experimental settings.

Baselines and protocol

Baselines
As a DG method, we  compare our method with several 

representative domain generalization/adaptation methods, which can 
be summarized into the following two groups (here we only report the 
better models):

 1. Shallow learning methods: Undo-Bias (Khosla et al., 2012), 
UML (Fang et  al., 2013), DICA (Muandet et  al., 2013), 
LRE-SVM (Xu et al., 2014), and SCA (Ghifary et al., 2017);

 2. Deep learning methods: Deep subdomain adaptation network 
(DSAN; Zhu et al., 2020), Deep domain generalization with 

structured low-rank constraint (DDG) (Ding et al., 2018a,b,c), 
deep domain confusion (DDC) (Tzeng et al., 2014), domain 
adversarial neural networks (DANNs) (Ganin et  al., 2016), 
contrastive adaptation network (CAN) (Kang et al., 2022), and 
deep CORAL (Sun and Saenko, 2016).

Training protocol
For all datasets, we only exploit the source samples for training. 

We use support vector machine (SVM) as the base classifier for DICA 
and SCA. The tunable hyper-parameters are selected according to 
labels from the source domain. We adopt the Gaussian kernel with a 
kernel bandwidth σ computed by the median heuristic as the kernel 
function for the kernel-based methods. For a fair comparison, all deep 
learning baselines use the same architecture (ResNet101; He et al., 
2016). That is, for deep domain generalization on the EEG dataset, 
we  employed the Resnet101 architecture to extract the training 
features. We  fine-tune all convolutional and pooling layers from 
pre-trained models and train the classifier layer via back-propagation. 
For multi-class classification of emotion recognition, we employ the 
“One vs. Rest” strategy to train our method (Zhang et al., 2020b).

Parameter setting
There are several vital parameters such as μ, α, and β that need to 

be determined beforehand in our objective (5) since they are employed 
to balance the importance of structure characterization and 
regularizers. Considering that parameter determination is a yet 
unaddressed open issue in the field of machine learning, we determine 
them by grid search in a heuristic way (Nie et al., 2010; Long et al., 
2014b; Tao et al., 2022). Concretely, these regularization parameters 
are tuned from 10 10 10 10

4 3 3 4� � �� �, , , , . Since no target labels are 
available for DG, it is impossible to conduct a standard cross-
validation. Hence, we perform p-fold cross-validation on the labeled 
source subdomains, namely, calculating the averaged accuracy on 
each subdomain fold while exploiting the other p − 1 subdomain folds 
for training. Moreover, for constructing the nearest neighbor graph in 
LDG, we search the optimal neighbor number k (including k1 and k1) 
in the grid 3 5 7 9 11 13, , , , ,� � , and then report the top-one recognition 
accuracy from the best parameter configuration. For the kernel 
learning scenarios, the Gaussian kernel, i.e., K x xi j i j, exp� � �� �� 2 ,  
is used as the default kernel function, where σ is set to 1/d (d is the 
feature dimension).

Inter-subject domain generalization

Note that different subjects even from the same dataset still have 
different EEG feature distributions due to their characteristics. 
We therefore conduct the so-called leave-one-out cross-validation 
strategy conducted also in Lan et al. (2018) and Tao et al. (2022) to 
evaluate the emotion recognition performance. That is, one subject 
remains to be  the target domain, and others from the dataset are 
constructed as the source domain. In this scenario, we follow the same 
setting as (Lan et al., 2018; Tao and Dan, 2021; Tao et al., 2022) to 
evaluate our method compared with other state-of-the-art methods 
on SEED and DEAP, respectively.

Each subject from DEAP includes 180 samples belonging to three 
categories, i.e., 60 samples per class. Each subject from SEED 
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contributes 2,775 samples, i.e., 925 samples per class and per session. 
Following the same strategy adopted by Chai et al. (2016), Zheng and 
Lu (2016), and Chai et al. (2017), we randomly sampled 1/10 of the 
training data (3,885 samples contributed by 14 subjects) from SEED 
in each experiment due to the large number of training samples. To 
cover the whole training dataset, we randomly extracted 10 training 
sets from SEED and thus conducted each experimental procedure 10 
times. The final result was averaged over these 10 runs. We compared 
the performance of our LDG with several state-of-the-art DG 
approaches. The mean recognition accuracies of LDG compared with 
the baselines on two benchmark datasets are recorded in Table 2.

As is known, when the size of training data increases to infinity, 
the theoretical performance (about 33.33%) of the random prediction 
can be approximately approached by the real chance level (Lan et al., 
2018). When there are finite samples, we obtain the empirical chance 
level by repeating the trials with the samples in question equipped 
with randomized class labels (Lan et  al., 2018). For comparison, 
we also provided the upper bound of chance levels (UBCL) with a 95% 
confidence interval in this table.

Comparison with shallow methods

As observed from Table 2, the mean performance of all methods 
on two datasets has significantly exceeded UBCL at a 5% significance 
level. This indicates the imperative importance of inter-subject domain 
generalization due to the intrinsic existence of distribution divergence 
among different subjects. Compared with other shallow learning 
methods, our method LDG undoubtedly obtains the best mean 
performance (75.06% ± 4.97) in all cases, which is followed by 
LRE-SVM (73.32% ± 3.85). This may be attributed to the subdomain 
learning technologies in LDG and LRE-SVM. Our method LDG 
unsurprisingly achieved more performance gains than LRE-SVM on 

both DEAP and SEED. The multi-source generalization method SCA 
and DICA are found to be  more effective than Undo-bias and 
UML. The experimental results in Table 2 show that while the relative 
improvement over vanilla DA/DG methods is significant (t-test, value 
of p > 0.05), the absolute accuracy is still rather low, which suggests 
that there still exists adverse impact incurred by substantial 
distribution discrepancies between different subjects.

An interesting result that can be observed from Table 2 is that all 
methods demonstrate better performance on SEED than on 
DEAP. The same observation has also been reported in Lan et al. 
(2018) and Tao and Dan (2021). A possible explanation for this result 
might be that there exist large discrepancies among different subjects, 
and the samples are distributed more “orderly” in their original feature 
space on SEED than that on DEAP (Mansour et  al., 2009), thus 
leading to better alignment on SEED in some kernel space. That is, 
larger discrepancies among different subjects from DEAP could 
degrade the recognition accuracy to some extent (Mansour et al., 
2009; Lan et al., 2018).

Comparison with deep methods

Following the same settings in Donahue et al. (2014) and Zhou 
et al. (2022), our method LDG also can be easily trained with the 
deeply extracted features via the classical deep models such as VGG 
(Simonyan and Zisserman, 2014) and ResNet (He et  al., 2016). 
Specifically, one can fine-tune some pre-trained deep models (e.g., 
Resnet101; He et al., 2016) through the source domain, and then 
extract the deep features from EEG signals. Finally, the recognition 
model can be learned using these deep representations.

In this part, we will particularly evaluate our method LDG with 
deeply extracted features by comparing it with several recently 
proposed deep adaptation models. We  additionally denote our 

TABLE 2 Inter-subject recognition accuracy (mean % and STD %).

Method
DEAP

SEED

Session I Session II Session III Average

Mean STD Mean STD Mean STD Mean STD Mean STD

Shallow 

methods

Undo-Bias 60.36 3.41 69.41 5.44 65.79 2.24 72.64 5.10 69.28 4.26

UML 62.18 4.09 72.57 6.27 67.58 1.75 71.17 3.68 70.44 3.90

DICA 65.33 6.22 73.12 6.86 65.06 6.28 73.38 7.19 70.52 6.78

LRE-SVM 68.20 2.12 77.50 3.29 70.11 5.44 77.45 4.53 75.02 4.42

SCA 66.05 4.26 75.23 5.17 69.14 6.20 74.23 6.07 72.87 5.81

LDG 71.51 3.14 78.92 5.65 70.88 5.72 78.93 5.38 76.24 5.58

Deep 

methods

DDG 77.68 3.33 84.92 6.42 74.29 7.45 82.33 8.11 80.51 7.33

DDC 74.87 6.28 79.43 7.13 72.16 6.11 80.07 7.66 77.22 6.97

DANN 75.34 7.11 82.51 6.49 73.77 7.59 83.62 6.51 79.97 6.86

DSAN 78.44 4.15 84.50 6.18 74.58 6.33 84.10 6.12 81.06 6.21

CORAL 74.08 3.58 80.42 4.20 71.54 5.49 81.00 5.00 77.65 4.90

CAN 78.43 6.10 85.77 7.31 74.12 7.50 85.39 7.40 81.76 7.40

LDG + Resnet101 77.62 5.37 85.42 5.72 74.68 5.19 86.05 6.82 82.05 5.91

Upp Bnd of Chn Lvl (UBCL) 38.85 34.58 34.65 34.60 34.61

Bold denotes the best recognition rates.
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method with deep features as LDG + ResNet101. As for other deep 
benchmarks, their opened source codes are directly borrowed to fine-
tune the pre-trained models adopted in their works, respectively. 
Different from these deep adaptation models, which typically pursue 
gaining certain domain-invariant representations, our proposed 
method explores optimizing a domain-invariant recognition model 
with strong generalization ability from the single source domain to the 
unseen target. We expect our method leveraging the deeply extracted 
features can further upgrade the recognition performance with the 
proposed subdomain generalization strategy.

As shown in Table 2, all of the deep methods obviously outperform 
the shallow ones. This indicates the advantage of deep features due to 
their more discriminative representations. As expected, 
LDG + ResNet101 also obtains the best or comparable recognition 
performance compared with other deep adaptation methods, followed 
by CAN and DSAN. This may be partly attributed to the classification-
level modeling in our LDG, where most of the local discriminative 
structures have been preserved by the guidance of subdomain 
construction. In some scenarios, shown in Table 2, LDG + ResNet101 
even achieves the top-one accuracy, which verifies that the proposed 
LDG can become an effective surrogate to the deep adaptation model 
by exploiting the deeply extracted features from some pre-trained 
deep models.

Sample size impact

Figure  2 clearly reports the impact on the performance with 
different sizes of source on SEED, where the source size varies from 
100 to 3,800. We  can observe that our methods LDG and 
LDG + ResNet101 manifest the same trends of upgrade in the curves. 

As expected, larger source samples are beneficial to improve the 
recognition performance of our methods. It is worth noting that the 
performance of LDG can be smoothly and steadily improved with the 
increase of the source size, while LDG + ResNet101 can achieve 
significant performance when the source samples are relatively large, 
e.g., larger than 1,100. When the number of source samples increases 
to 3,500, LDG and LDG-ReNet101 asymptotically approach their 
equilibrium states.

Multiple kernel selection

As an open problem, how to choose an effective kernel is a 
challenge for learning a kernel machine. Fortunately, the previously 
proposed multiple kernel learning (MKL) trick can be adapted to 
overcome this confusion. In the sequence, we further evaluate the 
performance improvement in our method via introducing MKL 
(denoted by LDG-mkl for short) for each subdomain, in which a 
new feature space spanned by multiple kernel projections will be first 
constructed. Specifically, given an empirical kernel function set 
�a a� � �1

 , we, respectively, project them into  different spaces, and 
then construct an orthogonally integrated feature space by 
horizontally concatenating these spaces. In this concatenated  
space, the projected features can be  denoted by 

� ��
�� � � �x x x xi i

T
i
T

i
T T na� � � � � � � � � ��

��
�
��
�1 2, , , , where x Xi a∈ , 

and then the kernel matrix can be  easily deduced as 
K K K Knew � ��� ��

� � ��1 2; ; ; , where Ki  is the i-th kernel matrix from 
the  feature spaces. Following the same strategy in Long et al. 
(2015), besides the above-used Gaussian kernel, we  additionally 
introduce another three kernel functions including inverse  

FIGURE 2

Recognition accuracy with varying sizes of source samples on SEED.
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square distance kernel function, Laplacian kernel function, and  
inverse distance kernel function, which are, respectively,  

denoted as K x xij i j� � �� �1 1
2

/ � , K x xij i j� � �� �exp � , 

and K x xij i j� � �� �1 1/ � . The observed mean experimental 
results from Figure 3 prove that LDG-mkl can boost the performance 
of LDG with a single kernel. This also verifies that the performance 
improvement in the kernel machines can be  attributed to the 
diversities of multiple kernel functions.

Cross-dataset domain generalization

In this subsection, we further evaluate the broad and consistent 
generalization capacity of our LDG method on cross-dataset emotion 
recognition. Intuitively speaking, cross-data generalization must 
be  more challenging than cross-subject generalization due to the 
significant difference between datasets.

Following the same settings in Tao and Dan (2021) and Tao et al. 
(2022), for robust cross-dataset generalization, the 32 shared channels 
by SEED and DEAP are employed to support a common feature space 
of 160 dimensions. In this case, several cross-dataset generalization 
settings can be  made up, i.e., DEAP SI→ , DEAP SII→ , 
DEAP SIII→ , SI DEAP→ , SEED II DEAP→ , and SIII DEAP→ ,  
where “x → y” means domain generalization from the dataset x into 
the dataset y, and SI, SII, and SIII are, respectively, denoted as the 
Session I, Session II, and Session III from SEED. When DEAP is 

regarded as the source dataset, 2,520 data are sampled from DEAP and 
2,775 data taken as the target datasets are, respectively, sampled from 
three different sessions (SI, SII, and SIII) of SEED. When each session 
of SEED is taken as the source dataset, we resample 41,625 data from 
it as a training set and 180 samples from DEAP regarded as the target 
dataset. We report the mean generalization results on six cross-dataset 
in Table 3.

It can be seen from the experimental results in Table 3 that the 
average performance of each method on the cross-dataset is slightly 
worse than that in the within-dataset. This confirms that the 
distribution difference between the two datasets is greater than that 
between the two subjects. The superiority of subdomain generalization 
will be reflected in this scenario because subdomains can potentially 
alleviate the distribution diversity in cross-datasets when the target 
dataset is unavailable in the phase of training. This can also be proved 
by the observation from Table 3, where our method LDG outperforms 
other shallow methods in almost all cases. Although SCA occasionally 
achieves the best performance in one setting (SI → DEAP), our LDG 
method still achieves the top-one performance in other cases. In deep 
learning scenarios, all methods still undoubtedly outperform their 
shallow counterparts, which can be attributed to the advantage of deep 
feature representations. It is worth noting that our deep method 
LDG + Resnet101 also obtains the best or comparable recognition 
performance compared with other deep adaptation models. This once 
again proves the importance of the classification-level 
constraint in LDG.

Regarding the previously reported results in Yang et al. (2007), 
Tommasi et  al. (2014), Tao et  al. (2017, 2019, 2022), Ding et  al. 

FIGURE 3

Domain adaptation emotion recognition on within-dataset with multi-kernel learning (SI: Session I, SII: Session II, SIII: Session III).
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(2018a,b,c), and Tao and Dan (2021), multi-dataset adaptation can 
be improved by ensemble multiple auxiliary datasets. Please note that 
the scalability challenge could be  incurred in case of multi-dataset 
generalization in that multi-dataset learning could bring the so-called 
“negative transfer” problem (Rosenstein et al., 2005), an open issue that 
exists in vanilla multi-source DA (Li J. et al., 2019; Chen et al., 2021; 
Tao and Dan, 2021). Therefore, we particularly evaluate the scalability 
of the proposed method by leveraging multiple source datasets for 
cross-dataset generalization. We report the average performance in 
Table 4 on all source datasets for the single-source methods including 
our LDG as well as LRE-SVM, Undo-Bias, and UML.

As shown in Table  4, due to the significant distribution 
differences among different source datasets, it is difficult for the 
single-source methods to generalize to unseen target domains in 
multi-source datasets. Therefore, the results in Table 4 indicate 
that these methods are generally inferior to other multi-source 
fusion methods. In some scenarios, they even exhibit a 
performance degradation trend as the number of source domains 
increases, indicating the “negative transfer” phenomenon 
(Rosenstein et  al., 2005). Another interesting observation in 
Table  4 is that all multi-source methods achieve slight 
improvements by utilizing multiple sources as opposed to 
bridging only a single source (i.e., cross-dataset settings) as the 

number of source domains increases. This demonstrates the 
benefits of using multiple sources to enhance identification 
performance. In addition, SCA and DICA outperform other 
methods by conquering top-level performance as their designed 
weights are used to differentially screen the best sources. In some 
cases, our LDG method achieves more benefits than SCA. One 
possible explanation is that the discriminative information shared 
among sub-domain models in LDG is advantageous for multi-
source generalization.

Convergence

Since our LDG is an iterative algorithm, it is crucial to evaluate its 
convergence. We evaluate the convergence of the LDG algorithm by 
conducting several experiments for emotion recognition in three 
settings such as cross-subject within DEAP, DEAP→SI, and {SI, SII, 
SIII} → DEAP. We plotted the mean experimental results in Figure 4. 
The curves in this figure show that the proposed algorithm has a 
certain asymptotic convergence. The objective values of LDG usually 
converge in less than 30 iterations. We  also observed a similar 
phenomenon from other recognition tasks with different cross-
subject/cross-dataset settings.

TABLE 3 Domain adaptation emotion recognition on cross-dataset.

Methods DEAP → SI DEAP → SII DEAP → SIII SI → DEAP SII → DEAP SIII → DEAP

Shallow 

methods

Undo-Bias 44.35 49.72 43.71 42.57 41.99 42.51

UML 45.63 49.98 49.67 44.91 42.48 43.53

DICA 47.35 52.68 52.11 43.34 44.90 42.46

LRE-SVM 50.48 56.46 57.11 46.34 47.20 47.46

SCA 48.89 54.35 54.65 46.73 45.36 44.67

LDG 52.62 57.66 57.83 45.60 47.89 49.76

Deep 

methods

DDG 62.40 64.92 73.92 64.29 54.29 53.33

DDC 60.89 62.43 69.43 62.16 52.16 50.07

DANN 61.08 62.51 72.51 63.77 53.77 52.62

DSAN 63.28 64.50 74.50 64.58 55.58 54.10

CORAL 60.15 60.42 70.42 61.54 52.54 51.00

CAN 64.22 65.77 75.77 66.12 57.12 55.39

LDG+ 

Resnet101
62.62 65.81 74.42 66.86 55.68 56.18

Bold denotes the best recognition rates.

TABLE 4 Multi-dataset generalization (SI: Session I, SII: Session II, SIII: Session III).

Methods {DEAP,SII,SIII} → SI {DEAP,SI,SIII} → SII {DEAP,SI,SII} → SIII {SI,SII,SIII} → DEAP {SI,SII} → DEAP {SI,SIII} → DEAP

Undo-Bias 46.16 51.32 45.11 43.84 40.68 41.76

UML 44.06 50.10 51.21 46.01 42.90 43.85

DICA 49.28 52.94 54.06 46.62 45.39 44.63

LRE-SVM 47.17 57.30 59.30 50.77 46.50 49.06

SCA 52.33 57.66 57.29 48.68 47.72 48.93

LDG 52.76 57.66 61.43 49.34 47.03 49.48

Bold denotes the best recognition rates.
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Conclusion

To deal with cross-subject/dataset EEG-based emotion 
recognition tasks, we proposed a local domain generalization (LDG) 
framework. In multiple subdomain spaces, LDG aims at transferring 
local knowledge into target learning mainly by leveraging correlation 
knowledge among subdomain models via low-rank constraint on the 
local models, which discriminatively screens unimportant prior 
evidence in subdomains. The comprehensive experiments performed 
on two public datasets verify the effectiveness of LDG in dealing with 
cross-subject/dataset emotion recognition. In most scenarios, our 
LDG and LDG + Resnet101 obtain the best results or comparable 
performance concerning several representative baselines.

Since the implementation of the LDG algorithm needs an iterative 
optimization procedure, how to improve the efficiency of LDG and 
seek a more efficient algorithm would be an issue worthy of further 
study in our future research. The unreliable and misleading pseudo-
label strategy may be  another potential problem in our 
LDG. Consequently, our successive work would be  to explore 
seamlessly incorporating target labels into the framework of LDG.
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