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The Partial Least Square Regression (PLSR) method has shown admirable

competence for predicting continuous variables from inter-correlated

electrocorticography signals in the brain-computer interface. However, PLSR is

essentially formulated with the least square criterion, thus, being considerably

prone to the performance deterioration caused by the brain recording noises. To

address this problem, this study aims to propose a new robust variant for PLSR.

To this end, the maximum correntropy criterion (MCC) is utilized to propose

a new robust implementation of PLSR, called Partial Maximum Correntropy

Regression (PMCR). The half-quadratic optimization is utilized to calculate the

robust projectors for the dimensionality reduction, and the regression coe�cients

are optimized by a fixed-point optimization method. The proposed PMCR is

evaluated with a synthetic example and a public electrocorticography dataset

under three performance indicators. For the synthetic example, PMCR realized

better prediction results compared with the other existing methods. PMCR could

also abstract valid information with a limited number of decomposition factors in

a noisy regression scenario. For the electrocorticography dataset, PMCR achieved

superior decoding performance in most cases, and also realized the minimal

neurophysiological pattern deterioration with the interference of the noises. The

experimental results demonstrate that, the proposed PMCR could outperform

the existing methods in a noisy, inter-correlated, and high-dimensional decoding

task. PMCR could alleviate the performance degradation caused by the adverse

noises and ameliorate the electrocorticography decoding robustness for the

brain-computer interface.

KEYWORDS

brain-computer interface, partial least square regression, maximum correntropy,

robustness, electrocorticography decoding

1. Introduction

Brain-computer interface (BCI) has been conceived as a promising technology that

translates cerebral recordings generated by cortical neurons into appropriate commands for

controlling neuroprosthetic devices (Wolpaw et al., 2002). The capability of BCI for repairing

or reproducing sensory-motor functions has been increasingly intensified by recent

scientific and technological advances (Donoghue, 2002; Mussa-Ivaldi and Miller, 2003;

Lebedev and Nicolelis, 2006). The non-invasive recordings, especially electroencephalogram

(EEG) and magnetoencephalogram (MEG), are widely exploited to structure BCI systems
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due to their ease of use and satisfactory temporal resolution,

whereas the non-invasive BCI systems could be limited in their

capabilities and customarily require considerable training (Amiri

et al., 2013). Invasive single-unit activities and local field potentials

commonly provide better decoding performance, which suffer

pessimistic long-term stability, however, due to capriciousness

in the recorded neuronal-ensembles (Chestek et al., 2007). A

sophisticated alternative which exhibits higher signal amplitudes

than EEG while presents superior long-term stability compared

with invasive modalities, is the semi-invasive electrocorticography

(ECoG) (Buzsáki et al., 2012). Numerous studies in recent years

have investigated the potentials of ECoG signal for decoding

motions (Levine et al., 2000; Leuthardt et al., 2004; Chin et al., 2007;

Pistohl et al., 2008; Ball et al., 2009b; Chao et al., 2010; Shimoda

et al., 2012). The serviceability of ECoG signal for online practice

have also been demonstrated in Leuthardt et al. (2004, 2006), Schalk

et al. (2008).

To accomplish the inter-correlated and potentially high-

dimensional ECoG decoding tasks, the partial least square

regression (PLSR) algorithm has been widely utilized to predict

continuous variables from ECoG signals as well as various

improved versions in the last decade (Chao et al., 2010; Eliseyev

et al., 2011, 2012, 2017; Shimoda et al., 2012; Zhao et al., 2012,

2013; Eliseyev and Aksenova, 2016; Foodeh et al., 2020). Chao et al.

(2010) successfully predicted the three-dimensional continuous

hand trajectories of two monkeys during asynchronous food-

reaching tasks from time-frequency features of subdural ECoG

signals by PLSR algorithm. They further showed the admirable

prediction capability of PLSR in an epidural ECoG study (Shimoda

et al., 2012). Recently, different strategies have been investigated to

improve the decoding performance of PLSR. For instance, multi-

way PLSR algorithms have been proposed as a generalization for

tensor analysis in the ECoG decoding tasks (Bro, 1996; Shimoda

et al., 2012; Zhao et al., 2013; Eliseyev et al., 2017). Moreover,

regularization technique has been used to penalize the objective

function with an extra regularization term to achieve desirable

prediction (Eliseyev et al., 2012; Eliseyev and Aksenova, 2016;

Foodeh et al., 2020). Although the PLSR algorithm was initially

developed for econometrics and chemometrics (Wold, 1966), it has

emerged as a popular method for neural imaging and decoding

(Krishnan et al., 2011; Zhao et al., 2014).

PLSR solves a regression problem primarily with

dimensionality reduction on both explanatory matrix (input)

and response matrix (output), in which the dimensionality-

reduced samples (commonly called as latent variables) for

respective sets exhibit maximal correlation, thus structuring

association from input variables to output variables. Nevertheless,

the conventional PLSR and most existing variants are in essence

formulated by the least square criterion, which assigns superfluous

importance to the deviated noises. On the other hand, although

ECoG signal usually exhibits a relatively higher signal-to-noise

ratio (SNR) than the non-invasive EEG recording, previous studies

have revealed that ECoG is also prone to be contaminated by

physiological artifacts with pronounced amplitudes (Otsubo

et al., 2008; Ball et al., 2009a). As a result, PLSR could be

incompetent for noisy ECoG decoding tasks due to subnormal

robustness.

The present study aims to propose a novel robust version

for PLSR through introducing the maximum correntropy criterion

(MCC) to replace the conventional least square criterion, which

was proposed in the information theoretic learning (ITL) (Principe,

2010), and has achieved the state-of-the-art robust approaches

in different tasks, including regression (Liu et al., 2007; Chen

and Príncipe, 2012; Feng et al., 2015), classification (Singh et al.,

2014; Ren and Yang, 2018), principal component analysis (He

et al., 2011), and feature extraction (Dong et al., 2017). Recently,

a rudimentary implementation of the MCC in the PLSR algorithm

has been investigated in Mou et al. (2018), where MCC was

employed in the process of dimensionality reduction. However,

the proposed algorithm in Mou et al. (2018) may be limited in

some respects. First, except for the MCC-based dimensionality

reduction, it remains acquiring the regression relations under the

least square criterion. Second, it only considers the dimensionality

reduction for the explanatory matrix. Consequently, one has to

calculate the regression coefficients separately for each dimension

of the response matrix, which means it could be inadequate for

multivariate response prediction.

By comparison, the present study aims to realize a more

comprehensive implementation of the MCC framework in PLSR.

The main contributions of this study are summarized as follows.

1) We reformulate PLSR thoroughly with the MCC framework,

that not only the dimensionality reduction, but also the

regression relations between the different variables are

established by the MCC framework.

2) Both the explanatory matrix (input) and the response

matrix (output) are treated with MCC-based dimensionality

reduction. As a result, the proposed algorithm is adequate for

multivariate response prediction.

3) We utilize Gaussian kernel functions with individual kernel

bandwidths for different reconstruction errors and prediction

errors. In addition, each kernel bandwidth value could be

calculated from the corresponding set of errors directly.

The remainder of this paper is organized as follows. Section 2

introduces the conventional PLSRmethod as well as the regularized

versions. Section 3 gives a brief introduction about MCC and

the rudimentary MCC-based PLSR algorithm. Section 4 presents

the reformulation of PLSR with the MCC framework, proposing

the partial maximum correntropy regression (PMCR) algorithm.

Section 5 evaluates the proposed method on synthetic and real

ECoG datasets, respectively. Some discussions about the proposed

method are given in Section 6. Finally, this paper is concluded in

Section 7. To facilitate the presentation of this paper, the main

notations are listed in Table 1.

2. Partial least square regression

2.1. Conventional PLSR

Consider the data set with the explanatory matrix X ∈

R
L×N and the response matrix Y ∈ R

L×M , in which N and

M denote the respective numbers of dimension, while L is the
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TABLE 1 Main notations.

Notation Description

L Number of observations/samples

N Dimension of explanatory matrix (input)

M Dimension of response matrix (output)

S Optimal number of decomposition factors

s Current index of decomposition factor

X Original explanatory matrix (input)

Y Original response matrix (output)

Ŷ Prediction of response matrix

Xs Residual matrix of X in s-th factor

Ys Residual matrix of Y in s-th factor

xls l-th observation in Xs

yls l-th observation in Ys

ws Dimensionality-reduction projector for Xs

cs Dimensionality-reduction projector for Ys

ts Input latent variables in s-th factor

us Output latent variables in s-th factor

ps Loading vector in s-th factor

bs Regression coefficient between ts and us

gσ (·) Gaussian kernel function with kernel bandwidth σ

number of observations. PLSR is an iterative regression method

which implements dimensionality reduction and decomposition on

explanatory and response matrices simultaneously for S iterations,

so that they could be expressed by

X = TPT , Y = TBCT (1)

where T = [t1, .., tS] ∈ R
L×S and P = [p1, .., pS] ∈ R

N×S

are the latent variables and loading vectors for X, respectively.

C = [c1, .., cS] ∈ R
M×S is the loading vectors of Y, and B =

diag(b1, .., bS) ∈ R
S×S is a diagonal matrix. For dimensionality

reduction, in the s-th iteration with residual matricesXs and Ys, the

covariance between the latent variables ts = Xsws and us = Yscs

are maximized by

max
‖ws‖2=‖cs‖2=1

tTs us = wT
s X

T
s Yscs (2)

in which ws ∈ R
N and cs ∈ R

M are utilized for dimensionality

reduction on Xs and Ys, respectively. us is the latent variable for

Ys. ‖·‖2 denotes the L2-norm. After obtaining the latent variables ts
and us, the loading vector ps and the relation from ts to us with the

scalar bs are founded by the least square criterion

min
ps

‖Xs − tsp
T
s ‖

2
2 ⇒ ps = XT

s ts/(t
T
s ts) (3)

min
bs

‖us − tsbs‖
2
2 ⇒ bs = uTs ts/(t

T
s ts) (4)

The residual matrices are updated byXs+1 = Xs− tsp
T
s and Ys+1 =

Ys − bstsc
T
s . S is usually selected by cross validation. Eventually, the

prediction from X to Y is structured by

Ŷ = XH (5)

where H = PT+BCT ∈ R
N×M , and PT+ is the pseudo-inverse of

PT . Ŷ denotes the prediction for Y.

Maximizing the covariance between latent variables Eq. (2)

could be rewritten as (Barker and Rayens, 2003).

min
‖ws‖2=‖cs‖2=1

L
∑

l=1







‖xls − xlswsw
T
s ‖

2

+‖yls − ylscsc
T
s ‖

2

+‖xlsws − ylscs‖
2






(6)

where xls and yls denote the l-th samples in Xs and Ys, respectively.

One can observe that, PLSR employs the least square criterion not

only to obtain the regression relations in Eqs. (3, 4), but for the

projectors ws and cs as well. In Eq. (6), the first and second terms

are the reconstruction errors for input and output, respectively. The

third term denotes the prediction error for the l-th latent variables.

Since each step for PLSR is based on the least square criterion, the

prediction from input to output could be seriously deteriorated by

noises.

2.2. Regularized PLSR

Regularization technique has been popularly employed to

ameliorate the decoding performance of the PLSR algorithm. For

example, L1-regularization on the projectors was employed so

as to acquire sparse projectors, conducting the feature selection

simultaneously (Eliseyev et al., 2012). The authors further extended

their study in Eliseyev and Aksenova (2016), in which Sobolev-

norm and polynomial penalization were introduced into PLSR

algorithm to strengthen the smoothness of the predicted response.

Recently, the state-of-the-art regularized PLSR was proposed by

utilizing L2-regularization to find the regression relation between

the latent variables ts and us, so as to reduce the over-fitting risk of

each latent variable on the desired response (Foodeh et al., 2020). In

particular, for each decomposition factor, the scalar bs is acquired

with an individual regularization parameter λs as

min
bs

‖us − tsbs‖
2
2 + λsb

2
s ⇒ bs = uTs ts/(t

T
s ts + λs) (7)

Experimental results in Foodeh et al. (2020) showed that, the

regularization technique in Eq. (7) can achieve better ECoG

decoding performance than regularizing the projectors.

Nevertheless, the regularized PLSR variants remain formulated

based on the non-robust least square criterion, as a result, being

still prone to suffering the performance deterioration caused by the

adverse noises.

3. Maximum correntropy criterion

3.1. Maximum correntropy criterion

The correntropy concept was developed in the field of

ITL as a generalized correlation function of random processes
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(Santamaría et al., 2006), which measures the similarity and

interaction between two vectors in a kernel space. Correntropy

associates with the information potential of quadratic Renyi’s

entropy (Liu et al., 2007), where the data’s probability density

function (PDF) is estimated by the Parzen’s window method

(Parzen, 1962; Silverman, 1986). The correntropy which evaluates

the similarity between two arbitrary variables A and B, is defined by

V(A,B) = E[k(A− B)] (8)

in which k(·) is a kernel function satisfying the Mercer’s theory

and E[·] is the expectation operator. In the practical application,

one calculates the correntropy with L observations by the following

empirical estimation

V̂(A,B) =
1

L

L
∑

l=1

k(al − bl) (9)

where the Gaussian kernel function gσ (x) , exp(−x2/2σ 2) with

kernel bandwidth σ is widely used for the kernel function k(·), thus

leading to

V̂(A,B) =
1

L

L
∑

l=1

gσ (al − bl) =
1

L

L
∑

l=1

exp(−
(al − bl)

2

2σ 2
) (10)

Maximizing the correntropy Eq. (10), called as the maximum

correntropy criterion (MCC), exhibits numerous advantages.

Correntropy is essentially a local similarity measure, which

is chiefly determined along A = B, i.e. zero-value error.

Consequently, the effect of large error caused by adverse

noise is alleviated, leading to superior robustness. Additionally,

correntropy could extract sufficient information from observations,

since it considers all the even moments of errors (Liu et al., 2007).

It also relates closely to them-estimation, which can be regarded as

a robust formulation of Welschm-estimator (Huber, 2004).

3.2. MCC-PLSR

Recently, a rudimentary MCC-based PLSR variant has been

investigated in Mou et al. (2018), named as MCC-PLSR. For

a univariate output, according to Mou et al. (2018), the

dimensionality reduction Eq. (2) could be rewritten as

max
‖ws‖2=1

wT
s X

T
s YsY

T
s Xsws (11)

which aims to maximize the quadratic covariance. Mou et al.

(2018) utilized a similar proposition as in the MCC-based principal

component analysis (He et al., 2011), proposing the following

objective function

max
‖ws‖2=1

L
∑

l=1

gσ (

√

ylTs xlsx
lT
s yls − ylTs xlswswT

s x
lT
s yls) (12)

from which one can calculate the robust projector ws. Then, one

obtains the latent variables by ts = Xsws, and acquires other model

parameters similarly as in Eqs. (3-5).

Despite the robust implementation of the projector ws in

Eq. (12), the above-described MCC-PLSR algorithm could be

inadequate for the following reasons. First, except for the

calculation of ws, the other model parameters are still acquired

under the least square criterion. Second, dimensionality reduction

is not considered for the output matrix. As a result, the prediction

performance for multivariate response could be limited. In

addition, MCC-PLSR is prone to suffering excessive computation

time, since one has to obtain the prediction model Ŷ = XH for

each dimension of the response matrix separately.

4. Partial maximum correntropy
regression

In this section, we present a comprehensive reformulation of

PLSRwith theMCC framework. Compared with the existingMCC-

PLSR, our proposed method aims to acquire each model parameter

under the MCC. In addition, the generalization for multivariate

response prediction is taken into account in this study. The detailed

mathematical derivations of the proposed method are given as

follows, in which the subscript s denoting the s-th decomposition

factor is omitted for the purpose of simplicity.

Substituting the least quadratic reconstruction errors and

prediction errors in the conventional PLSR Eq. (6) with the

maximum correntropy yields

max
‖w‖2=‖c‖2=1

L
∑

l=1







gσx (x
l − xlwwT)

+gσy (y
l − ylccT)

+gσr (x
lw− ylc)






(13)

where σx, σy, and σr denote the Gaussian kernel bandwidths for X-

reconstruction errors, Y-reconstruction errors, and the prediction

errors, respectively.

Then, one can transform the vectors (xl − xlwwT) and (yl −

ylccT) into scalars, provided that the two projectors w and c are

unit-length vectors, i.e. wTw = cTc = 1,

√

‖xl − xlwwT‖2 =
√

xlxlT − xlwwTxlT

√

‖yl − ylccT‖2 =

√

ylylT − ylccTylT
(14)

Subsequently, one obtains the following optimization problem to

acquire the projectors

max
‖w‖2=‖c‖2=1

L
∑

l=1







gσx (
√

xlxlT − xlwwTxlT)

+gσy (
√

ylylT − ylccTylT)

+gσr (x
lw− ylc)






(15)

After obtaining w and c, one could calculate the latent variables

as in the conventional PLSR by t = Xw and u = Yc. We then

calculate the loading vector p and the regression coefficient b under

the MCC by

max
p

L
∑

l=1

gσp (x
l − tlpT) (16)

max
b

L
∑

l=1

gσb (u
l − tlb) (17)
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in which tl and ul denote the l-th elements for the latent

variables t and u, respectively. σp and σb denote the corresponding

Gaussian kernel bandwidths. The residual matrices are then

updated similarly as PLSR.

One repeats such procedures for the optimal number of factors

and collects the acquired vectors from each iteration to organize

the matrices T, P, B, and C, as in the original PLSR. Ultimately,

the predicted response Ŷ can be obtained from X by the regression

relationship Eq. (5). The above-mentioned PLSR variant which

is comprehensively reformulated based on the MCC, is named

as partial maximum correntropy regression (PMCR). In what

follows, we discuss in detail about the optimization, convergence

analysis, and determination of hyper-parameters with regard to the

proposed PMCR algorithm.

4.1. Optimization

Three optimization problems Eqs. (15, 16, 17) need to be

addressed in PMCR. We first consider Eq. (15) for the calculation

of the projectors w and c. Based on the half-quadratic (HQ)

optimization method (Ren and Yang, 2018), Eq. (15) could be

rewritten as

max
‖w‖2 =

‖c‖2 = 1

L
∑

l=1











sup{αl
xlxlT−xlwwTxlT

2σ 2
x

− ϕ(αl)}

+ sup{βl
ylylT−ylccTylT

2σ 2
y

− ϕ(βl)}

+ sup{γl
(xlw−ylc)2

2σ 2
r

− ϕ(γl)}











(18)

where ϕ(·) is a convex conjugated function of g(·), and {αl}
L
l=1

,

{βl}
L
l=1

, and {γl}
L
l=1

denote three sets of introduced auxiliaries,

respectively. Thus, we can conclude that optimizing Eq. (15) is

equivalent to updating (αl,βl, γl) and (w, c) alternately by

max
‖w‖2 =

‖c‖2 = 1,

αl,βl, γl

J ,

L
∑

l=1











αl
xlxlT−xlwwTxlT

2σ 2
x

− ϕ(αl)

+βl
ylylT−ylccTylT

2σ 2
y

− ϕ(βl)

+γl
(xlw−ylc)2

2σ 2
r

− ϕ(γl)











(19)

Since the HQ optimization is an iterative process, we denote the

k-th HQ iteration with the subscript k. First, according to the HQ

technique (Ren and Yang, 2018), we update the auxiliaries with the

current projectors (wk, ck) by

αl,k+1 = − exp(−
xlxlT − xlwkw

T
k
xlT

2σ 2
x

)

βl,k+1 = − exp(−
ylylT − ylckc

T
k
ylT

2σ 2
y

)

γl,k+1 = − exp(−
(xlwk − ylck)

2

2σ 2
r

)

(l = 1, .., L)

(20)

Then, to optimize the projectors, we rewrite Eq. (19) by collecting

the terms of projectors and omitting the auxiliaries as

max
‖w‖2 =

‖c‖2 = 1

Jp ,

L
∑

l=1









(
γl
2σ 2

r
−

αl
2σ 2

x
)xlwwTxlT

+(
γl
2σ 2

r
−

βl
2σ 2

y
)ylccTylT

−
γl
σ 2
r
xlwcTylT







 (21)

which is a quadratic optimization issue constrained by nonlinear

conditions. To accomplish Eq. (21), there exist enormous solutions

in the literature, such as the sequential quadratic programming

(SQP) which has been widely utilized for nonlinear programming

problems (Fletcher, 2013).

After one obtains the projectorsw and c, the latent variables are

computed by t = Xw and u = Yc. Then, Eqs. (16, 17) can be solved

by the following iterative fixed-point optimizationmethod with fast

convergence (Chen et al., 2015).

p = XT9pt/(t
T9pt) (22)

b = uT9bt/(t
T9bt) (23)

where 9p and 9b are L × L diagonal matrices with the diagonal

elements (9p)l,l = gσp (x
l − tlpT) and (9b)l,l = gσb (u

l − tlb),

respectively. Since 9p and 9b are dependent on the current

solutions p and b, the updates in Eqs. (22, 23) are fixed-point

equations which will require multiple iterations (Chen et al., 2015).

The comprehensive procedures for PMCR are summarized in

Algorithm 1.

1: Input: matrices of explanation X and response Y;

number of factors S; a small positive value ς

2: Output: prediction model Ŷ = XH

3: initialize X1 = X and Y1 = Y;

4: for s = 1, 2, .., S do

5: initialize the projectors by the conventional

PLSR;

6: initialize converged = FALSE;

7: repeat

8: auxiliary-step: update (αl ,βl , γl) with (20);

9: projector-step: update (ws, cs) with (21);

10: if the difference of the objective function

(15) is smaller than ς then

11: converged = TRUE

12: end if

13: until converged == TRUE

14: compute latent variables ts = Xsws and us = Yscs;

15: compute ps and bs by the fixed-point method

(22)(23);

16: update the residual matrices Xs+1 = Xs − tsp
T
s and

Ys+1 = Ys − bstsc
T
s ;

17: end for

18: organize the matrices T = [t1, .., tS], P = [p1, .., pS], B =

diag(b1, .., bS), and C = [c1, .., cS];

19: compute H = PT+BCT

Algorithm 1. Partial maximum correntropy regression
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4.2. Convergence analysis

For the regression relations p and b, one could find the detailed

convergence analysis in Chen et al. (2015). We mainly consider the

convergence of the projectors w and c in the optimization problem

(15). Because correntropy is in nature an m-estimator (Liu et al.,

2007), the local optimums of Eq. (15) will be close sufficiently to

the global optimum, which has been proved in a recent theoretical

study (Loh and Wainwright, 2015). Therefore, we prove that Eq.

(15) will converge to a local optimum with the HQ optimization

method.

Proposition 1. If we have Jp(wk, ck) 6 Jp(wk+1, ck+1) by fixing

(αl,βl, γl) = (αl,k+1,βl,k+1, γl,k+1), the optimization problem (Eq.

15) will converge to a local optimum.

Proof: The convergence is proved as

J(wk, ck,αl,k,βl,k, γl,k)

6J(wk, ck,αl,k+1,βl,k+1, γl,k+1)

6J(wk+1, ck+1,αl,k+1,βl,k+1, γl,k+1)

(24)

in which the first inequality is guaranteed by the HQ mechanism

(Ren and Yang, 2018), and the second inequality arises from the

assumption of the present proposition.

One can observe that, to guarantee the convergence of Eq.

(15), it is unnecessary to attain the strict maximum of Eq. (21)

at each projector-step in Algorithm 1. On the contrary, so long

as the updated projectors lead to a larger objective function Jp at

each projector-step, Eq. (15) will converge to a local optimum. This

reveals great convenience in practice, that one only needs a few

SQP iterations for projector-step. One could finish the projector-

step once confirming the increase on Jp, thus accelerating the

convergence.

4.3. Hyper-parameter determination

There exist five Gaussian kernel bandwidths σx, σy, σr , σp, and

σb, respectively, to be determined in practice. In the literature,

an effective method to estimate a proper kernel bandwidth for

probability density estimation, named as Silverman’s rule, was

proposed in Silverman (1986). Denoting the current set of errors

as E with L observations, the kernel bandwidth is computed

σ 2 = 1.06×min{σE,
R

1.34
} × (L)−1/5 (25)

in which σE is the standard deviation of the L errors, and R denotes

the interquartile range.

5. Experiments

In this section, we assessed the proposed PMCR algorithm

on a synthetic dataset and a real ECoG dataset, respectively,

comparing it with the existing PLSR methods. Specifically, we

compared PMCR to the followingmethods: the conventional PLSR,

the state-of-the-art regularized PLSR (RPLSR) (Foodeh et al., 2020)

described in Eq. (7), and the rudimentary MCC-PLSR (Mou et al.,

2018) described in Section 3.2. For a evenhanded comparison,

each algorithm used an identical number of factors, which was

selected by the conventional PLSR in five-fold cross-validation. The

maximal number of factors was set as 100.

Considering the performance indicators for the evaluation,

we used three typical measures in regression tasks: i) Pearson’s

correlation coefficient (r)

r =
Cov(Ŷ,Y)

√

Var(Ŷ)Var(Y)

(26)

where Cov(·, ·) and Var(·) denote the covariance and variance,

respectively, and ii) root mean squared error (RMSE) which is

computed by

RMSE =

√

√

√

√

1

L

L
∑

l=1

‖ŷl − yl‖
2 (27)

in which ŷl and yl denote the l-th observations for the prediction Ŷ

and the target Y, respectively, and iii) mean absolute error (MAE)

which represents the average L1-norm distance

MAE =
1

L

L
∑

l=1

‖ŷl − yl‖ (28)

To compare the robustness between different algorithms,

only contaminating the training samples by noises with isolating

testing data from contamination is an extensively approved and

implemented method in the literature, as advised in Zhu and Wu

(2004). Accordingly, only the training sample would suffer the

adverse contamination in the following experiments.

5.1. Synthetic dataset

5.1.1. Dataset description
First, we considered an inter-correlated, high-dimensional, and

noisy synthetic example, in which various PLSR methods were

assessed with different levels of contamination. Randomly, we

generated 300 i.i.d.1 latent variables t ∼ U(0, 1) for training, and

300 i.i.d. latent variables t ∼ U(0, 1) for testing, in whichU denotes

the uniform distribution, and the dimension of t was set as 20. We

generated the hypothesis from the latent variable to the explanatory

and response matrices then. Specifically, we randomly generated

the transformation matrices with arbitrary values, which were

subject to the standard normal distribution. The latent variables t

were multiplied with a 20×500 transformation matrix, resulting in

a 300×500 explanatory matrix for input. Similarly, we used a 20×3

transformation matrix to acquire a 300 × 3 response matrix for

output. Accordingly, we predicted the multivariate responses from

500-dimensional explanatory variables with 300 training samples,

and evaluated the prediction performance on the other 300 testing

samples.

Considering the contamination for the synthetic dataset, we

supposed the explanatory matrix to be contaminated, because the

1 Independent and identically distributed.
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FIGURE 1

Regression performance indicators of the inter-correlated, high-dimensional, and contaminated synthetic dataset under di�erent noise standard

deviations with noise levels from 0 to 1.0. (A) Noise standard deviation = 30, (B) noise standard deviation = 100, and (C) noise standard deviation

= 300. The performance indicators were acquired from 100 Monte-Carlo repetitive trials and averaged across three dimensions of the output. The

proposed PMCR algorithm realized better performance than the existing PLSR algorithms consistently for r, RMSE, and MAE, in particular when the

training set was contaminated considerably.

adverse noises mainly happen to the brain recordings, which are

usually used as the explanatory in the BCI system. Therefore, a

certain proportion (from 0 to 1.0 with a step 0.05) of training

samples were randomly selected with equal probability, the inputs

of which were then replaced by noises with large amplitude. For

the distribution of the noise, we utilized a zero-mean Gaussian

distribution with large standard deviation to imitate outliers, where

30, 100, and 300 were used, respectively.

5.1.2. Results
We evaluated the various PLSRmethods with 100Monte-Carlo

repetitive trials, and present the results in Figure 1, where the results

were averaged across three dimensions of the output. One could

observe from Figure 1 that, for all the three different noise standard

deviations, the proposed PMCR algorithm achieved superior

prediction performance compared with the other existing methods

consistently for r, RMSE, andMAE, respectively, in particular when

the training set suffered considerable contamination.

The number of factors S plays a vital role in PLSR methods,

representing the iteration numbers to decompose the input and

output matrices. Since it usually causes a notable effect on the

results, additionally, we evaluated the performance with respect to

the number of factors for each method. To this end, we utilized the

noise standard deviation 100 under three different noise levels, 0.2,

0.5, and 0.8, respectively. The prediction results for each method

are presented in Figure 2 with 100 repetitive trials, with respect to

the number of decomposition factors. One could perceive that, not

only the proposed PMCR eventually achieved superior regression

performance with the optimal number of factors, but also it realized

rather commendable performance with a small number of factors.

For example, when the noise level was equal to 0.5, the proposed

PMCR achieved its optimal performance with no more than 20

factors. By comparison, for the other methods, when the number of

factors was larger than 20, their performances remained promoting

significantly. One can also observe a similar result in the other two

noise levels. This suggests that, PMCR could abstract substantial

information with a rather small number of factors from training

samples in a noisy regression task.

5.2. ECoG dataset

To further demonstrate the superior robustness of the PMCR

algorithm, we evaluated the various PLSR algorithms with the

following practical brain decoding task. In this subsection, we

used the publicly available Neurotycho ECoG dataset2 which was

initially proposed in Shimoda et al. (2012).

2 Available online at http://neurotycho.org/epidural-ecog-food-tracking-

task.
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FIGURE 2

Regression performance indicators of the synthetic dataset with noise standard deviation being 100 under three di�erent noise levels with the

number of factors increasing from 1 to 100. (A) Noise level = 0.2, (B) noise level = 0.5, and (C) noise level = 0.8. The performance indicators were

obtained from 100 repetitive trials and averaged across three dimensions of the output. The proposed PMCR algorithm not only acquired better

prediction results than the other algorithms ultimately with the optimal number of factors, but also achieved admirable regression performance with

a small number of factors.

5.2.1. Dataset description
Two Japanese macaques, denoted by Monkey B and C,

respectively, were commanded to track foods with the right

hands, during which the continuous three-dimensional trajectories

of right hands with a sampling rate of 120 Hz were recorded

by an optical motion capture instrument. For both Monkey

B and C, ten recording sessions were performed, where

each recording session lasted 15 minutes. The two macaques

were in advance implanted with customized 64-channel ECoG

electrodes on the contralateral (left) hemisphere, which covered

the regions from the prefrontal cortex to the parietal cortex.

ECoG signals were recorded simultaneously during each session

with a sampling rate of 1,000 Hz. In accordance with Shimoda

et al. (2012), for each recording session, the data of the first

ten minutes was used to train a prediction model, while the

data of the remaining five minutes was used to evaluate the

prediction performance of the trained model. The schemes of the

experiments and ECoG electrodes are shown in Figures 3A, B,

respectively.

5.2.2. Decoding paradigm
For the feature extraction, we used an identical offline decoding

paradigm as in Shimoda et al. (2012). Initially, ECoG signals

were preprocessed with a tenth-order Butterworth bandpass filter

with cutoff frequencies from 1 to 400 Hz, and then re-referenced

by the common average referencing (CAR) method. The three-

dimensional trajectories of the right wrist were down-sampled to

10 Hz, thus, leading to 9,000 samples in one session (10 Hz ×

60 sec × 15 min). The three-dimensional position of time t was

predicted from the ECoG signals during the previous one second.

To extract the features of ECoG signals, we utilized the time-

frequency representation. For the time t, the ECoG signals at each

electrode from t - 1.1 s to t were processed by Morlet wavelet

transformation. Ten center frequencies ranging from 10 to 120

Hz with equal spacing on the logarithmic scale were considered

for the wavelet transformation, overlaying the frequency bands

which are most relevant to motion tasks (Shimoda et al., 2012).

The time- frequency scalogram was then resampled at ten temporal

lags with a 0.1 s gap (t - 1 s, t - 0.9 s,..., t - 0.1 s). Thus, the input

of each sample exhibited a 6,400-dimensional vector (64 channels

× 10 frequencies × 10 temporal lags), and the output was the

three-dimensional position of the right hand. Hence, we trained

a regression model with 6,000 samples (the first ten minutes) to

predict the three-dimensional output from the 6,400-dimensional

input, and evaluated the algorithms with other 3,000 testing

samples (the remaining five minutes). The illustrative diagrams for

ECoG decoding are summarized in Figure 3C.
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FIGURE 3

Experimental protocol of the Neurotycho ECoG dataset and decoding paradigm to evaluate the robustness of the di�erent PLSR algorithms. (A) The

macaque retrieved foods in a three-dimensional random location, during which the body-centered coordinates of the right wrists and the ECoG

signals were recorded simultaneously. (B) Both Monkey B and C were implanted with 64-channel epidural ECoG electrodes on the contralateral (left)

hemisphere, overlaying the regions from the prefrontal cortex to the parietal cortex. Ps: principal sulcus, As: arcuate sulcus, Cs: central sulcus, IPs:

intraparietal sulcus. (A, B) Were reproduced from Shimoda et al. (2012), which provides the details of this public dataset. (C) Decoding diagram from

ECoG signals to three-dimensional trajectories. The training ECoG signals are contaminated to assess the robustness of di�erent algorithms.

5.2.3. Contamination
To evaluate the robustness of different algorithms in the

practical ECoG decoding task, the ECoG signals were artificially

contaminated by outlier to simulate the detrimental artifact. To

be specific, we stochastically selected three certain proportions,

0 (no contamination), 10−3, and 10−2, of the training ECoG

samplings and corrupted them with outliers which were subject

to the zero-mean Gaussian distribution with the variance 50 times

that of the signals for the corresponding channel. As stated in Ball

et al. (2009a), the blink-related artifacts were remarkably found in

ECoG signal that exhibited much larger amplitudes than a normal

ECoG recording. Hence, we used the above-mentioned approach

to artificially generate adverse artifacts, so as to contaminate the

ECoG signals. This method has been widely utilized in the literature

to deteriorate the brain signals for evaluating the robustness of

different algorithms (Wang et al., 2011; Chen et al., 2018).

Note that, for this ECoG dataset, the ‘Noise Level’ signifies

the ratio of the contaminated ECoG samplings in the entirety

which is different from the ratio of the deteriorated samples in

the 6,000 training samples. The ratio of the affected training

samples can be evidently larger than the indicated noise level, since

one contaminated ECoG sampling could deteriorate several time

windows in feature extraction. For example, when the noise level

is denoted as 10−3, the deteriorated proportion of the training

set is (0.6645 ± 0.0089). Furthermore, we illustrate how the noise

would influence the time-frequency feature in Figure 4. One could

obviously perceive the heavy-tailed characteristic on the feature

noises, which is in particular intractable for the least square

criterion. In addition, the effects of high-frequency band are more

prominent, due to the property of impulsive noise.

5.2.4. Spatio-spectro-temporal pattern
Studying how the spatio-spectro-temporal weights in the

regression model contribute to the entirety can help investigate the

neurophysiological pattern. The element of the trained prediction

model H can be denoted by hch,freq,temp, which corresponds to

the ECoG electrode “ch,” the frequency “freq,” and the temporal

lag “temp.” Thus, one could calculate the spatio-spectro-temporal

contributions by the ratio between the summation of absolute

values of each domain and the summation of absolute values of the

entire model

Wc(ch) =

∑

freq

∑

temp |hch,freq,temp|
∑

ch

∑

freq

∑

temp |hch,freq,temp|
(29)
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FIGURE 4

Distributions and scalograms of the time-frequency feature noises resulting from the ECoG sampling contamination. (A) Noise level = 10−3 (the

deteriorated proportion of training set = 0.6645± 0.0089), (B) Noise level = 10−2 (the deteriorated proportion of training set ≈ 1). The time-frequency

feature noises were calculated by subtracting the training datasets which were obtained from acoustic and contaminated ECoG signals, respectively.

The distributions were averaged by 20 sessions of Monkey B and C, while the scalograms were averaged across all electrodes. The peaks of

distributions are truncated to emphasize the heavy-tailed characteristic.

Wf (freq) =

∑

ch

∑

temp |hch,freq,temp|
∑

ch

∑

freq

∑

temp |hch,freq,temp|
(30)

Wt(temp) =

∑

ch

∑

freq |hch,freq,temp|
∑

ch

∑

freq

∑

temp |hch,freq,temp|
(31)

whereWc(ch),Wf (freq), andWt(temp) denote the contributions of

the ECoG electrode “ch,” the frequency “freq,” and the temporal lag

“temp,” respectively.

5.2.5. Results
First, we assessed the different algorithms with the

uncontaminated ECoG signals. Accordingly, when the noise

level was zero, the average performance indicators were obtained

by the acoustic 20 sessions (Monkey B and C). Then we

contaminated each session with 5 repetitive trials. Hence, for every

noise level, each algorithm was evaluated for 100 times (20 sessions

× 5 repetitive trials). In Table 2, we present the performance

indicators for each algorithm with the noise levels 0, 10−3, and

10−2, respectively. In each row of a specific condition, the optimal

result is marked in bold. Moreover, the other results are marked

with (∗) if there exists statistically significant difference between

the current result and the optimal result under each condition. One

observes in Table 2 that, the proposed PMCR realized the optimal

prediction results consistently, except for the Y-axis under noise

level 0. In most cases, PMCR outperformed the other methods

with statistically significant difference. One can observe that,

when the noise level was 0, PMCR achieved better results than

the other algorithms for X-axis and Z-axis. One major reason is,

in the acoustic sessions, the motion-related artifacts have been

considerably found in the ECoG signals (Shimoda et al., 2012),

which further demonstrates the necessity of utilizing PMCR in the

practical ECoG decoding tasks.

Furthermore, we studied how the neurophysiological patterns

for different algorithms were influenced by the sampling noises.
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TABLE 2 Performance indicators of each algorithm on the Neurotycho ECoG dataset under three noise levels 0, 10−3, and 10−2, respectively.

X-position

Algorithm PLSR RPLSR MCC-PLSR PMCR

Noise

Level

0

r 0.4378± 0.0933∗ 0.4550± 0.0925∗ 0.4598± 0.0942∗ 0.4679 ± 0.0947

RMSE 0.9287± 0.0810∗ 0.9037± 0.0653∗ 0.8954± 0.0809∗ 0.8835 ± 0.0786

MAE 0.7026± 0.0640∗ 0.6872± 0.0530∗ 0.6749± 0.0628∗ 0.6658 ± 0.0651

10−3

r 0.3334± 0.1165∗ 0.3558± 0.1132∗ 0.3684± 0.1127∗ 0.3873 ± 0.1274

RMSE 0.9729± 0.0652∗ 0.9543± 0.0648∗ 0.9397± 0.0728∗ 0.9276 ± 0.0705

MAE 0.7291± 0.0756∗ 0.7174± 0.0689∗ 0.7092± 0.0786∗ 0.6987 ± 0.0759

10−2

r 0.1524± 0.1399∗ 0.1713± 0.1353∗ 0.1926± 0.1342∗ 0.2238 ± 0.1382

RMSE 1.0249± 0.1105∗ 1.0022± 0.1097∗ 0.9845± 0.1129∗ 0.9681 ± 0.1094

MAE 0.7655± 0.1428∗ 0.7485± 0.1383∗ 0.7396± 0.1392∗ 0.7246 ± 0.1397

Y-position

Algorithm PLSR RPLSR MCC-PLSR PMCR

Noise

Level

0

r 0.5426± 0.1019∗ 0.5582 ± 0.1026 0.5547± 0.1017 0.5549± 0.1022

RMSE 0.8483± 0.0969∗ 0.8198 ± 0.0951 0.8246± 0.0948 0.8233± 0.0952

MAE 0.6487± 0.0762∗ 0.6304 ± 0.0796 0.6362± 0.0744 0.6358± 0.0759

10−3

r 0.4114± 0.1309 ∗ 0.4284± 0.1285∗ 0.4425± 0.1302∗ 0.4602 ± 0.1296

RMSE 0.9188± 0.0963 ∗ 0.8962± 0.0958∗ 0.8795± 0.0979∗ 0.8608 ± 0.1002

MAE 0.6960± 0.1007∗ 0.6849± 0.1014∗ 0.6631± 0.0983∗ 0.6539 ± 0.1021

10−2

r 0.2084± 0.1514∗ 0.2206± 0.1489∗ 0.2593± 0.1502∗ 0.2723 ± 0.1537

RMSE 0.9781± 0.1143∗ 0.9542± 0.1117∗ 0.9306± 0.1159 0.9294 ± 0.1146

MAE 0.7354± 0.1028∗ 0.7173± 0.1077∗ 0.7086± 0.1105 0.7043 ± 0.1042

Z-position

Algorithm PLSR RPLSR MCC-PLSR PMCR

Noise

Level

0

r 0.6320± 0.0324∗ 0.6395± 0.0328∗ 0.6482± 0.0359 0.6504 ± 0.0372

RMSE 0.7968± 0.0281∗ 0.7814± 0.0293∗ 0.7747± 0.0296∗ 0.7628 ± 0.0275

MAE 0.6181± 0.0222∗ 0.6102± 0.0280∗ 0.6055± 0.0241 0.5989 ± 0.0265

10−3

r 0.4875± 0.0708∗ 0.4935± 0.0701∗ 0.5158± 0.0857∗ 0.5259 ± 0.0814

RMSE 0.9272± 0.0712∗ 0.9129± 0.0682∗ 0.8958± 0.0742∗ 0.8834 ± 0.0738

MAE 0.6932± 0.0800∗ 0.6894± 0.0814∗ 0.6804± 0.0852∗ 0.6645 ± 0.0782

10−2

r 0.2399± 0.1185∗ 0.2456± 0.1173∗ 0.2615± 0.1148∗ 0.2803 ± 0.1186

RMSE 1.0168± 0.0804∗ 0.9917± 0.0785∗ 0.9605± 0.0842∗ 0.9485 ± 0.0809

MAE 0.7532± 0.0883∗ 0.7429± 0.0892∗ 0.7208± 0.0893 0.7146 ± 0.0887

The results are given in mean ± deviation, where the optimal results under each condition are marked in bold. The proposed PMCR realized the optimal results consistently, except for the

Y-position under the noise level 0. For each result, ∗is marked if there exists statistically significant difference between the indicated one and the optimal result in the corresponding condition,

according to a paired t-test (p < 0.05).

We show the differences between the spatial, the spectral,

and the temporal contributions which were acquired from

the acoustic and the contaminated sessions (under the noise

level 10−3), respectively, in Figure 5. The regression model

concerning Monkey B’s Z-position was used here. We also

quantified the effects by computing the summation of the

absolute values of the difference between the patterns that

were attained from the acoustic and the contaminated sessions,

respectively. To be specific, we illustrate
∑

|Wc(ch)−W′
c(ch)|,

∑

|Wf (freq)−W′
f
(freq)|, and

∑

|Wt(temp)−W′
t(temp)| for the

spatial, the spectral, and the temporal patterns, respectively.

Wc(ch), Wf (freq), and Wt(temp) were obtained by the acoustic

sessions, while W′
c(ch), W

′
f
(freq), and W′

t(temp) were obtained

from the contaminated sessions. One can observe from Figure 5

that, the proposed PMCR algorithm realized the minimal

deterioration for the pattern of each domain. This further

demonstrates the robustness of PMCR in noisy ECoG decoding

tasks.
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FIGURE 5

Spatio-spectro-temporal contributions of the prediction model for Monkey B’s Z-position under noise levels 0 and 10−3. (A) Spatial patterns, (B)

spectral patterns, and (C) temporal patterns. For each domain, the quantitative deterioration is calculated by the absolute value summation of the

di�erence between the original and the deteriorated patterns. The original patterns Wc(ch), Wf (freq), and Wt(temp) were averaged across the 10

acoustic sessions of Monkey B, while the deteriorated patterns W′
c(ch), W

′
f (freq), and W′

t(temp) were averaged across 50 trials (10 sessions of Monkey

B × 5 repetitive trials). The proposed PMCR achieved the minimal deterioration for each domain.

6. Discussion

6.1. Proposed method

In the present study, we aimed to propose a new robust version

for PLSR using the MCC framework, which is named as PMCR.

Similarly as the existing PLSR methods, the proposed PMCR

decomposes the explanatory matrix (input) and the response

matrix (output) iteratively for S decomposition factors. The crucial

differences of the proposed PMCR are stated in what follows.

First, the objective function regarding the projectors ws and cs in

Eq. (15) could be considered as a generalized formulation of the

conventional PLSR (Eq. 6), and would be closely related to the

calculation in MCC-PLSR (Eq. 12) under specific conditions. As

has been proved in Liu et al. (2007), maximizing the correntropy

between two variables, when the kernel bandwidth tends to infinity,
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FIGURE 6

The connection between PMCR and MCC-PLSR for a univariate response.

is equal to minimizing their quadratic Euclidean distance. Hence, if

we suppose σx, σy, σr → ∞, the projector calculation of PMCR

will degenerate to the conventional PLSR. Then, we consider the

differences between MCC-PLSR and the proposed PMCR. For a

univariate response, the projector c for dimensionality reduction

regarding the response could be ignored. Thus, we can rewrite the

dimensionality reduction in PMCR (Eq. 15) as

max
‖w‖2=1

L
∑

l=1

(

gσx (
√

xlxlT − xlwwTxlT)+ gσr (x
lw− yl)

)

(32)

which could be regarded as a generalized form for the quadratic

error minimization (Liu et al., 2007).

min
‖w‖2=1

L
∑

l=1

(

‖xl − xlwwT‖2 + ‖xlw− yl‖2
)

⇔ max
‖w‖2=1

wTXTY

(33)

which is essentially equal to the conventional PLSR for univariate

output. By comparison, MCC-PLSR adopts the MCC framework

for the quadratic covariance (Eq. 11), which can be written as Mou

et al. (2018)

min
‖w‖2=1

L
∑

l=1

‖ylTxl − ylTxlwwT‖2 ⇔ max
‖w‖2=1

wTXTYYTXw (34)

which is the special case of MCC-PLSR when the kernel bandwidth

in Eq. (12) tends to infinity. Thus, the connection between PMCR

(Eq. 15) and MCC-PLSR (Eq. 12) could be illustrated as in

Figure 6. One can observe that, the starting points of PMCR

and MCC-PLSR are different. The proposed PMCR begins from

the original covariance maximization, whereas MCC-PLSR was

proposed from the quadratic covariance. Therefore, we argue that

our proposed PMCR is a more rational robust implementation for

PLSR. Moreover, note that we give the above discussion under

the premise of a univariate output, which is only a special case

of degradation for our proposed PMCR. One the other hand,

considering the calculations of the loading vector ps and the

regression coefficient bs, the proposed PMCR employs the MCC

(Eq. 16, 17), whereas the conventional PLSR andMCC-PLSR utilize

the least square criterion. As mentioned above, Eqs. (16, 17) can be

also regarded as generalized forms of square error minimization.

In summary, the proposed PMCR is more generalized than the

conventional PLSR and MCC-PLSR.

In addition, we would like to discuss the advantages and

disadvantages of the proposed PMCR algorithm. The essential

benefit of utilizing the PMCR algorithm in a noisy ECoG decoding

task is the conspicuous robustness with respect to the noises, which

was demonstrated with extensive experiments in Section 5. Further,

mathematically, the proposed PMCR algorithm is more generalized

than the conventional PLSR and MCC-PLSR. As was mentioned

above, the conventional PLSR and MCC-PLSR could be regarded

as special cases of the proposed PMCR under specific conditions

concerning the kernel bandwidths. In particular, compared

with MCC-PLSR, the proposed PMCR takes into account the

dimensionality reduction for the response matrix. As a result,

PMCR could realize better prediction performance for multivariate

response. Moreover, PMCR could be further implemented with

regularization techniques and extended to the multi-way scenario,

which would be discussed in the following subsections. However,

PMCR might suffer the performance degradation resulting from

inadequate kernel bandwidths that are calculated by the Silverman’s

rule (Eq. 25). Although the experimental results in this study

verified empirically that, the proposed PMCR could perform

efficiently with the kernel bandwidths acquired by Eq. (25), it

may be difficult to guarantee that the Silverman’s rule can always

provide adequate kernel bandwidths. Hence, we would like to

investigate a better way to determine the kernel bandwidths with

solid theoretical guarantees in our future works. In addition, our

proposed PMCR is effective to deal with outliers, while it may

be inadequate for multi-modal-distributed noise because MCC

utilizes only one kernel function for each reconstruction error. To

address this issue, it is promising to use minimum error entropy
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(MEE) to reformulate PLSR, another popular learning criterion

in ITL (Principe, 2010). MEE employs multiple kernel functions

for each reconstruction error, so that it can realize satisfactory

robustness with respect to multi-modal-distributed noise, which

has realized robust neural decoding algorithms (Chen et al., 2018;

Li et al., 2021).

6.2. PMCR with regularization

One should additionally note that, the PMCR was proposed

by reformulating the conventional PLSR algorithm with using the

robust MCC, instead of the mediocre least square criterion. Hence,

the proposed PMCR exhibits the supplementary potential for

further performance improvements with regularization techniques,

as well as in the existing regularized PLSR methods. For example,

L1-regularization could be utilized in Eq. (15) to encourage

sparse and robust projectors. In addition, if one requires better

smoothness on the predicted output, polynomial or Sobolev-

norm penalization could be utilized in PMCR. Moreover, L2-

regularization could be utilized for Eq. (17) to decrease the over-

fitting risk considering the regression scalar bs, similarly as Eq. (7)

(Foodeh et al., 2020). In the literature, MCC-based algorithms with

regularization have been widely investigated. For instance, a robust

version of sparse representation classifier (SRC) for face recognition

was developed by employing L1-regularization on the MCC-based

SRC objective function (He et al., 2010).

6.3. Extension to multi-way application

The multi-way PLSR establishes the regression relationship

between tensor variables with dimensionality reduction by tensor

factorization technique. In the literature, the multi-way PLSR was

usually reported to achieve better decoding capability than the

generic PLSR algorithm in the brain decoding task, where the

spatio-spectro-temporal feature is organized with the tensor form.

Essentially, the multi-way PLSR decomposes the input and output

under the least square criterion by minimizing the Frobenius-

norm (Kolda and Bader, 2009). Therefore, the multi-way PLSR

is prone to the performance deterioration caused by noises

as well.

The proposed PMCR method treats the regression

problem of matrix, i.e. two-way variable. Extending the

PMCR algorithm to multi-way application could probably

improve the prediction performance further, which would be

investigated in our future works. Promisingly, MCC has been

demonstrated effective for tensor variable analysis in a recent study

(Zhang et al., 2016).

7. Conclusion

This paper proposed a new robust variant for the PLSR

algorithm by reformulating the non-robust least square criterion

with the sophisticated MCC framework. The proposed robust

objective functions can be effectively optimized by half-

quadratic and fixed-point optimization methods. Extensive

experimental results with the synthetic dataset and Neurotycho

epidural ECoG dataset demonstrate that, the proposed PMCR

can outperform the existing PLSR algorithms, revealing

promising robustness for high-dimensional and noisy ECoG

decoding tasks.
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