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The spiking neural network (SNN), as a promising brain-inspired computational

model with binary spike information transmission mechanism, rich

spatially-temporal dynamics, and event-driven characteristics, has received

extensive attention. However, its intricately discontinuous spike mechanism

brings di�culty to the optimization of the deep SNN. Since the surrogate gradient

method can greatly mitigate the optimization di�culty and shows great potential

in directly training deep SNNs, a variety of direct learning-based deep SNN works

have been proposed and achieved satisfying progress in recent years. In this

paper, we present a comprehensive survey of these direct learning-based deep

SNN works, mainly categorized into accuracy improvement methods, e�ciency

improvement methods, and temporal dynamics utilization methods. In addition,

we also divide these categorizations into finer granularities further to better

organize and introduce them. Finally, the challenges and trends that may be faced

in future research are prospected.
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1. Introduction

The Spiking Neural Network (SNN) has been recognized as one of the brain-inspired

neural networks due to its bio-mimicry of the brain neurons. It transmits information by

firing binary spikes and can process the information in a spatial-temporal manner (Wu

et al., 2019a; Wu Y. et al., 2019; Zhang et al., 2020a,b; Fang et al., 2021b). This event-driven

and spatial-temporal manner makes the SNN very efficient and good at handling temporal

signals, thus receiving a lot of research attention, especially recently.

Despite the energy efficiency and spatial-temporal processing advantages, it is a challenge

to train deep SNNs due to the firing process of the SNN is undifferentiable, thus making it

impossible to train SNNs via gradient-based optimization methods. At first, many works

leverage the spike-timing-dependent plasticity (STDP) approach (Lobov et al., 2020), which

is inspired by biology, to update the SNN weights. However, STDP cannot help train large-

scale networks yet, thus limiting the practical applications of the SNN. There are two widely

used effective pathways to obtain deep SNNs up to now. First, the ANN-SNN conversion

approach (Han and Roy, 2020; Li et al., 2021a; Bu et al., 2022, 2023; Li and Zeng, 2022; Liu

et al., 2022; Wang Y. et al., 2022) converts a well-trained ANN to an SNN by replacing the

activation function from ReLU with spiking activation. It provides a fast way to obtain an

SNN.However, it is limited in the rate-coding scheme and ignores the rich temporal dynamic

behaviors of SNNs. Second, the surrogate gradient (SG)-based direct learning approach (Wu

Y. et al., 2018; Fang et al., 2021a; Li et al., 2021b; Guo et al., 2022a) tries to find an alternative

differentiable surrogate function to replace the undifferentiable firing activity when doing

back-propagation of the spiking neurons. Since SG can handle temporal data and provide

decent performance with few time-steps on the large-scale dataset, it has received more

attention recently.
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Considering the sufficient advantages and rapid development

of the direct learning-based deep SNN, a comprehensive and

systematic survey on this kind of work is essential. Previously

related surveys (Ponulak and Kasinski, 2011; Roy et al., 2019;

Tavanaei et al., 2019;Wang et al., 2020; Yamazaki et al., 2022; Zhang

D. et al., 2022) have begun to classify existing works mainly based

on the key components of SNNs: biological neurons, encoding

methods, SNN structures, SNN learning mechanisms, software and

hardware frameworks, datasets, and applications. Though such

classification is intuitive to general readers, it is difficult for them

to grasp the challenges and the landmark work involved. While

in this survey, we provide a new perspective to summarize these

related works, i.e., starting from analyzing the characteristics and

difficulties of the SNN, and then classify them into (i) accuracy

improvement methods, (ii) efficiency improvement methods, and

(iii) temporal dynamics utilization methods, based on the solutions

for corresponding problems or the utilization of SNNs’ advantages.

Further, these categories are divided into finer granularities:

(i) accuracy improvement methods are subdivided as improving

representative capabilities and relieving training difficulties; (ii)

efficiency improvement methods are subdivided as network

compression techniques and sparse SNNs; (iii) temporal dynamics

utilization methods are subdivided as sequential learning and

cooperating with neuromorphic cameras. In addition to the

classification by using strengths or overcoming weaknesses of

SNNs, these recent methods can also be divided into the neuron

level, network structure level, and training technique level,

according to where these methods actually work. The classifications

and main techniques of these methods are listed in Tables 1, 2.

Finally, some promising future research directions are provided.

The organization of the remaining part is given as follows,

Section 2 introduces the preliminary for spiking neural networks.

The characteristics and difficulties of the SNN are also analyzed

in Section 2. Section 3 presents the recent advances falling into

different categories. Section 4 points out future research trends and

concludes the review.

2. Preliminary

Since the neuronmodels are not the focus of the paper, here, we

briefly introduce the commonly used discretized Leaky Integrate-

and-Fire (LIF) spiking neurons to show the basic characteristic and

difficulties in SNNs, which can be formulated by

Ut
l = τUt−1

l
+WlO

t
l−1, Ut

l < Vth, (1)

where Ut
l
is the membrane potential at t-th time-step for l-th

layer, Ot
l−1

is the spike output from the previous layer, Wl is the

weight matrix at l-th layer,Vth is the firing threshold, and τ is a time

leak constant for the membrane potential, which is in (0, 1). When

τ is 1, the above equation will degenerate to the Integrate-and-Fire

(IF) spiking neuron.

Characteristic 1. Rich spatially-temporal dynamics. Seen from

Equation (1), different from ANNs SNNs enjoy the unique spatial-

temporal dynamic in the spiking neuron model.

Then, when the membrane potential exceeds the firing

threshold, it will fire a spike and then fall to resting potential,

given by

Ot
l =

{

1, if Ut
l
≥ Vth

0, otherwise
. (2)

Characteristic 2. Efficiency. Since the output is a binary tensor,

the multiplications of activations and weights can be replaced by

additions, thus enjoying high energy efficiency. Furthermore, when

there is no spike output generated, the neuron will keep silent. This

event-driven mechanism can further save energy when implemented

in neuromorphic hardware.

Characteristic 3. Limited representative ability. Obviously,

transmitting information by quantizing the real-valued membrane

potentials into binary output spikes will introduce the quantization

error in SNNs, thus causing information loss (Guo et al., 2022b;

Wang et al., 2023). Furthermore, the binary spike feature map from

a timestep cannot carry enough information like the real-valued

one in ANNs (Guo et al., 2022d). These two problems limit the

representative ability of SNN to some extent.

Characteristic 4. Non-differentiability. Another thorny problem

in SNNs is the non-differentiability of the firing function.

To demonstrate this problem, we formulate the gradient at the

layer l by the chain rule, given by

∂L

∂Wl
=

∑

t

(
∂L

∂Ot
l

∂Ot
l

∂Ut
l

+
∂L

∂Ut+1
l

∂Ut+1
l

∂Ut
l

)
∂Ut

l

∂Wl
, (3)

where
∂Ot

l

∂Ut
l

is the gradient of firing function at t-th time-step

for l-th layer and is 0 almost everywhere, while infinity at Vth. As

a consequence, the gradient descent (Wl ← Wl − η ∂L
∂Wl

) either

freezes or updates to infinity.

Most existing direct learning-based SNN works focus on

solving difficulties or utilizing the advantages of SNNs. Boosting the

representative ability and mitigating the non-differentiability can

both improve SNN’s accuracy. From this perspective, we organize

the recent advances in the SNN field as accuracy improvement

methods, efficiency improvementmethods, and temporal dynamics

utilization methods.

3. Recent advances

In recent years, a variety of direct learning-based deep spiking

neural networks have been proposed. Most of these methods fall

into solving or utilizing the intrinsic disadvantages or advantages

of SNNs. Based on this, in the section, we classify these methods

into accuracy improvement methods, efficiency improvement

methods, and temporal dynamics utilization methods. In addition,

these classifications are also organized in different aspects with a

comprehensive analysis. Tables 1, 2 summarizes the surveyed SNN

methods in different categories.

Note that the direct learning methods can be divided into time-

based methods and activation-based methods based on whether

the gradient represents spike timing (time-based) or spike scale

(activation-based; Zhu Y. et al., 2022). In time-based methods,

the gradients represent the direction where the timing of a spike

should be moved, i.e., be moved leftward or rightward on the

time axis. The SpikeProp (Bohte et al., 2002) and its variants
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TABLE 1 Overview of direct learning-based deep spiking neural networks: part I.

Type Method Key technology On the level⋆

NL NSL TTL

Accuracy improvement

Improving

representative

capabilities

LSNN (Bellec et al., 2018) Adaptive threshold X

LTMD (Wang S. et al., 2022) Adaptive threshold X

BDETT (Ding et al., 2022) Dynamic threshold X

PLIF (Fang et al., 2021b) Learnable leak constant X

Plastic synaptic delays (Yu et al.,

2022a)

Learnable leak constant X

Diet-SNN (Rathi and Roy, 2020) Learnable leak constant& threshold X

DS-ResNet (Feng et al., 2022) Multi-firing & Act before Add-ResNet X X

SNN-MLP (Li W. et al., 2022) Group LIF X

GLIF Yao et al., 2022 Unified gated LIF X

Augmented spikes (Yu et al., 2022b) Augmented spikes X

InfLoR-SNN (Shen et al., 2023) Leaky integrate and fire or burst X

MT-SNN (Wang et al., 2023) Multiple threshold approach X

SEW-ResNet (Fang et al., 2021a) Act before ADD form-based ResNet X

MS-ResNet (Hu et al., 2021) Pre-activation form-based ResNet X

AutoSNN (Na et al., 2022) Neural architecture search X

SNASNet (Kim et al., 2022a) Neural architecture search X

TA-SNN (Yao et al., 2021) Attention mechanism X

TCJA-SNN (Zhu et al., 2022) Attention mechanism X

Real spike (Guo et al., 2022d) Training-inference decoupled structure X

IM-loss (Guo et al., 2022a) Information maximization loss X

RecDis-SNN (Guo et al., 2022c) Membrane potential distribution loss X

Distilling spikes (Kushawaha et al.,

2021)

Knowledge distillation X X

Local tandem learning (Yang et al.,

2022)

Tandem learning X

sparse-KD (Xu et al., 2023a) Knowledge distillation X

KDSNN (Xu et al., 2023b) Knowledge distillation X

SNN distillation (Takuya et al., 2021) Knowledge distillation X

Relieving training

difficulties

SuperSpike (Zenke and Ganguli,

2018)

Fixed surrogate gradient X

LISNN (Cheng et al., 2020) Fixed surrogate gradient X

IM-Loss (Guo et al., 2022a) Dynamic surrogate gradient X

Gradual surrogate gradient (Guo

et al., 2022a)

Dynamic surrogate gradient X

Differentiable spike (Li et al., 2021b) Learnable surrogate gradient X

SpikeDHS (Leng et al., 2022) Differentiable surrogate gradient search X

DSR (Meng et al., 2022) Differentiation on spike representation X

STDBP (Zhang M. et al., 2022) Rectified postsynaptic potential function X

SEW-ResNet (Fang et al., 2021a) Act before ADD form-based ResNet X

MS-ResNet (Hu et al., 2021) Pre-activation form-based ResNet X

NeuNorm (Wu Y. et al., 2019) Constructing auxiliary feature maps X

(Continued)
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TABLE 1 (Continued)

Type Method Key technology On the level⋆

NL NSL TTL

tdBN (Zheng et al., 2021) Threshold-dependent batch

normalization

X

BNTT (Kim and Panda, 2021) Temporal batch normalization through

time

X

PSP-BN (Ikegawa et al., 2022) Postsynaptic potential normalization X

TEBN (Kim and Panda, 2021) Temporal effective batch normalization X

RecDis-SNN (Guo et al., 2022c) Membrane potential distribution loss X

TET (Deng et al., 2022) Temporal regularization loss X

Tandem learning (Wu et al., 2021a) Tandem learning X

Progressive tandem learning (Wu

et al., 2021b)

Progressive tandem learning X

Joint A-SNN (Guo et al., 2023) Joint training of ANN and SNN X

⋆NL, neuron Level; NSL, network structure level; TTL, training technique level.

(Booij and tat Nguyen, 2005; Xu et al., 2013; Hong et al., 2019) all

belong to this kind ofmethod and they adopt the negative inverse of

the time derivative of membrane potential function to approximate

the derivative of spike timing to membrane potential. Since most of

the time-based methods would restrict each neuron to fire at most

once, in Zhou et al. (2021), the spike time is directly taken as the

state of a neuron. Thus the relation of neurons can be modeled by

the spike time and the SNN can be trained similarly to an ANN.

Though the time-based methods enjoy less computation cost than

the activation-basedmethods andmanyworks (Zhang and Li, 2020;

Zhu Y. et al., 2022) have greatly improved the accuracy of the field,

it is still difficult to train deep time-based SNN models and apply

them to large-scale datasets, e.g., ImageNet. Considering the limits

of the time-based methods and the topic of summarizing the recent

deep SNNs here, we mainly focus on activation-based methods in

the paper.

3.1. Accuracy improvement methods

As aforementioned, the limited information capacity and the

non-differentiability of firing activity of the SNN cause its accuracy

loss for wide tasks. Therefore, to mitigate the accuracy loss in

the SNN, a great number of methods devoted to improving the

representative capabilities and relief training difficulties of SNNs

have been proposed and achieved successful improvements in the

past few years.

3.1.1. Improving representative capabilities
Two problems result in the representative ability decreasing of

the SNN, the process of firing activity will induce information loss,

which has been proved in Guo et al. (2022b) and binary spike maps

suffer the limited information capacity, which has been proved

in Guo et al. (2022d). These problems can be mitigated on the

neuron level, network structure level, and training technique level.

3.1.1.1. On the neuron level

A common way to boost the representative capability of the

SNN is to make some hyper-parameters in the spiking neuron

learnable. In LSNN (Bellec et al., 2018) and LTMD (Wang S.

et al., 2022), the adaptive threshold spike neuron was proposed to

enhance the computing and learning capabilities of SNNs. Further,

a novel bio-inspired dynamic energy-temporal threshold, which

can be adjusted dynamically according to input data for SNNs was

introduced in the BDETT (Ding et al., 2022). Some works adopted

the learnable membrane time constant in spiking neurons (Zimmer

et al., 2019; Yin et al., 2020; Fang et al., 2021b; Luo et al., 2022; Yu

et al., 2022a). Combining these two manners, Diet-SNN (Rathi and

Roy, 2020) simultaneously adopted the learnable membrane leak

and firing threshold.

There are also some works focusing on embeddingmore factors

in the spiking neuron to improve its diversity. A multi-level firing

(MLF) unit, which contains multiple LIF neurons with different

level thresholds thus could generate more quantization spikes with

different thresholds was proposed in DS-ResNet (Feng et al., 2022).

A full-precision LIF to communicate between patches in Multi-

Layer Perceptron (MLP), including horizontal LIF and vertical LIF

in different directions was proposed in SNN-MLP (Li W. et al.,

2022). SNN-MLP used group LIF to extract better local features.

In GLIF (Yao et al., 2022), to enlarge the representation space of

spiking neurons, a unified gated leaky integrate-and-fire Neuron

was proposed to fuse different bio-features in different neuronal

behaviors via embedding gating factors. In augmented spikes (Yu

et al., 2022b), a special spiking neuron model was proposed to

process augmented spikes, where additional information can be

carried from spike strength and latency. This neuronmodel extends

the computation with an additional dimension and thus could be

of great significance for the representative ability of the SNN. In

LIFB (Shen et al., 2023), a new spiking neuron model called the

Leaky Integrate and Fire or Burst was proposed. The neuron model

exhibits three modes including resting, regular spike, and burst

spike, which significantly enriches the representative capability.

Similar to LIFB, MT-SNN (Wang et al., 2023) proposed a multiple
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TABLE 2 Overview of direct learning-based deep spiking neural networks: part II.

Type Method Key technology On the level⋆

NL NSL TTL

Efficiency improvement

Network

compression

techniques

Spatio-temporal

pruning (Chowdhury et al., 2021)

Spatio-temporal pruning X

SD-SNN (Han et al., 2022) Pruning-regeneration method X

Grad R (Chen et al., 2021) Pruning-regeneration method X

Temporal pruning (Chowdhury

et al., 2022)

Temporal pruning X

Autosnn (Na et al., 2022) Neural architecture searching X

SNASNet (Kim et al., 2022a) Neural architecture searching X

Lottery ticket hypothesis (Kim et al.,

2022b)

Lottery ticket hypothesis X

Distilling spikes (Kushawaha et al.,

2021)

Knowledge distillation X X

Local tandem learning (Yang et al.,

2022)

Tandem learning X

sparse-KD (Xu et al., 2023a) Knowledge distillation X

KDSNN (Xu et al., 2023b) Knowledge distillation X

SNN distillation (Takuya et al., 2021) Knowledge distillation X

Sparse SNNs

ASNN (Zambrano and Bohte, 2016) A lot of adaptive spiking neurons X

Correlation-based

regularization (Han and Lee, 2022)

Correlation-based regularizer X

Superspike (Zenke and Ganguli,

2018)

Heterosynaptic regularization term X

RecDis-SNN (Guo et al., 2022c) Membrane potential distribution X

Low-activity SNN (Pellegrini et al.,

2021)

Regularization term X X

Temporal dynamics

utilization

Sequential learning

Sequence approximation (She et al.,

2021)

Dual-search-space optimization X

Sequential learning (Ponghiran and

Roy, 2022)

Improved recurrence dynamics X

SNN_HAR (Li Y. et al., 2022) Spatio-temporal extraction X

Robust SNN (Nomura et al., 2022) Temporal penalty settings X

Tandem learning-based SNN

model (Wu et al., 2020)

Tandem learning X

SG-based SNN model (Bittar and

Garner, 2022b)

Surrogate gradient method X

Combination-based SNN (Bittar and

Garner, 2022a)

Combination of many techniques X X

Low-activity SNN (Pellegrini et al.,

2021)

Regularization term X

SNNCNN (Sadovsky et al., 2023) Combination of CNNs and SNNs X X

RSNNs (Yin et al., 2021) activity-regularizing SG X X

Cooperating with

neuromorphic

cameras

daptive-spikenet (Kosta and Roy,

2022)

Learnable neuronal dynamics X

StereoSpike (Rançon et al., 2021) Modified U-Net-like architecture X X

SuperFast (Gao et al., 2022) Event-enhanced frame interpolation X

E-SAI (Yu L. et al., 2022) Synthetic aperture imaging method X

EVSNN (Zhu L. et al., 2022) Potential-assisted SNN X X

Spiking-Fer (Barchid et al., 2023) Deep CSNN X

(Continued)
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TABLE 2 (Continued)

Type Method Key technology On the level⋆

NL NSL TTL

Automotive detection (Cordone

et al., 2022)

PLIF & SG & Event encoding X X

STNet (Zhang J. et al., 2022) Spiking transformer network X

LaneSNNs (Viale et al., 2022) offline supervised learning rule X

HALSIE (Biswas et al., 2022) Hybrid approach X

SpikeMS (Parameshwara et al., 2021) Spatio-temporal loss X

Event-based pose tracking (Zou et al.,

2023)

Spiking spatiotemporal transformer X

∗NL, neuron Level; NSL, network structure level; TTL, training technique level.

threshold approach to firing different spike modes to alleviate the

quantization error, such that it could reach a high accuracy at

fewer steps.

Different from these works, InfLoR-SNN (Guo et al., 2022b)

proposed a membrane potential rectifier (MPR), which can adjust

the membrane potential to a new value closer to quantization

spikes than itself before firing activity. MPR directly handles

the quantization error problem in SNNs, thus improving the

representative ability.

3.1.1.2. On the network structure level

To increase the SNN diversity, some works advocate for

improving the SNN architecture. In SEW-ResNet (Fang et al.,

2021a) and DS-ResNet (Feng et al., 2022), the widely used

standard ResNet backbone is replaced by activation before addition

form-based ResNet. In this way, the blocks in the network will

fire positive integer spikes. Its representation capability will no

doubt be increased, however, the advantages of event-driven and

multiplication-addition transform in SNNs will be lost in the

meantime. To solve the aforementioned problem, MS-ResNet (Hu

et al., 2021) adopted the pre-activation form-based ResNet. In this

way, the spike-based convolution can be retained. The difference

between these methods is shown in Figure 1. However, these

SNN architectures are all manually designed. For designing well-

performed SNN models automatically, AutoSNN (Na et al., 2022)

and SNASNet (Kim et al., 2022a) combined the Neural Architecture

Search (NAS) approach to find better SNN architectures. And

TA-SNN (Yao et al., 2021) and TCJA-SNN (Zhu et al., 2022)

leveraged the learnable attention mechanism to improve the

SNN performance.

Different from changing the network topology, Real Spike (Guo

et al., 2022d) provides a training-inference decoupled structure.

This method enhances the representation capacity of the

SNN by learning real-valued spikes during training. While in

the inference phase, the rich representation capacity will be

transferred from spike neurons to the convolutions by a re-

parameterization technique, and meanwhile, the real-valued spikes

will be transformed into binary spikes, thus maintaining the event-

driven and multiplication-addition transform advantages of SNNs.

Besides, increasing the timestep of SNN will undoubtedly

improve the SNN accuracy too, which has been proved in many

works (Wu Y. et al., 2018, 2019; Fang et al., 2021a). To some

extent, increasing the timestep is equivalent to increasing neuron

output bits through the temporal dimension, which will increase

the representation capability of feature map (Feng et al., 2022).

However, using more timesteps achieves better performance at the

cost of increasing inference time.

3.1.1.3. On the training technique level

Some works attempted to improve the representative capability

of the SNN on the training technique level, which can be

categorized as regularization and distillation. Regularization is a

technique that introduces another loss term to explicitly regularize

the membrane potential or spike distribution to retain more useful

information in the network that could indirectly help train the

network as follows,

LTotal = LCE + λLDL (4)

where LCE is the common cross-entropy loss, LDL is the

distribution loss for learning the proper membrane potential or

spike, and λ is a coefficient to balance the effect of the two

types of losses. IM-Loss (Guo et al., 2022a) argues that improving

the activation information entropy can reduce the quantization

error, and proposed an information maximization loss function

that can maximize the activation information entropy. In RecDis-

SNN (Guo et al., 2022c), a loss for membrane potential distribution

to explicitly penalize three undesired shifts was proposed. Though

the work is not designed for reducing quantization error

specifically, it still results in a bimodal membrane potential

distribution, which has been proven can mitigate the quantization

error problem.

The distillation methodology aims to help train a small student

model by transferring knowledge of a rather large trained teacher

model based on the consensus that the representative ability of a

teacher model is better than that of the student model. Recently,

some interesting works that introduce the distillation method in

the SNN domain were proposed. In Kushawaha et al. (2021), a big

teacher SNN model is used to guide the small SNN counterpart

learning. While in Yang et al. (2022), Takuya et al. (2021), and

Xu et al. (2023a,b) an ANN-teacher is used to guide SNN-student

learning. In specific, Local Tandem Learning (Yang et al., 2022) uses

the intermediate feature representations of the ANN to supervise

the learning of SNN. While in sparse-KD (Xu et al., 2023a),

the logit output of the ANN was adopted to guide the learning

of the SNN. Furthermore, KDSNN (Xu et al., 2023b) and SNN
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FIGURE 1

Di�erent SNN ResNet architectures.

distillation (Takuya et al., 2021) used both feature-based and logit-

based information to distill the SNN.

3.1.2. Relieving training di�culties
The non-differentiability of the firing function impedes the

deep SNN direct training. To handle this problem, recently,

using the surrogate gradient (SG) function for spiking neurons

has received much attention. SG method utilizes a differentiable

surrogate function to replace the non-differentiable firing activity

to calculate the gradient in the back-propagation (Neftci et al., 2019;

Wu Y. et al., 2019; Rathi and Roy, 2020; Fang et al., 2021a). Though

the SG method can alleviate the non-differentiability problem,

there exists an obvious gradient mismatch between the gradient of

the firing function and the surrogate gradient. And the problem

easily leads to under-optimized SNNs with severe performance

degradation. Intuitively, an elaborately designed surrogate gradient

can help to relieve the gradient mismatch in the backward

propagation. As a consequence, some works are focusing on

designing better surrogate gradients. In addition, the gradient

explosion/vanishing problem in SNNs is severer over ANNs, due

to the adoption of tanh-like function for most SG methods.

There are also some works focusing on handling the gradient

explosion/vanishing problem. Note that, these methods in this

section can also be classified as the improvement on the neuron

level, network structure level, and training technique level, which

can be seen in the Table 1. Nevertheless, to better introduce these

works, we still organize them as designing the better surrogate

gradient and relieving the gradient explosion/vanishing problem.

3.1.2.1. Designing the better surrogate gradient

Most earlier works adopt fixed SG-based methods to handle

the non-differentiability problem. For example, the derivative of

a truncated quadratic function, the derivatives of a sigmoid, and

a rectangular function were respectively adopted in Bohte (2011),

Zenke and Ganguli (2018), and Cheng et al. (2020). However, such

a strategy would limit the learning capacity of the network. To this

end, a dynamic SG method was proposed in Guo et al. (2022a) and

Chen et al. (2022), where the SG could change along with epochs

as follows,

ϕ(x) =
1

2
tanh(K(i)(x− Vth))+

1

2
(5)

where ϕ(x) is the backward approximation function for the

firing activity and K(i) is a dynamic coefficient that changes along

with the training epoch as follows,

K(i) =
(10

i
N − 100)Kmax + (101 − 10

i
N )Kmin

9
(6)

where Kmin and Kmax are the lower bound and the upper bound

of K, and i is the index of epoch starting from 0 to N − 1. The

ϕ(x) and its gradient can be seen in Figure 2. Driven by K(i), it

will gradually evolve to the firing function, thus ensuring sufficient

weight updates at the beginning and accurate gradients at the

end of the training. Nevertheless, the above SG methods are still

designedmanually. To find the optimal solution, in Li et al. (2021b),

the Differentiable Spike method that can adaptively evolve during

training to find the optimal shape and smoothness for gradient

estimation based on the finite difference technique was proposed.

Then, in Leng et al. (2022), combined with the NAS technique, a
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differentiable SG search (DGS) method to find the optimized SGs

for SNN was proposed. Different from designing a better SG for

firing function, DSR (Meng et al., 2022) derived that the spiking

dynamics with spiking neural models can be represented as some

sub-differentiable mapping and trained the SNNs by the gradients

of the mapping, thus avoiding the non-differentiability problem in

SNN training.

3.1.2.2. Relieving the gradient explosion/vanishing

problem

The gradient explosion or vanishing problem is still severe in

SG-only methods. There are three kinds of methods to solve this

problem: using improved neurons or architectures, improved batch

normalizations, and regularization. In Zhang M. et al. (2022), a

simple yet efficient rectified linear postsynaptic potential function

(ReL-PSP) for spiking neurons, which benefits for handling the

gradient explosion problem, was proposed. On the network

architecture level, SEW-ResNet (Fang et al., 2021a) showed that

standard spiking ResNet is inapplicable to overcome identity

mapping and vanishing/explosion gradient problems and advised

using ResNet with activation before addition form. Recently, the

pre-activation form-based ResNet was explored in MS-ResNet (Hu

et al., 2021). This network topology can simultaneously handle the

gradient explosion/vanishing problem and retain the advantages of

the SNN.

The normalization approaches are widely used in ANNs to train

well-performed models, and these approaches are also introduced

in the SNN field to handle the vanishing/explosion gradient

problems. For example, NeuNorm (Wu Y. et al., 2019) normalized

the data along the channel dimension like BN in ANNs through

constructing auxiliary feature maps. Threshold-dependent batch

normalization (tdBN; Zheng et al., 2021) considers the SNN

normalization from a temporal perspective and extends the scope

of BN to the additional temporal dimension. Furthermore, some

works (Kim and Panda, 2021; Duan et al., 2022; Ikegawa et al., 2022)

argued that the distributions of different timesteps vary wildly,

thus bringing a negative impact when using shared parameters.

Subsequently, the temporal Batch Normalization Through Time

(BNTT), postsynaptic potential normalization (PSP-BN), and

temporal effective batch normalization (TEBN) that can regulate

the spike flows by utilizing separate sets of BN parameters on

different timesteps were proposed. Though adopting temporal BN

parameters on different timesteps can obtain more well-performed

SNN models, this kind of BN technique can not fold the BN

parameters into the weights and will increase the computations and

running time in the inference stage, which should also be noticed.

Using the regularization loss can also mitigate the gradient

explosion/vanishing problem. In RecDis-SNN (Guo et al., 2022c), a

new perspective to further classify the gradient explosion/vanishing

difficulty of SNNs into three undesired shifts of the membrane

potential distribution was presented. To avoid these undesired

shifts, a membrane potential regularization loss was proposed in

RecDis-SNN, this loss introduces no additional operations in the

SNN inference phase. In TET (Deng et al., 2022), an extra temporal

regularization loss to compensate for the loss of momentum in the

gradient descent with SG methods was proposed. With this loss,

TET can converge into flatter minima with better generalizability.

Since ANNs are fully differentiable to be trained with gradient

descent, there is also some work utilizing ANN to guide the SNN’s

optimization (Wu et al., 2021a,b; Guo et al., 2023). In Wu et al.

(2021a) a tandem learning framework was proposed, that consists

of an SNN and an ANN that share the same weight. In this

framework, the spike count as the discrete neural representation

in the SNN would be presented to the coupled ANN activation

function in the forward phase. And in the backward phase, the

error back-propagation is performed on the ANN to update the

shared weight for both the SNN and the ANN. Furthermore, in

Wu et al. (2021b), a progressive tandem learning framework was

proposed, that introduces a layer-wise learningmethod to fine-tune

the shared network weights. Considering the difference between the

ANN and SNN, Joint A-SNN (Guo et al., 2023) developed a partial

weight-sharing regime for the joint training of weight-shared ANN

and SNN, that applies the Singular Value Decomposition (SVD) to

the weights parameters and keep the same eigenvectors while the

separated eigenvalues for the ANN and SNN.

3.2. E�ciency improvement methods

An important reason why have SNNs received extensive

attention recently is that they are seen as more energy efficient

than ANNs due to their event-driven computation mechanism and

the replacement of energy-consuming weight multiplication with

addition. To further explore the efficiency advantages of SNNs so

that they can be applied to energy-constrained devices is also a

hot topic in the SNN field. This kind of method can be mainly

categorized into network compression techniques and sparse SNNs.

3.2.1. Network compression techniques
Network compression techniques have been widely used in

ANNs. There are also some works applying these techniques in

SNNs. In the literature, approaches for compressing deep SNNs

can be classified into three categories: parameter pruning, NAS, and

knowledge distillation.

3.2.1.1. Parameter pruning

Parameter pruning mainly focuses on eliminating the

redundant parameters in the model by removing the uncritical

ones. SNNs, unlike their non-spiking counterparts, consist

of a temporal dimension. Along with considering temporal

information, a spatial and temporal pruning of SNNs is proposed

in Chowdhury et al. (2021). Generally speaking, pruning will

cause accuracy degradation to some extent. To avoid this, SD-

SNN (Han et al., 2022) and Grad R (Chen et al., 2021) proposed

the pruning-regeneration method for removing the redundancy

in SNNs from the brain development plasticity mechanism. With

synaptic regeneration, these works can effectively prevent and

repair over-pruning. Recently, an interesting temporal pruning,

which is specific for SNNs, was proposed in Chowdhury et al.

(2022). This method starts with an SNN of T timesteps and reduces

T every iteration of training, which results in a continuum of

accurate and efficient SNNs from T timesteps, down to 1 timestep.
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FIGURE 2

The approximation function (left) under di�erent values of the coe�cient, k and its corresponding gradient (right). The blue curves represent the

firing function (left) and its true gradient (right).

3.2.1.2. Neural architecture searching

Obviously, a compact network carefully designed can reduce

the storage and computation complexity of SNNs. However, due

to the limitations of humans’ inherent knowledge, it is difficult

for people to jump out of their original thinking paradigm and

design an optimal compact model. Therefore, there are some

works using NAS techniques to let the algorithm automatically

design the compact neural architecture (Kim et al., 2022a; Na

et al., 2022). Furthermore, in Kim et al. (2022b), the lottery ticket

hypothesis was investigated which shows that dense SNN networks

contain smaller SNN subnetworks, i.e., winning tickets, which can

achieve comparable performance to the dense ones, and the smaller

compact one is picked as to be used network.

3.2.1.3. Knowledge distillation

The knowledge distillationmethods aim at obtaining a compact

model from a large model. In Kushawaha et al. (2021), a larger

teacher SNN model is used to distill a smaller SNN model. And

in Yang et al. (2022), Takuya et al. (2021), and Xu et al. (2023a,b),

the same architecture ANN-teacher is used to distill SNN-student.

3.2.2. Sparse SNNs
Different from ANNs, SNNs transmit information by spike

events, and the computation occurs only when the neuron receives

spike events. Benefitting from this event-driven computation

mechanism, SNNs can greatly save energy and run efficiently

when implemented on neuromorphic hardware. Hence, limiting

the firing rate of spiking neurons to achieve a sparse SNN is also a

widely used way to improve the efficiency of the SNN. These kinds

of methods can limit the firing rate of the SNN on both the neuron

level and training technique level.

3.2.2.1. On the neuron level

In ASNN (Zambrano and Bohte, 2016), an adaptive SNN

based on a group of adaptive spiking neurons was proposed.

These adaptive spiking neurons can optimize their firing rate using

asynchronous pulsed Sigma-Delta coding efficiently.

3.2.2.2. On the training technique level

In Han and Lee (2022), a correlation-based regularizer, which

is incorporated into a loss function, was proposed to minimize

the redundancies between the features at each layer for structural

sparsity. Obviously, this method is beneficial for energy-efficient.

Superspike (Zenke and Ganguli, 2018) added a heterosynaptic

regularization term to the learning rule of the hidden layer weights

to avoid pathologically high firing rates. RecDis-SNN (Guo et al.,

2022c) incorporated a membrane potential loss into the SNN to

regulate the membrane potential distribution to an appropriate

range to avoid high firing rates. In Pellegrini et al. (2021), to enforce

sparse spiking activity, a l1 or l2 regularization on the total number

of spikes emitted by each layer was applied.

3.3. Temporal dynamics utilization methods

Different from ANNs, SNNs enjoy rich temporal dynamics

characteristics, which makes them more suitable for some

particular temporal tasks and some vision sensors with high

resolution in time, e.g., neuromorphic cameras, which can capture

temporally rich information asynchronously inspired by the

information process form of eyes. Given such characteristics,

a great number of methods falling in sequential learning and

cooperating with neuromorphic cameras have been proposed

for SNNs.

3.3.1. Sequential learning
As aforementioned in Section 2, SNNs maintain a dynamic

state in the neuron memory. In Ponghiran and Roy (2022), the

usefulness of the inherent recurrence dynamics of the SNN for

sequential learning was demonstrated, that it can retain important

information. Thus, SNNs show better performance on sequential

learning compared to ANNs with similar scales in many works.

In She et al. (2021), a function approximation theoretical basis

was developed that any spike-sequence-to-spike-sequencemapping

functions can be approximated by an SNN with one neuron per
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layer using skip-layer connections. And then, based on the basis,

a suitable SNN model for the classification of spatio-temporal

data was designed. In Li Y. et al. (2022), SNNs were leveraged to

study the Human Activity Recognition (HAR) task. Since SNNs

allow spatio-temporal extraction of features and enjoy low-power

computation with binary spikes, they can reduce up to 94%

energy consumption while achieving better accuracy compared

with homogeneous ANN counterparts. In Nomura et al. (2022),

an interesting phenomenon was found that SNNs trained with

the appropriate temporal penalty settings are more robust against

adversarial images than ANNs.

As the common sequential signal, many preliminary works on

speech recognition systems based on spiking neural networks have

been explored (Tavanaei and Maida, 2017a,b; Wu et al., 2018a,b,

2019b, 2020; Zhang et al., 2019; Hao et al., 2020). In Wu et al.

(2020), a deep spiking neural network was trained by the tandem

learning method to handle the large vocabulary automatic speech

recognition task. The experimental results demonstrated that the

deep SNN trained could compete with its ANN counterpart while

requiring as low as 0.68 times total synaptic operations to their

ANN counterparts. There are also some works training deep SNN

directly with SG methods for the speech task. In Ponghiran and

Roy (2022), inspired by the LSTM, a custom version of SNNs was

defined that combines a forget gate with multi-bit outputs instead

of binary spikes, yielding better accuracy than that of LSTMs,

but with 2× fewer parameters. In Bittar and Garner (2022b), the

spiking neural networks trained like recurrent neural networks

only using the standard surrogate gradient method can achieve

promising results on speech recognition tasks, which shows the

advantage of SNNs to handle this kind of task. In Bittar and Garner

(2022a), a combination of adaptation, recurrence, and surrogate

gradient techniques for spiking neural networks was proposed.

And with these improvements, light spiking architectures that are

not only able to compete with ANN solutions but also retain a

high degree of compatibility with them were yielded. In Pellegrini

et al. (2021), the dilated convolution spiking layers and a new

regularization term to penalize the averaged number of spikes were

used to train low-activity supervised convolutional spiking neural

networks. The results showed that the SNN models can reach an

error rate very close to standard DNNs while very energy efficient

for speech tasks. In Sadovsky et al. (2023), a new technique for

speech recognition that combines convolutional neural networks

with spiking neural networks was presented to create an SNNCNN

model. The results showed that the combination of CNNs and

SNNs outperforms both MLPs and ANNs, providing a new route

to further improvements in the field. In Yin et al. (2021), an

activity-regularizing surrogate gradient method combined with

recurrent networks of tunable and adaptive spiking neurons for

SNNs was proposed, and the method performed well on the speech

recognition task.

3.3.2. Cooperating with neuromorphic cameras
Neuromorphic camera, which is also called event-based

cameras, have recently shown great potential for high-speed

motion estimation owing to their ability to capture temporally

rich information asynchronously. SNNs, with their spatio-temporal

and event-driven processing mechanisms, are very suitable for

handling such asynchronous data. Many excellent works combine

SNNs and neuromorphic cameras to solve real-world large-scale

problems. In Hagenaars et al. (2021) and Kosta and Roy (2022),

an event-based optical flow estimation method was presented.

In StereoSpike (Rançon et al., 2021) a depth estimation method

was provided. SuperFast (Gao et al., 2022) leveraged an SNN and

an event camera to present an event-enhanced high-speed video

frame interpolation method. SuperFast can generate a very high

frame rate (up to 5,000 FPS) video from the input low frame

rate (25 FPS) video. Furthermore, Based on a hybrid network

composed of SNNs and ANNs, E-SAI (Yu L. et al., 2022) provided

a novel synthetic aperture imaging method, which can see through

dense occlusions and extreme lighting conditions from event

data. And in EVSNN (Zhu L. et al., 2022) a novel Event-based

Video reconstruction framework was proposed. To fully use the

information from different modalities, HALSIE (Biswas et al., 2022)

proposed a hybrid approach for semantic segmentation comprised

of dual encoders with an SNN branch to provide rich temporal

cues from asynchronous events, and an ANN branch for extracting

spatial information from regular frame data by simultaneously

leveraging image and event modalities.

There are also some works that apply this technique in

autonomous driving. In Cordone et al. (2022), fast and efficient

automotive object detection with spiking neural networks on

automotive event data was proposed. In Zhang J. et al. (2022),

a spiking transformer network, STNet, which can dynamically

extract and fuse information from both temporal and spatial

domains was proposed for single object tracking using event

data. Besides, since event cameras enjoy extremely low latency

and high dynamic range, they can also be used to handle

the harsh environment, i.e., extreme lighting conditions or

dense occlusions. LaneSNNs (Viale et al., 2022) presented an

SNN-based approach for detecting the lanes marked on the

streets using the event-based camera input. The experimental

results show a very low power consumption of about 1 W,

which can significantly increase the lifetime and autonomy of

battery-driven systems.

Based on the event-based cameras and SNNs, some works

attempted to assist the behavioral recognition research. For

examples, Spiking-Fer (Barchid et al., 2023) proposed a new

end-to-end deep convolutional SNN method to predict facial

expression. SpikeMS (Parameshwara et al., 2021) proposed a

deep encoder-decoder SNN architecture and a novel spatio-

temporal loss for motion segmentation using the event-based

DVS camera as input. In Zou et al. (2023), a dedicated end-

to-end sparse deep SNN consisting of the Spike-Element-Wise

(SEW) ResNet and a novel Spiking Spatiotemporal Transformer

was proposed for event-based pose tracking. This method

achieves a significant computation reduction of 80% in FLOPS,

demonstrating the superior advantage of SNN in this kind

of task.

4. Future trends and conclusions

The spiking neural networks, born in mimicking the

information process of brain neurons, enjoy many specific
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characteristics and show great potential in many tasks, but

meanwhile suffer from many weaknesses. As a consequence,

a number of direct learning-based deep SNN solutions for

handling these disadvantages or utilizing the advantages of

SNNs have been proposed recently. As we summarized in

this survey, these methods can be roughly categorized into (i)

accuracy improvement methods, (ii) efficiency improvement

methods, and (iii) temporal dynamics utilization methods.

Though successful milestones and progress have been achieved

through these works, there are still many challenges in

the field.

On the accuracy improvement aspect, the SNN still faces

serious performance loss, especially for the large network and

datasets. The main reasons might include:

• Lack of measurement of information capacity: it is still unclear

how to precisely calculate the information capacity of the

spike maps and what kind of neuron types or network

topology is suitable for preserving information while the

information passing through the network, even after firing

function. We believe SNN neurons and architectures should

not be referenced from brains or ANNs completely. Specific

designs in regard to the characteristic of SNNs for preserving

information should be explored. For instance, to increase the

spiking neuron representative ability, the binary spike {0, 1},

which is used to mimic the activation or silence in the brain,

can be replaced by ternary spike {-1, 0, 1}, thus the information

capacity of the spiking neuron will be boosted, but the event-

driven and multiplication-free operation advantages of the

binary spike can be preserved still. And as aforementioned, the

widely used standard ResNet backbone in ANNs is not suitable

for SNNs. And the PreAct ResNet backbone performs better

since the membrane potential in neurons before the firing

function will be added to the next block, thus the complete

information will be transmitted simultaneously. While for

the standard ResNet backbone, only quantized information

is transmitted. To further preserve the information, adding

the shortcut layer by layer in the PreAct ResNet backbone

is better in our experiment, which is much different from

the architectures in ANNs and is a promising exploration

direction.

• Inherent optimization difficulties: It is still a difficult problem

to optimize the SNN in a discrete space, even though many

novel gradient estimators or approximate functions have been

proposed, there are still some huge obstacles in the field.

Such as the gradient explosion/vanishing problem, with the

increasing timestep, the problem along with the gradient

errors will become severer and make the network hard to

converge. Thus, how to completely eliminate the impact of

this problem to directly train an SNN with large timesteps is

still under exploration. We believe more theoretical studies

and practical tricks will emerge to answer this question in the

future.

It is also worth noting that accuracy is not the only criterion

of SNNs, the versatility is another key criterion, that measures

whether a method can be used in practice. Some methods proposed

in prior works are very versatile, such as learnable spike factors

proposed in Real Spike (Guo et al., 2022d), membrane potential

rectifier proposed in InfLoR-SNN (Guo et al., 2022b), temporal

regularization loss proposed in TET (Deng et al., 2022), etc. These

methods enjoy simple implementation and low coupling, thus

having become common widely used practices to improve the

accuracy of SNNs. Some methods improve the accuracy of SNNs

by designing complex spiking neurons or specific architectures.

Such improvements usually show a stronger ability to increase

performance. However, as we have pointed out before, some of

them suffer complicated computation and even lose the energy-

efficiency advantage, which violates the original intention of SNNs.

Therefore, purely pursuing high accuracy without considering

versatility has limited significance in practice. The balance between

accuracy and versatility is also an essential criterion for SNN

research that should be considered in the following works.

On the efficiency improvement aspect, some prior works ignore

the important fact, that the event-driven paradigm and friendly

to the neuromorphic hardware make SNNs much different from

ANNs. When implemented on the neuromorphic hardware, the

computation in the SNN occurs only if the spiking neuron receives

spike events. Hence, the direct reason for improving the efficiency

of the SNN is reducing the the number of the firing spikes,

not reducing network size. Some methods intending to improve

the efficiency of SNNs by pruning inactive neurons as doing

in ANNs can not make sense. We even think that under the

condition the SNN network size does not exceed the capacity of the

neuromorphic hardware, enlarging the network size but limiting

the number of the firing spikes at the same time may be a potential

route to improve the accuracy and efficiency simultaneously. In this

way, different weights of the SNN may respond to different data,

thus being equivalent to improving the representative capabilities

of the SNN. However, a more systematic study needs to be done in

the future.

On the temporal dynamics utilization aspect, a great number

of interesting methods have been proposed and shown wide

success. We think it is a very potential direction in the SNN

field. Some explainable machine learning-related study indicates

that different network types follow different patterns and enjoy

different advantages. In this sense, it might be more meaningful

to dive into the temporal dynamics of the SNN deeply, but not

to pursue higher accuracy as ANNs. Meanwhile, considering the

respective advantages, to use ANNs and SNNs together needs to be

studied further.

Last but not least, more special applications for SNNs also

should be explored still. Though SNNs have been used widely

in many fields, including the neuromorphic camera, HAR task,

speech recognition, autonomous driving, etc., as aforementioned

and the object detection (Kim et al., 2020; Zhou et al., 2020),

object tracking (Luo et al., 2020), image segmentation (Patel et al.,

2021), robotic (Stagsted et al., 2020; Dupeyroux et al., 2021), etc.,

where some remarkable studies have applied SNNs on recently,

compared to ANNs, their real-world applications are still very

limited. Considering the unique advantage, efficiency of SNNs,

we think there is a great opportunity for applying SNNs in the

GreenArtificial Intelligence (GAI), which has become an important

subfield of Artificial Intelligence and has notable practical value.
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We believe many studies focusing on using SNNs for GAI will

emerge soon.
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