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White matter disconnection is the primary cause of cognition and affection

abnormality in mild cognitive impairment (MCI). Adequate understanding of

behavioral disturbances, such as cognition and affection abnormality in MCI,

can help to intervene and slow down the progression of Alzheimer’s disease

(AD) promptly. Diffusion MRI is a non-invasive and effective technique for

studying white matter microstructure. This review searched the relevant papers

published from 2010 to 2022. Sixty-nine studies using diffusion MRI for white

matter disconnections associated with behavioral disturbances in MCI were

screened. Fibers connected to the hippocampus and temporal lobe were

associated with cognition decline in MCI. Fibers connected to the thalamus

were associated with both cognition and affection abnormality. This review

summarized the correspondence between white matter disconnections and

behavioral disturbances such as cognition and affection, which provides a

theoretical basis for the future diagnosis and treatment of AD.

KEYWORDS

mild cognitive impairment, diffusion MRI, white matter disconnection, cognition,
affection

Introduction

The significance of research for behavioral
disturbances in MCI

Mild cognitive impairment (MCI) is the prodromal stage of Alzheimer’s disease (AD)
(Petersen et al., 1999; Gauthier et al., 2006). As the progression of AD showed in Figure 1, the
neuronal destruction in the AD stage is so extensive for the whole brain that it is difficult to
reverse. Many treatments are only effective for MCI with subtle changes in neural structure.
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FIGURE 1

The progression of Alzheimer’s disease for each phase.

Moving the development window for biomarkers forward to the
MCI stage can halt or slow AD progression (Wang et al., 2013).
Therefore, the MCI stage is the best opportunity for intervention in
AD timely.

Mild cognitive impairment often presents with behavioral
disturbances, mainly memory loss, reduced attention and executive
functions, disorientation, and impaired language skills, collectively
referring to cognition decline (Catani et al., 2013; Arvanitakis
et al., 2019). In addition, MCI often have other affective symptoms,
including depression, anxiety, and apathy (Catani et al., 2012).
These affective symptoms may exacerbate the transition from MCI
to AD. Therefore, fully understanding the behavioral disturbances
in MCI can help promptly intervene and delay AD development
(Pantel et al., 2016).

White matter disconnections caused
behavioral disturbances in MCI

The behavioral disturbances in MCI are mainly caused by the
disconnection of neuronal pathways in the brain due to white
matter degeneration (Alves et al., 2017; Yu et al., 2021). During the
development of AD, the lesioned areas propagate from the lower
to the higher cortex according to specific white matter pathways
(Gainotti et al., 2014; Miller et al., 2016). During the MCI stage,
selective degeneration in fibers is mainly in the limbic system (Mito
et al., 2018). In the late AD stage, fibers gradually spread from
the limbic system to the higher cortices, such as frontal, temporal
and parietal, for extensive degeneration throughout the brain (Pini
et al., 2016; Zimmermann et al., 2018).

White matter connections between the hippocampus,
precuneus and posterior cingulate cortex form the memory
network. The Papez circuit formed between the hippocampus and
thalamus has also been shown to be related to working memory
(Li K. et al., 2020). The arcuate fasciculus, which connects the
frontal Broca’s area to the temporal Veronica area, is associated
with language ability (Friederici and Gierhan, 2013). The inferior

longitudinal fasciculus and the inferior frontal-occipital fasciculus,
which runs through the temporal lobe and reaches the occipital
lobe, are associated with visuospatial ability (Urbanski et al.,
2008). Damage to the white matter of these fibers in MCI leads to
cognitive impairment.

Besides memory deficits, MCI has executive function deficits
such as attention and information processing speed (Saunders and
Summers, 2011). As a relay station for transmitting information
from subordinate neurons to the cerebral cortex, the thalamus
has extensive white matter fiber connections from the subcortical
nuclei to the cerebral cortex (Abivardi and Bach, 2017; Zheng
et al., 2019). In addition to the Papez circuit with the hippocampus
and other subcortical nuclei in the limbic systems, the thalamus
is responsible for memory processing (Bubb et al., 2017). The
thalamus is also connected to the frontal and parietal cortex
via projection fibers (Gerstenecker et al., 2017), which regulate
cognition and affection (Gu and Zhang, 2019).

In addition, there are overlaps and interactions on some neural
pathways between brain networks related to cognition and affection
in MCI (Tan et al., 2019), which may be essential in converting
MCI to AD (Barca et al., 2017; Sui et al., 2020). However, current
research has focused on the relationship between white matter
damage and cognition decline in MCI. But it is unclear which fibers
are associated with affection symptoms in MCI. The comorbid
pathways of brain networks related to cognition and affection in
MCI are indistinct. Therefore, it is necessary for relevant studies
to organize and summarize the relationship between white matter
disconnections and behavioral disturbances in MCI.

Parameters of diffusion MRI could
explain white matter disconnections
effetely

Due to the sensitivity of the diffusion MRI signals for
the moving of water molecules, it can effectively probe tissue
microstructures. The water molecules’ movement is restricted
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FIGURE 2

An overview of the advanced diffusion magnetic resonance imaging (MRI) techniques examined in this article. DWI, diffusion weighted imaging;
D, diffusion; ADC, apparent diffusion coefficient; eADC, exponential ADC; DTI, diffusion tensor imaging; FA, fractional anisotropy; DA, axial diffusivity;
DR, radial diffusivity; MD, mean diffusivity; DSI, diffusion spectrum imaging; HARDI, high angular diffusion magnetic imaging; DKI, diffusion kurtosis
imaging; MK, mean kurtosis; AK, axial kurtosis; RK, radial kurtosis; NODDI, neurite orientation dispersion and density imaging; ODI, orientation
dispersion index; ICVF, intracellular volume fraction; ISO, isotropic volume fraction.

and obstructed by the fiber structure of neuronal axons. So
the motion trail of the water molecules can be used to infer
intra-voxel fiber orientation and outline the path of white
matter by using appropriate fiber tracking algorithms. Diffusion
tensor imaging (DTI) focuses on obtaining reliable indicators of
key microstructural parameters. The fractional anisotropy (FA)
is quantitatively described using the proportion of diffusion
anisotropy included in the diffusion tensor, reflecting the integrity
of the protein fibers’ myelin sheath and density (Richards et al.,
1992). The axial diffusivity (DA) represents the diffusion rate of
water molecules along the central axis and is usually used to
reflect the degeneration of axons (Alexander et al., 2007). Radial
diffusivity (DR) could reflect the permeability of water molecules
along the radial direction (Song et al., 2002). Mean diffusivity
(MD) indicates the average diffusivity of water molecules in brain
tissue (Le et al., 2001). Based on DTI, diffusion kurtosis imaging

(DKI), diffusion spectrum imaging (DSI) and neurite orientation
dispersion and density imaging (NODDI) have been developed
(Pasternak et al., 2018). The advanced diffusion MRI techniques
were showed in Figure 2. The parameters of diffusion imaging can
be used to quantitatively characterize the degeneration of white
matter and further analyze the relationship between the white
matter disconnection and behavioral disturbances such as cognitive
and emotional disorders in MCI.

Contribution of this article

Despite the outstanding achievements of neuroimaging
methods for white matter, it remains unclear which fibers’
degeneration causes cognition and affection abnormalities, and
whether these white matter disconnections are associated with
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FIGURE 3

A modified preferred reporting items for systematic reviews and
meta-analyses (PRISMA) flow diagram through the selection study.

different patterns and severity of behavioral disturbances. For
this purpose, our review combined with evidence of white matter
disconnections and behavioral disturbances in MCI, provided
more insight by integrating and analyzing all studies of white
matter from diffusion MRI methods.

The current work aims to review diffusion MRI findings
of behavioral disturbances in MCI, focusing on the relationship
between diffusion parameters of white matter and behavioral
scores. We acknowledge that the number of studies conducted to
date is not significant. For the second purpose, our review critically
discussed the comorbid pathways related to cognition and affection
according to the neurobiological mechanisms in MCI.

In summary, this review provided new development in how
diffusion imaging methods have been used for cognition and
affection symptoms in MCI. The potential role of neuroimaging
evidence was highlighted for the early diagnosis of AD. The basis
could be provided for the targeted treatment of specific fiber tracts.

Methods

The present research review followed the Problem Intervention
Comparison Outcomes (PICO) search strategy based on the brain
mechanisms of white matter disconnections related to behavioral
disturbances in MCI. Diffusion imaging characteristics of white
matter in MCI were summarized and compared with healthy
controls. The relationship between different brain regions’ white
matter disconnections and behavioral disturbances was discussed.

In this review, PubMed and Web of Science databases were
systematically searched for relevant literature from 2010 to 2022.
Three sets of keywords were used for the literature search: (i) mild
cognitive impairment; (ii) white matter; (iii) behavior. Keywords
included in the title or abstract of the paper are also included
in this review. In addition to the systematic electronic database
search, a targeted search of the bibliographies of relevant articles
was conducted to identify any additional papers to be included.

TABLE 1 Cognition testing scales.

Cognition Testing scale Literature

Memory Hopkins verbal learning test (HVLT) Shi et al., 2012

California verbal learning test (CVLT) Rabin et al., 2009

Rey auditory verbal learning test (RAVLT) Gainotti et al., 1998

Delayed story recall (DSR) Shi et al., 2014

Free and cued selective recall test (FCSRT) Sarazin, 2008

Categorical cue recall (CCR) Vogel et al., 2007

Attention and
execution

Trail making test-A/B (TMT-A/B) Ashendorf et al., 2008

Victoria stroop test (VST) Bayard et al., 2011

Wisconsin card sorting Test (WCST) Paolo et al., 1996

Visual space Clock drawing test (CDT) Lee et al., 1996

Rey-Osterrieth complex figure test
(ROCFC)

Reedy et al., 2013

Language Verbal fluency test (VFT) Torralva et al., 2015

Boston naming test (BNT-12) Serrano et al., 2001

Grading naming test (GNT) Ahmed et al., 2008

Controlled Verbal Word Association Test
(COWAT)

Kohnert et al., 1998

TABLE 2 Affection testing scales.

Affection Testing scale Literature

Depression Geriatric Depression Scale (GDS) Burke et al., 1991

Anxiety Neuropsychiatric Inventory
Questionnaire (NPI-Q)

Boada et al., 2002

Hamilton Anxiety Scale (HAMA) Thompson, 2015

Indifference Neuropsychiatric Inventory
Questionnaire (NPI-Q)

Boada et al., 2002

Dimensional Apathy Scale (DAS) Radakovic and
Abrahams, 2014

Only original articles published in English between January
2010 and December 2022 were considered. All articles investigated
the relationship between white matter disconnections and
behavioral disturbances in MCI through diffusion MRI methods.
Articles were excluded if they: (i) did not use diffusion MRI to
investigate the white matter; (ii) studied other disorders such as
cerebrovascular disease, sclerosis, hypertension, cerebral infarction,
stroke, Parkinson’s, Lewy body dementia, Down syndrome, and
schizophrenia; (iii) were review articles.

Results

Search results

Using the search method mentioned above, a total of 479
articles were retrieved from the Web of Science database, 179 from
the PubMed database, and five from other databases. After the
initial screening, duplicate and irrelevant papers were removed. 330
articles were excluded according to the exclusion criteria. 91 articles
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TABLE 3 Classification of fibers.

Attribution Full name of fiber Abbreviation

Limbic fibers Anterior cingulum aCingulum

Posterior cingulum pCingulum

Fornix Fornix

Uncinate fasciculus UF

Anterior thalamic radiation ATR

Projection fibers Anterior corona radiata ACR

Superior corona radiata SCR

Posterior corona radiata PCR

Posterior limbs of internal capsules PLIC

Retrolenticular part of internal capsule RIC

Cerebellar peduncle CP

Association fibers Superior longitudinal fasciculus SLF

Inferior fronto-occipital fasciculus IFOF

Inferior longitudinal fasciculus ILF

Commissural fibers Genu of corpus callosum GCC

Body of corpus callosum BCC

Splenium of corpus callosum SCC

investigating the white matter without diffusion MRI were excluded
based on case (i); 223 articles (55 in cerebrovascular disease, three
in sclerosis, three in hypertension, nine in cerebral infarction, 69 in
stroke, 70 in Parkinson’s, 10 in Lewy body dementia, three in Down
syndrome, one in schizophrenia) were excluded based on case (ii),
and 16 review articles were excluded based on case (iii). Finally,
69 articles were selected for this review. The preferred reporting
items for systematic reviews and meta-analyses (PRISMA) diagram
in Figure 3 illustrates the screening and inclusion process.

Behavior testing scales

The different behaviors of the subjects were divided into
cognition testing scales as well as affection testing scales. The scales
used to test various cognition for MCI are summarized in Table 1,
including memory, language, visual space, attention and execution.
Table 2 summarizes the scales used to test different affections in
MCI, including depression, anxiety, and apathy.

Assessment of white matter
disconnection and behavioral
disturbances

The fibers were divided into four groups according to their
location and function. The four groups were limbic, projection,
association, and commissural fibers (Table 3). Research on the
correlation between cognition testing scale scores and diffusion
parameters of limbic, projection, association, and commissural
fibers in MCI were summarized in Tables 4–7, respectively.
Research on the correlation between affection testing scale scores
and diffusion parameters of limbic and projection fibers were

summarized in Tables 8, 9. The following patterns can be found
in the tables. Firstly, the limbic, association and commissural
fibers were mainly related to cognition. Secondly, the limbic and
projection fibers were primarily related to affection. Finally, the
limbic fibers were associated with both cognition and affection.

Discussion

This review evaluated the relationship between white matter
disconnections and behavioral disturbances in MCI. The white
matter connections were classified into limbic, projection,
association, and commissural fibers according to their connecting
brain regions. The correlation studies on diffusion parameters
of white matter and the behavior test scales were performed.
Cognitions such as episodic memory, semantic memory,
visuospatial, attention and executive functions were mainly related
to the limbic, association, and commissural fibers. Affections such
as depression, anxiety, and apathy are primarily associated with
white matter disconnections in the limbic and projection fibers.

Hippocampus and temporal lobe related
fibers associated with cognition

Memory loss is the principal clinical manifestation of MCI
(Gainotti et al., 2014). The hippocampus is responsible for memory
as a critical limbic system component (Bender et al., 2020).
Studies on molecular biomarkers, gray matter structure, and
functional networks suggest that white matter fibers connected
to the hippocampus and temporal lobe appear to be the earliest
degeneration in MCI.

Molecular deposition evidence
Molecular biomarkers studies show that the medial temporal

lobe and hippocampus are vital sites for amyloid β (Aβ) and
hyperphosphorylated tau (pTau) deposition during MCI. Aβ and
Tau are detected near the hippocampus before the MCI phase
(Rieckmann et al., 2016; Rabin et al., 2019) and deposited in
the temporal lobe region near the hippocampus during the MCI
(Blamire, 2018). From MCI to AD, the deposition of Aβ and Tau
spreads from the medial temporal lobe to the precuneus in the
parietal lobe (Pegueroles et al., 2017; Rabin et al., 2019). Aβ and Tau
deposition has been found to lead to the demyelination of white
matter fibers (Jagust, 2018). Aβ and Tau are deposited first in the
hippocampus and temporal lobe during MCI, damaging the white
matter structures connected to the hippocampus and temporal
lobe.

Gray matter atrophy evidence
Gray matter structure studies have revealed that structures in

the temporal lobe, especially the hippocampus, are the critical area
of gray matter atrophy during MCI (Jack et al., 2012; Brueggen et al.,
2019). In MCI, gray matter atrophy begins with the hippocampus
and gradually spreads to the entorhinal cortex, amygdala and other
parahippocampal tissues in the temporal lobe (Lee et al., 2014;
Lombardi et al., 2020). The hippocampus in the temporal lobe is
connected to the parahippocampal tissues by white matter fibers
(Zhuo et al., 2016). It was found that the damage to the white matter
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TABLE 4 Correlation analysis between white matter parameters and cognition scales in limbic fibers.

Cognition Fibers

aCingulum pCingulum Fornix UF ATR

Episodic memory – DTI (FA↓;MD,DA,DR↑)
(Li K. et al., 2020)
(Li X. et al., 2020)
(Jung et al., 2018)
(Gyebnar et al., 2018)
(Chang et al., 2016)
(Ray et al., 2015)
(Remy et al., 2015)
(Nir et al., 2013)
(Metzler-Baddeley et al., 2012a)
(Zhuang et al., 2012a)
(Bozzali et al., 2012)
(Sexton et al., 2010)
(Jhoo et al., 2010)
DTI + DSI
(Lin et al., 2014)
DTI + networks
(Berlot et al., 2016)
(Carter et al., 2014)
DTI + NAA
(Wong et al., 2020)
Volume
(Li et al., 2016)

DTI (FA↓;MD,DA,DR↑)
(Zhou et al., 2022a)
(Yu et al., 2020)
(Ray et al., 2015)
(Remy et al., 2015)
(Boespflug et al., 2014a)
(Boespflug et al., 2014b)
(Metzler-Baddeley et al.,
2012a)
(Lee et al., 2012)
(Mielke et al., 2012)
(Sexton et al., 2010)
DTI + tract length
(Srisaikaew et al., 2020)
Volume
(Li et al., 2016)

DTI (FA↓;MD,DA,DR↑)
(Fan et al., 2018)
(Remy et al., 2015)
(Carter et al., 2014)
(Metzler-Baddeley et al.,
2012a)
(Serra et al., 2012)
(O’Dwyer et al., 2011)
DTI + number
(Park et al., 2019)
Volume
(Li et al., 2016)

DTI (FA↓;MD,DA,DR↑)
(Zhou et al., 2022a)
(Chen et al., 2020)
Volume
(Benavides-Varela et al.,
2020)

Semantic memory DTI (FA↓;MD,DA,DR↑)
(Dimitra et al., 2013)
(Metzler-Baddeley et al., 2012b)
(Delano-Wood et al., 2012)

DTI (FA↓;MD,DA,DR↑)
(Gyebnar et al., 2018)
(Dimitra et al., 2013)
DTI + NODDI
(Wen et al., 2019)
DTI + network
(Kim et al., 2019)
DTI + tract number
(Park et al., 2019)

DTI (FA↓;MD,DA,DR↑)
(Gyebnar et al., 2018)
(Zhuang et al., 2012b)
DTI + Aβ

(Egli et al., 2015)

DTI + network
(Healey et al., 2021)
DTI + tract number
(Park et al., 2019)

Volume
(Benavides-Varela et al.,
2020)

Visuospatial DTI (FA↓;MD,DA,DR↑)
(Dimitra et al., 2013)
(Metzler-Baddeley et al., 2012b)

DTI (FA↓;MD,DA,DR↑)
(Gyebnar et al., 2018)
(Dimitra et al., 2013)
DTI + DSI
(Lin et al., 2014)
DTI + tract number
(Park et al., 2019)

DTI (FA↓;MD,DA,DR↑)
(Gyebnar et al., 2018)
(Christiansen et al., 2016)

DTI + tract number
(Park et al., 2019)

Volume
(Benavides-Varela et al.,
2020)

Attention and executive
functions

– DTI (FA↓;MD,DA,DR↑)
(Gill et al., 2021)
(Li X. et al., 2020)
(Ray et al., 2015)
(Metzler-Baddeley et al., 2012b)
DTI + DSI
(Lin et al., 2014)
DTI + networks
(Berlot et al., 2016)

DTI + tract length
(Srisaikaew et al., 2020)

DTI (FA↓;MD,DA,DR↑)
(Gill et al., 2021)
(Serra et al., 2012)

–

TABLE 5 Correlation analysis between white matter parameters and cognition scales in projection fibers.

Cognition Fibers

CP ACR SCR PCR PLIC RIC CP

Episodic memory Volume
(Fujishima et al., 2014)

– Volume
(Fujishima et al., 2014)

DTI (FA↑;MD,DA,DR↑)
(Zimny et al., 2012)

DTI (FA↑;MD,DA,DR↑)
(Shim et al., 2017)

DTI (FA↑;MD,DA,DR↑)
(Mascalchi et al., 2019)

is an essential cause of the gray matter atrophy (Agosta et al., 2011).
The white matter fibers connecting the hippocampus to the
temporal lobe first degenerate during MCI and cause gray matter
atrophy in the hippocampus and temporal lobe.

Functional connectivity declined evidence
Functional network studies have shown that the functional

connectivity between the hippocampus and temporal lobe is
significantly reduced in MCI (Lee et al., 2014). In the medial
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TABLE 6 Correlation analysis between white matter parameters and cognition scales in association fibers.

Cognition Fibers

SLF IFOF ILF

Episodic memory DTI (FA↓;MD,DA,DR↑)
(Chen et al., 2020)
(Hsu et al., 2019)
(Yang et al., 2021)
(Qin et al., 2016)
(Carter et al., 2014)
(Douaud et al., 2013)
DTI + NODDI
(Fu et al., 2020)

DTI (FA↓;MD,DA,DR↑)
(Chen et al., 2020)
(Carter et al., 2014)
(Bosch et al., 2012)
DTI + volume
(Gao et al., 2019)

DTI (FA↓;MD,DA,DR↑)
(Zhou et al., 2022a)
(Chen et al., 2020)
(Bosch et al., 2012)
DTI + volume
(Gao et al., 2019)

Semantic memory DTI (FA↓;MD,DA,DR↑)
(Dimitra et al., 2013)
DTI + network
(Healey et al., 2021)

– –

Visuospatial DTI (FA↓;MD,DA,DR↑)
(Dimitra et al., 2013)

– –

Attention and executive functions DTI + network
(Farrar et al., 2018)

DTI (FA↓;MD,DA,DR↑)
(Snir et al., 2019)
DTI + network
(Farrar et al., 2018)
DTI + volume
(Gao et al., 2019)

DTI (FA↓;MD,DA,DR↑)
(Farrar et al., 2018)
DTI + volume
(Gao et al., 2019)

TABLE 7 Correlation analysis between white matter parameters and cognition scales in commissural fibers.

Cognition Fibers

GCC BCC SCC

Episodic memory DTI (FA↓;MD,DA,DR↑)
(Raghavan et al., 2020)
(Hsu et al., 2019)
(Jiang et al., 2018)
DTI + DKI
(Allen et al., 2019)
DTI + network
(Li et al., 2016)

DTI (FA↓;MD,DA,DR↑)
(Li et al., 2016)

DTI (FA↓;MD,DA,DR↑)
(Jiang et al., 2018)
(Zhang et al., 2011)
DTI + network
(Rieckmann et al., 2016)

Semantic memory DTI (FA↓;MD,DA,DR↑)
(Dimitra et al., 2013)
(Grambaite et al., 2010)

Volume
(Ansado et al., 2013)

DTI (FA↓;MD,DA,DR↑)
(Delano-Wood et al., 2010)

Visuospatial DTI (FA↓;MD,DA,DR↑)
(Tu et al., 2018)
(Dimitra et al., 2013)
DTI + DKI
(Allen et al., 2019)

– DTI + DKI
(Allen et al., 2019)

Attention and executive functions DTI (FA↓;MD,DA,DR↑)
(Gill et al., 2021)
FA, MD + DKI
(Allen et al., 2019)

– –

TABLE 8 Correlation analysis between white matter parameters and affection scales in limbic fibers.

Affection Fibers

aCingulum pCingulum Fornix UF ATR

Depression DTI (FA↓;MD,DA,DR↑)
(Duffy et al., 2014)

– DTI (FA↓;MD,DA,DR↑)
(Zhou et al., 2022a)
(Duffy et al., 2014)

DTI (FA↓;MD,DA,DR↑)
(Duffy et al., 2014)

DTI (FA↓;MD,DA,DR↑)
(Zhou et al., 2022a)

Anxiety DTI (FA↓;MD,DA,DR↑)
(Tighe et al., 2012)

– DTI (FA↓;MD,DA,DR↑)
(Tighe et al., 2012)

– –

Apathy DTI (FA↓;MD,DA,DR↑)
(Tighe et al., 2012)

– DTI (FA↓;MD,DA,DR↑)
(Tighe et al., 2012)

– Volume
(Torso et al., 2015)
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TABLE 9 Correlation analysis between white matter parameters and affection scales in projection fibers.

Affection Fibers

ACR SCR PCR PLIC RIC CP

Depression Volume
(Fujishima et al.,
2014)

DTI
(FA↓;MD,DA,DR↑)
(Duffy et al., 2014)

DTI
(FA↓;MD,DA,DR↑)
(Duffy et al., 2014)
Volume
(Fujishima et al.,
2014)

– – –

Anxiety – – – – – DTI (FA↓;MD,DA,DR↑)
(Tighe et al., 2012)

Apathy – – – – – DTI (FA↓;MD,DA,DR↑)
(Tighe et al., 2012)

temporal lobe, the amygdala and parahippocampal gyrus have
decreased functional connectivity with the hippocampus in MCI
(Cai et al., 2017). The medial temporal lobe is an important
component of the DMN network, closely related to memory (Li X.
et al., 2020). In addition, the hippocampus has decreased functional
connectivity with the superior and middle temporal gyrus in the
temporal lobe (Liu et al., 2021). The medial and superior temporal
gyrus are involved in cognitions such as language comprehension.
It has been found that the degeneration of white matter fibers causes
the weakening of functional connectivity (Vazquez-Rodriguez
et al., 2019). The weakened functional connectivity between the
hippocampus and temporal lobe in MCI suggests the white
matter disconnections between the hippocampus and temporal
lobe.

Therefore, white matter abnormalities related to the
hippocampus and temporal lobe are associated with
cognition decline in MCI.

Thalamus related fibers–common
pathways for cognition and affection

The main cause of cognition decline and affection
abnormalities is the white matter disconnection of the neuronal
pathways (Jiang and Lou, 2023). The thalamus serves as a relay
station for transmitting information from subordinate neurons
to the cerebral cortex. The thalamus has extensive white matter
connections to the subcortical nuclei and the cerebral cortex
(Abivardi and Bach, 2017). The studies on gray matter structure
and functional network suggest abnormalities in the thalamus
related fibers in MCI.

Gray matter atrophy evidence
Studies on gray matter have revealed that the ventral medial

thalamic area undergoes atrophy during the MCI (Nie et al., 2017).
Furthermore, gray matter atrophy progressed to the frontal and
parietal lobes during AD (Gong et al., 2017). It has been confirmed
that white matter degeneration precedes the atrophy of gray matter
(Zhuang et al., 2012a; Jack and Holtzman, 2013). Additionally, the
projection fibers connect the dorsolateral thalamic area with the
parietal and frontal lobes, indicating a potential degeneration of the
projection fibers that connect the subcortical nuclei to the cerebral
cortex.

Functional connectivity declined evidence
Functional network studies have shown that functional

connectivity between the thalamus and the medial temporal,
prefrontal and precuneus brain regions in the default network
is reduced in MCI (Cai et al., 2015). Reduced functional
connectivity between the thalamus and the medial temporal lobe
affects the memory capacity of MCI (Min et al., 2019). Reduced
functional connectivity between the thalamus and the prefrontal
and precuneus affects executive and emotion in MCI (Fjell et al.,
2017; Scott et al., 2017). In AD, the functional connectivity between
the thalamus and the frontal and parietal lobes is further reduced,
leading to aphasia, dysfunction, and dyscognition (Raj et al.,
2015). It has been shown that white matter degeneration causes
functional connectivity to weaken (Vazquez-Rodriguez et al., 2019).
The reduced functional connectivity suggests projection fibers
connecting the thalamus to the frontal and parietal lobes may
abnormal.

Comorbidity fiber pathways
Besides cognition decline, MCI often suffer from depression,

anxiety, apathy and other affection symptoms (Velayudhan, 2023).
The thalamus is responsible for memory processing in the limbic
system together with the hippocampus. Meanwhile, the thalamus
is connected to the amygdala, insula, anterior cingulate gyrus,
and parts of the frontal lobe through the projection fibers, which
are responsible for affection regulation. Damage to the white
matter pathway of the projection fibers between the thalamus
and the medial frontal lobe leads to a disruption of information
transmission between the cortex and subcortical nuclei, altering
the response to external stimuli and increasing the likelihood of
cognition and affection abnormalities (Korgaonkar et al., 2014,
Yatawara et al., 2019).

Therefore, the white matter degenerations of the thalamus
related fibers are associated with cognition decline as well as
affection abnormalities in MCI.

Prediction for cognition and affection is
crucial for AD early diagnosis

Although clinicians can currently screen MCI with behavior
scales, relying on behavior scales alone to confirm MCI is too
subjective. It is insensitive to detecting early symptoms of AD
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influenced by individual differences. Therefore, a more objective,
accurate and reliable method is needed to identify and diagnose
MCI in the early stage.

Artificial intelligence applied in MCI prediction
The ultimate goal of neuroimaging is to provide physicians

with an objective diagnostic basis for screening, diagnosis, and
prediction. Data-driven approaches have emerged as a new way
of early diagnosis of MCI (Mechelli and Vieira, 2019). Research
on individualized prediction based on neuroimaging is increasing
yearly, with the prediction of cognition and affection accounting
for the current research hotspot (Sui et al., 2020). For cognition and
affection in MCI, artificial intelligence (AI) algorithms can perform
in-depth analysis based on patients’ multidimensional data such as
biomarkers, neuroimaging, and behavioral measures (Dwyer et al.,
2018). In addition, AI algorithms can reduce the interference of
subjective factors, optimize the model and improve the precision
of prediction (Auffermann et al., 2019).

Feature extraction
The selection of the appropriate modality in the acquired

imaging data and the accurate feature extraction method is usually
more important than the underlying algorithm (Zhang et al.,
2021; Zhou et al., 2022b). The methods for extracting white
matter information in MCI brain images include reduced density
map feature-based methods, predefined region-based methods,
discriminative voxel selection-based methods, and connectivity
network measure-based methods (Rathore et al., 2017). In addition,
multimodal data provide a wider variety of features for MCI
prediction. Previous studies have combined structural, functional,
and diffusion MRI brain imaging features. Capturing disease
information from different modalities and complementary features
from multiple perspectives, thus enhancing model performance
(Venugopalan et al., 2021).

Algorithms for prediction
Kernel functions and partial least squares correlation analysis

capturing the relationship between white matter features and
behavior is an effective measure to predict cognition and affection
in MCI (Rashid and Calhoun, 2020). Kernel function-based
methods often use a local linear weighted regression model that
assigns weights to data points using a Gaussian kernel near each
prediction point (Mihalik et al., 2020). Partial least squares methods
often use regularization to reduce model overfitting by introducing
penalty factors to constrain regression coefficients (Koutsouleris
et al., 2018). In addition, using multimodal data to establish
multivariate maps of different characteristics and behaviors can
effectively improve the fit of regression models (Sui and Qi, 2018).

Generalization
The generalization of a model indicates the degree to which

a statistical model generated in a set of data performs accurately
in a new group or individual. The current scheme to support
generalization is nested cross-validation (CV), where a training set
is used internally to loop CV with the validation set to select the
optimal parameters of the model. A test set is used externally to
loop CV to obtain the model performance at the average level (Zhao
et al., 2020). The CV has a generalization hierarchy with single-
site CV, pooled multisite CV, leave-site-out CV, external validation

and prospective validation in descending order of test stringency,
with the most stringent being validation of unknown individuals
(Dwyer et al., 2018). The training of generalized models relies on
a multisite database of multiple samples. The Alzheimer’s disease
neuroimaging initiative (ADNI) has a large publicly available
dataset with brain imaging data from diagnosed AD, MCI, and
healthy controls (Weber et al., 2021). Using a multicenter, extensive
sample database with nested CV as a technical tool can fully ensure
the model’s generalization (Dou et al., 2020).

Therefore, AI technology has a broad application prospect in
the early diagnosis and treatment of MCI, which deserves further
exploration and research.

Limitations and perspectives

Exploring the relationship between white matter
disconnections and behavioral disturbances such as cognition
and affection in MCI is a hot topic of current research. However,
there are currently the following problems:

Firstly, studies of specific fibers have focused only on changes
in white matter parameters on single nerve tracts in MCI and
lack comprehensiveness of the global degenerative mechanisms of
MCI. Secondly, it leads to difficulties in feature extraction due
to the lack of quantitative indicators for the global white matter
network composed of specific fibers. Previous studies have focused
on brain regions and network nodes. Quantitative descriptions
of neuronal pathway disconnections were laked to analyze the
intrinsic relationships between nodes and edges in the network.

Furthermore, most of the studies used small sample sizes for
the datasets. There was a significant negative correlation between
model prediction accuracy and sample size. Better predictions
manifest likely on small samples, which indicate overfitting in
the construction of the model. Finally, predicting MCI cognition
and affection requires regression models between features and
behavior. However, multimodal data with high-dimensional data
have interdependent complex multivariate relationships. The
optimization method to select relevant variables by constraints is
computationally intensive, and the correlation between features
is weak. There is a lack of a multivariate regression model
based on a comorbid pathway of cognition and affection in
MCI to establish the mapping relationship between features and
behaviors effectively.

In the future, the sample set should be expanded to analyze
changes in specific fibers using multimodal data. White matter
networks should combine with graph theory analysis. The edge-
centered network clustering approach should be used to extract
the combined features of multiple fibers to predict behavioral
disturbances such as cognition and affection in MCI.

Conclusion

This article reviews the recent 12 years of studies using diffusion
MRI techniques on white matter disconnections associated
with behavioral impairment in MCI. The studies showed that
degenerated fibers related to the hippocampus and temporal lobe
were associated with cognition decline in MCI. Degenerated fibers
related to the thalamus were associated with both cognition
decline and affection abnormalities in MCI. The sensitivity of
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diffusion MRI to fiber microstructures can provide a reliable
indicator of white matter disconnections in MCI, which can
be further quantified in combination with behavioral scales of
the patients. This review integrated the correspondence between
specific fibers in MCI and behavioral disturbances, which provides
a theoretical basis for the subsequent early diagnosis and targeted
treatment of AD.
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