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Introduction: Lumbar disc herniation, a chronic degenerative disease, is one of the 
major contributors to chronic low back pain and disability. Although many studies 
have been conducted in the past on brain function in chronic low back pain, most 
of these studies did not classify chronic low back pain (cLBP) patients according 
to their etiology. The lack of etiologic classification may lead to inconsistencies 
between findings, and the correlation between differences in brain activation and 
clinical symptoms in patients with cLBP was less studied in the past.

Methods: In this study, 36 lumbar disc herniation patients with chronic low back 
pain (LDHCP) and 36 healthy controls (HCs) were included to study brain activity 
abnormalities in LDHCP. Visual analogue scale (VAS), oswestry disability index 
(ODI), self-rating anxiety scale (SAS), self-rating depression scale (SDS) were used 
to assess clinical symptoms.

Results: The results showed that LDHCP patients exhibited abnormally increased 
and diminished activation of brain regions compared to HCs. Correlation analysis 
showed that the amplitude of low frequency fluctuations (ALFF) in the left middle 
frontal gyrus is negatively correlated with SAS and VAS, while the right superior 
temporal gyrus is positively correlated with SAS and VAS, the dorsolateral left 
superior frontal gyrus and the right middle frontal gyrus are negatively correlated 
with VAS and SAS, respectively.

Conclusion: LDHCP patients have brain regions with abnormally increased and 
abnormally decreased activation compared to healthy controls. Furthermore, 
some of the abnormally activated brain regions were correlated with clinical pain 
or emotional symptoms.
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Introduction

Chronic low back pain (cLBP), as a common clinical disease, is one 
of the leading causes of disability (Wang et al., 2022) and remains a 
major medical and social problem worldwide. The 2019 Global Burden 
of Disease Study pointed out that approximately 568.4 million people 
suffer from cLBP (Chen et al., 2022). One of the major factors causing 
chronic low back pain is lumbar disc herniation (LDH). As clinical 
neuropathic pain, LDH is mainly due to intervertebral disc injuries and 
degenerative changes with age. Rupture of the fibrous ring and 
protrusion of the nucleus pulposus tissue causes physical compression 
of the paravertebral nerve roots, which results in low back pain and 
dysfunction (Martin et al., 2002; Wang et al., 2021). On the other hand, 
the immune system will recognize the exposed nucleus pulposus and 
produce multiple proinflammatory factors, including interleukin-1, 
prostaglandin E2, 5-hydroxytryptamine, and tumor necrosis factor, to 
increase the sensitivity and extent of pain (Zhao et al., 2019). Studies 
have found that negative emotions, such as anxiety and depression, can 
exacerbate pain, with the increasing severity and duration of chronic 
pain (Sheng and Zhang, 2019; Li et al., 2021; Kao et al., 2022). A study 
on the chronic pain model of LDH also pointed out that LDH is often 
accompanied by depression, especially in females with severe pain and 
a longer course of the disease (Cai et al., 2019). As one of the main 
specificity factors of cLBP, LDH is frequently lack of compatibility 
between the severity of lumbar spine CT/MRI findings and clinical 
symptoms in clinical practice. For example, some patients have a large 
herniated nucleus pulposus but no significant clinical symptoms, while 
others have unbearable pain, weakness, and other clinical symptoms 
with only a bulging lumbar disc. We speculate that the emotional state 
of the patient regarding LDHCP may be an important factor in this 
phenomenon. Emotional experiences and psychological states can 
influence clinical pain symptoms through functional and structural 
changes in the central nervous system and should therefore also 
be taken into account in the diagnosis and treatment of LDH (Mu et al., 
2019; Price and Duman, 2020).

As scientific exploration of the brain continues to extend, more and 
more imaging techniques are making it possible to accurately assess 
pain and emotional interactions. The amplitude of low frequency 
fluctuation (ALFF), regional homogeneity, and functional connectivity 
are commonly used to assess pathological changes in functional 
magnetic resonance imaging (fMRI) studies. These neuroimaging 
methods can quantify and visualize higher central changes in cLBP 
(Weizman et al., 2018; Huang et al., 2020; Li et al., 2020). However, 
previous fMRI studies have mostly failed to classify cLBP specifically 
or nonspecifically according to etiology, which may make the findings 
somewhat controversial. For example, Zhang et al. reported that cLBP 
patients’ ALFF is increased in the post−/precentral gyrus, paracentral 
lobule (PCL)/supplementary motor area (SMA), and PCL/SMA ALFF 
reliably discriminated cLBP patients from HCs in an independent 
cohort (Zhang et al., 2019). Another team argued that cLBP patients 
had reduced ALFF in the right posterior cingulate cortex/precuneus 
cortex and left primary somatosensory cortex (S1), but elevated ALFF 
in the right medial prefrontal cortex, right middle temporal gyrus, 
bilateral inferior temporal gyrus, bilateral insula, and left cerebellum 
(Zhang et al., 2017). Thus, it is important to classify whether chronic 
low back pain is a specific etiology or not. It has been reported that 
cerebellar associated with injury perception and endogenous pain 
modulation, inhibitory cerebellar t-DCS would increase pain 
perception and reduced endogenous pain inhibition while excitatory 

cerebellar t-DCS increased endogenous pain inhibition (Stacheneder 
et al., 2022). Similarly, we can try to find the specific brain regions with 
altered brain function in LDHCP and conduct interventional 
longitudinal studies on the corresponding brain regions in subsequent 
studies. Studying its pain-causing brain function pathological features 
by fMRI analysis methods would help LDH clinical diagnosis and 
treatment, but regretfully there are few corresponding studies. Among 
fMRI analysis methods, ALFF can directly reflect the magnitude of 
baseline changes in the brain blood oxygen level-dependent effect 
(BOLD) signal and indirectly indicate the intensity of local neuronal 
spontaneous activity in the brain. ALFF is considered to be one of the 
most common methods for observing changes in brain function at rest 
and is widely used in brain function studies of pain-related diseases 
(Zang, 2016; Du et al., 2018; Pan et al., 2018; Ge et al., 2022). Therefore, 
we used a data-driven ALFF analysis to explore differences in brain 
activity between patients with lumbar disc herniation chronic low back 
pain (LDHCP) and healthy controls (HCs). The Visual Analog Scale 
(VAS), Oswestry Disability Index (ODI), Self-Rated Anxiety Scale 
(SAS), and Self-Rated Depression Scale (SDS) were used to assess 
clinical symptoms and explore their association with abnormal brain 
regions in LDHCP. We  hypothesized that LDHCP will result in 
abnormal brain activity and the abnormal brain activity in LDHCP 
would be related to their clinical symptoms.

Materials and methods

Subjects

36 LDHCP patients were recruited at Yueyang Hospital of 
Integrated Traditonal Chinese and Western Medicine, Shanghai 
University of Traditonal Chinese Medicine (Shanghai, China) from 
December 2021 to December 2022. The clinical trial was registered on 
November 24, 2021 at the China Clinical Trials Registry with 
registration number ChiCTR2100053542. 36 age-and sex-matched 
HCs were recruited from communities. All subjects underwent Mini-
mental State Examination (MMSE) test prior to enrollment to ensure 
the subjects were cognitively normal.

The inclusive criteria of LDHCP were as follows: (1) Age between 
18 and 65 years, right-handed; (2) CT or MRI shows herniated disc in 
the lumbar spine and suffering from low back pain for at least 
3 months or longer; (3) VAS score ≥ 30/100 points; (4) ODI 
score ≥ 20/100 points; and (5) not receiving pain therapy for at least 
1 month before our enrollment. The inclusive criteria of HCs were as 
follows: (1) aged between 20 and 65 years; (2) right-handed; (3) no 
LDH history and related symptoms; and (4) without negative emotions.

The exclusive criteria were used for both HC and LDHCP groups: 
(1) subjects with organic brain lesions or history of brain surgery; (2) 
subjects with contraindications to MRI; (3) pregnant or lactating 
subjects; (4) subjects with alcohol or drug dependence; (5) subjects 
with other serious co-morbidities; and (6) subjects with an MMSE 
score less of than 27 points (Folstein et al., 1975).

Clinical assessment

This study used VAS, ODI, SAS, SDS to assess LDHCP’s somatic 
pain, functional activity and related anxiety and depression status. 
VAS is reliable in assessing the severity of low back pain and in 
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predicting disability (Thong et al., 2018; Shafshak and Elnemr, 2021). 
VAS divides the pain level evenly on a straight line with 10 scales into 
two endpoints: no pain and extreme pain, corresponding to scores of 
0 and 10, respectively. ODI is a effective and validated scale for 
measuring disability in patients with low back pain and has high-
quality psychometric properties in terms of construct validity, test–
retest reliability and internal consistency (Chapman et  al., 2011; 
Sheahan et al., 2015; Arpinar et al., 2020). It consists of 10 scoring 
items, namely back pain and leg pain, personal care, lifting heavy 
objects, walking, sitting, standing, sleeping, sexual life, social life, and 
traveling. The patient’s performance in each item is scored on a scale 
of 6 degrees from mild to severe, corresponding to grades 0 to 5 
points. The SAS is very similar to the SDS and is a fairly simple clinical 
tool for analyzing patients’ subjective symptoms (Thurber et al., 2002; 
Dunstan and Scott, 2020). It is suitable for adults with symptoms of 
anxiety or depression and has a wide range of applications. SAS has 
high reliability estimates while SDS has good sensitivity and specificity 
(Knight et al., 1983; Turner and Romano, 1984). It is important to 
emphasize that SAS and SDS tests are performed within 1 h prior to 
each MRI to quantify the subject’s state of mind as much as possible.

Magnetic resonance imaging data 
acquisition

Magnetic resonance imaging was performed by a 3.0T SIEMENS 
MAGNETOM (Germany) with a 32 channel head coil at Yueyang 
Hospital of Integrated Traditional Chinese and Western Medicine 
Affiliated to Shanghai University of Traditional Chinese Medicine, 
China. All subjects wore cotton earplugs to reduce noise interference 
and their heads were fixed with a soft foam pad to reduce head 
movement bias. During the MRI scan, all subjects were asked to 
remain awake and relaxed, with no excessive head movements or 
mental activity allowed, otherwise the data collected would not 
be included in the study. The scanning parameters were set as follows: 
(1) functional MRI: 33 interleaved axial slices, matrix size = 64 × 64, 
field of view (FOV) = 220 mm × 220 mm, repetition time 
(TR) = 2,000 ms, echo time (TE) = 30 ms, flip angle = 90 degrees, slice 
thickness = 4 mm, gap = 0 (voxel size3.4 × 3.4 × 4.0), number of 
volumes = 240. (2) structural MRI: Sequence = SPGR, sagittal slices, 
slice number = 160, matrix size = 256 × 256, FOV = 256 × 256 mm, TR/
TE = 1900/2.93 ms, flip angle = 9 degrees, slice thickness = 1, gap = 0 
(voxel size = 1 × 1 × 1). After the scan, the subject was asked if he/she 
had fallen asleep during the scan and if he/she gave an accurate or 
vague answer, the subject’s MRI data was also excluded. All scans were 
performed by the same MRI physician who had been formally trained 
by Siemens.

Data preprocessing

RESTplus (Resting-state fMRI data analysis Toolkit),1 a brain 
imaging data processing and analysis software based on statistical 
parametric mapping (SPM12),2 was used for rs-fMRI data 

1 http://www.restfmri.net

2 http://www.fil.ion.ucl.ac.uk/spm

preprocessing. The procedure was as follows: (1) convert the original 
Dicom files to NIFTI format; (2) remove the first 10 time points to 
stabilize the longitudinal magnetization; (3) slice timing to eliminate 
differences in acquisition times between adjacent scan levels; (4) 
realign to calibrate the subject’s head position at different time points 
in the scan and remove data from patients with head motion >3 mm 
and rotation >3° in any direction; (5) normalizing to Montreal 
Neurological Institute (MNI) space by Diffeomorphic Anatomical 
Registration Through Exponentiated Lie Algebra (DARTEL) using T1 
image new segment; (6) smoothing of the functional image aligned to 
the MNI standard space using a 6-mm full width at half maximum 
(FWHM) kernel; (7) detrending to reduce thermal interference from 
the MR coil and noise generated by the subject’s personal factors (e.g., 
breathing, heartbeat, etc.); and (8) low-frequency filtering (Filter): 
0.01–0.08 Hz signal is selected to filter the image for calculation to 
eliminate interference from other high-frequency signals.

Amplitude of low-frequency fluctuations 
calculation

ALFF values were calculated using RESTplus (Resting-state fMRI 
data analysis Toolkit, see text footnote 1). The procedure for calculating 
the ALFF for each voxel in the brain is as follows: (1) pass the time 
series of each voxel through a 0.01–0.08 Hz band-pass filter after 
removing the linear drift; (2) obtain the power spectrum by performing 
a fast Fourier change on the filter results; (3) square the power spectrum; 
(4) calculate the average of the power spectrum within 0.01–0.08 Hz as 
the ALFF; and (5) divide the ALFF divided by the average ALFF of all 
voxels in the whole brain to obtain the normalized ALFF (mALFF).

Statistical analysis

SPSS 24 (IBM, United States) was used for the statistical analysis of 
demographic and clinical data in this study. For the count data, frequency 
distributions were described and statistical differences between groups 
were analyzed using the chi-square test; for the measurement data, the 
t-test was used if the data conformed to a normal distribution, and if not, 
the Mann–Whitney U test for independent samples was used. Statistical 
tests were all performed using a two-tailed test, α = 0.05, and differences 
were considered statistically significant if p < 0.05. Imaging data statistics 
were analyzed using SPM software. Voxel-by-voxel statistics were 
performed using a general linear model (GLM) with two-sample t-tests 
for subjects in both groups, with gender and age as covariates. Family-
wise error (FWE) was used to correct the results for multiple 
comparisons, with a voxel-level significance threshold of p < 0.001 and a 
cluster-level significance threshold of p < 0.05. If the continuous variables 
conform to normality, Pearson correlation coefficient will be used to 
assess whether there is a correlation between signal values of brain region 
activity and clinical symptom scores. If the continuous variables do not 
conform to normality, correlations between indicators are calculated 
using the Spearman correlation method. P < 0.05 is the threshold of 
statistical difference for correlation analysis.
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FIGURE 1

The two-sample t-test showing significant differences in mean-standardized amplitude of low-frequency fluctuations (mALFF) between LDHCP 
patients and HCs. The color bar indicates T-values. (A) Spatial location map of abnormally activated brain regions in LDHCP patients; (B) Layers section 
of abnormally activated brain regions in LDHCP patients.

Results

Demographic and clinical data

A total of 72 participants were selected for this study, 
including 36 (12 male/24 female) LDHCP patients and 36 (14 
male/22 female) HCs. Table 1 shows the demographic and clinical 
characteristics of the participants. As shown in Table 1, there were 
no significant differences in gender (p = 0.624), age (p = 0.456), 
weight (p = 0.061), occupation (p = 0.551), MMSE (p = 0.11) 
between LDHCP and HCs. Subjects in both groups 
were comparable.

Amplitude of low-frequency fluctuations 
analysis

In this study, there were differential brain areas with increased 
and decreased ALFF values in the LDHCP patients compared to the 
HC group (Figure 1A). Brain areas with increased ALFF were mainly 
located in Right inferior frontal gyrus, orbital part (Frontal_Inf_
Orb_R); Right superior temporal gyrus (Temporal_Sup_R); Right 
lenticular nucleus, putamen (Putamen_R); Right rolandic operculum 
(Rolandic_Oper_R); Right Inferior frontal gyrus, opercular part 
(Frontal_Inf_Oper_R); (Table  2 and Figure  1B The brain area 
pointed by the green arrow); brain areas with decreased ALFF were 
mainly located in Left Superior frontal gyrus (Frontal_Sup_L), Left 
middle frontal gyrus (Frontal_Mid_L), Right middle frontal gyrus 
(Frontal_Mid_R), Left Precuneus (Precuneus_L), Right 
Supplementary motor area (Supp_Motor_Area_R) (Table  2 and 
Figure 1B The brain area pointed by the yellow arrow).

Clinical symptoms correlation

In LDHCP patients’ clinical symptom scores, the VAS scores 
showed a significant Pearson correlation with the ODI scores and the 
SAS scores, respectively. The correlation coefficient between VAS and 
ODI is 0.47, p = 0.034 (Figure 2A) and between VAS and SAS scores is 
0.40, p = 0.014 (Figure 2B).

Clinical-magnetic resonance imaging 
correlations

In LDHCP patients, Right superior temporal gyrus (Temporal_
Sup_R) is positively correlated with VAS scores (R = 0.42, p = 0.009) 

TABLE 1 Demographic characteristics of the LDH and HC groups.

LDHCP HCs p

Gender 12/24 14/22 0.624a

Age 38.58 ± 1.93 38.17 ± 2.48 0.456b

Weight (KG) 61 (55, 70) 69 (59, 74) 0.061c

Occupation 8/28 6/30 0.551a

(Physically / Non-physically)

MMSE 27.02 ± 1.20 27.47 ± 0.99 0.11b

VAS 6 (5, 7) / NA

ODI 19 (14, 27) / NA

SAS 41.30 ± 0.92 / NA

SDS 41.19 ± 1.39 / NA

aχ2-test; bTwo sample t-test; cNon-parametric-tests. 
LDHCP, Lumbar disc herniation patients with chronic pain; HCs, health controls; MMSE, 
Mini-mental State Examination; VAS, Visual Analog Scale; ODI, Oswestry Disability Index 
Questionnaire; SAS, self-rating anxiety scale; SDS, Self-rating depression scale.
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(Figure  3A); Right superior temporal gyrus (Temporal_Sup_R) is 
positively correlated with SAS (R = 0.41, p = 0.012) (Figure 3B); Left 
Superior frontal gyrus (Frontal_Sup_L) is negatively correlated with 
VAS scores (R = −0.46, p = 0.004) (Figure 3C); Left middle frontal 
gyrus (Frontal_Mid_L) is negatively correlated with VAS scores 
(R = −0.35, p = 0.031) (Figure 3D); Left middle frontal gyrus (Frontal_
Mid_L) is negatively correlated with SAS scores (R = −0.41, p = 0.01) 
(Figure 3E); Right middle frontal gyrus (Frontal_Mid_R) is negatively 
correlated with SDS (R = −0.32, p = 0.05) (Figure 3F).

Discussion

This study is based on the 0.01–0.08 Hz classic frequency band in 
ALFF analysis to explore the brain regions where local neural activity 
changes in LDHCP patients compared with HC group and the 
possible links between these changes and clinical symptoms. In our 
study, we found that LDHCP patients have functional abnormalities 
in several brain regions in the resting state. Among them, the right 

superior temporal gyrus, the left dorsolateral superior frontal gyrus, 
and the left and right middle frontal gyrus were correlated with 
clinical pain or mood-related scores, respectively. Correlation analysis 
also found a significant correlation between VAS and ODI, but no 
correlation was found between brain regions and ODI. The absolute 
value of the correlation coefficient R ranged from 0.32 to 0.46, which 
was considered a low correlation in a mathematical sense. Several 
studies have pointed out that patients with chronic pain tend to have 
negative emotions. In turn, negative emotions such as anxiety, 
depression, fear and catastrophic beliefs contribute to the pain 
perception and disability of patients with chronic low back pain, 
affecting their life quality and functional status (Bletzer et al., 2017; Le 
Borgne et al., 2017; Serbic and Pincus, 2017; Koechlin et al., 2018). It 
is in accordance with our results of correlation between 
clinical symptoms.

In our study, the right superior temporal gyrus, left dorsolateral 
superior frontal gyrus, and left middle frontal gyrus of LDHCP 
patients are associated with VAS, while the right superior temporal 
gyrus and middle frontal gyrus are associated with anxiety or 

TABLE 2 Brain region with a significant difference in mALFF between two groups.

Brain regions Cluster size Peak MNI coordinates t-values P

AAL (voxels) x y z

LDHCP > HC

Frontal_Inf_Orb_R 124 36 30 −9 5.9883 <0.001

Temporal_Sup_R 53 66 −9 −9 5.2409 0.017

Putamen_R 86 27 −9 0 4.9789 0.001

Rolandic_Oper_R 41 51 −15 9 5.2708 0.049

Frontal_Inf_Oper_R 44 36 21 30 6.9224 0.038

LDHCP < HC

Frontal_Sup_L 114 −15 27 45 −5.3203 <0.001

Frontal_Mid_L 45 −36 27 30 −5.3483 0.034

Frontal_Mid_R 51 30 30 27 −8.4784 0.02

Precuneus_L 70 −9 −39 63 −4.8403 0.004

Supp_Motor_Area_R 56 9 3 63 −5.0943 0.013

Results were corrected for multiple comparisons using the Family Wise Error (FWE) with a cluster level significance threshold of P < 0.05. Frontal_Inf_Orb_R, Right inferior frontal gyrus, 
orbital part; Temporal_Sup_R, Right superior temporal gyrus; Putamen_R, Right lenticular nucleus; Rolandic_Oper_R, Right rolandic operculum; Frontal_Inf_Oper_R, Right Inferior frontal 
gyrus, opercular part; Frontal_Sup_L, Left Superior frontal gyrus; Frontal_Mid_L, Left middle frontal gyrus; Frontal_Mid_R, Right middle frontal gyrus; Precuneus_L, Left Precuneus; Supp_
Motor_Area_R, Right Supplementary motor area.

FIGURE 2

Correlation between clinical symptoms. (A) The correlation between VAS and ODI (R=0.47 P=0.034); (B) The correlation between VAS and SAS (R=0.40 
P=0.014).
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FIGURE 3

Correlation between mALFF values of abnormally activated brain regions and clinical symptoms in LDHCP patients. (A) Positive correlation between 
the mALFF values in the Temporal_Sup_R and the VAS scores; (B) Positive correlation between the mALFF values in the Temporal_Sup_R and the SAS 
scores; (C) Negative correlation between the mALFF values in the Frontal_Sup_L and the VAS scores; (D) Negative correlation between the mALFF 
values in the Frontal_Mid_L and the VAS scores; (E) Negative correlation between the mALFF values in the Frontal_Mid_L and the SAS scores; 
(F) Negative correlation between the mALFF values in the Frontal_Mid_R and the SDS scores.

depression. The frontal lobe, as an emotion regulation center, is related 
to attention, working memory and verbal behavior, and can receive 
rich emotional information, which is closely related to anxiety. Peng 
et  al. (2019) stated that patients with anxiety depression have 
significantly reduced gray matter volumes in the right inferior frontal 
gyrus and orbitofrontal gyrus compared to non-anxious depressed 
and healthy controls. Patients with generalized anxiety disorder have 
been reported a reduced network connectivity in the prefrontal lobes 
(Wang W. et al., 2016), while major depressive disorder with somatic 
symptoms also shows lower ReHo values in the right middle frontal 
gyrus compared to HC (Geng et  al., 2019). A meta-analysis of 
magnetic resonance spectra also proved that anxiety is associated with 
metabolic dysfunction in several brain regions, including the 
dorsolateral prefrontal and hippocampus (Delvecchio et al., 2017). 
These previous studies have explored the possibility that abnormal 
activation of frontal subregions may be  a potential target for the 
development of anxiety and depression from a variety of perspectives, 
including structural, local functional activity, whole brain network 
connectivity and alterations in metabolic transmitters. In addition to 
the frontal regions of the brain, the temporal lobe has also been linked 
to anxiety. The temporal lobe serves as an important node involved in 
the top-down process of anxiety emotion regulation in the frontal-
amygdala loop (Montag et al., 2013). A graph theory study based on 
the topological properties of brain networks also found that the 
clustering coefficients of the inferior temporal gyrus were significantly 
higher in patients with anxiety disorders than in non-anxiety 
disorders, suggesting that abnormalities in temporal lobe function are 
associated with the neural network mechanisms by which anxiety 
disorders occur (Fang et al., 2017).

It is well known that the various parts of our brain do not 
function independently of each other. Spatially distributed brain 

areas interact with each other through local information and 
connections within and between networks to perform different 
functions. The prefrontal cortex (PFC) abnormalities not only affect 
negative emotions, but also exhibit a complex association with pain. 
The PFC, as the higher center of nociceptive encoding, is able to 
integrate nociceptive sensory and emotional information to produce 
memory, cognition and evaluation of pain, relying on its connections 
with brain regions such as the hippocampus, periaqueductal gray 
matter of the midbrain, thalamus and amygdala (Wang et al., 2020). 
When dealing with stimuli from acute and chronic pain, the PFC 
undergoes changes in neurotransmitters, gene expression, glial cells 
and neuroinflammation, which cause changes in its structure, activity 
and connectivity (Davey et al., 2019). The gray matter volume of the 
mPFC extending to the ACC region was found to be significantly 
reduced in patients with CLBP (Yuan et al., 2017), and the functional 
connectivity of the mPFC/ACC with other regions in the DMN was 
reduced (James et al., 2001; Tu et al., 2019). The middle frontal gyrus, 
as a central region in the prefrontal cortex for processes related to 
cognitive control and emotion regulation, is more sensitive to pain 
perception and sensation. Wang J. J. et al. (2016) reported reduced 
ALFF values in the orbitofrontal cortex and right middle frontal 
gyrus bilaterally in migraine patients compared to HCs and were 
associated with depressive co-morbidity. In addition, dorsolateral 
prefrontal cortex (DLPFC), one of the main components of the 
central control network ECN, are not only involved in higher 
cognitive functions but also have important responsibilities in the 
nociceptive downstream inhibitory pathway, playing a facilitative or 
inhibitory role in pain (Beltran Serrano et al., 2019). Several studies 
have pointed out that cLBP patients have significantly reduced gray 
matter volume in the frontal middle gyrus or DLPFC, as well as 
reduced functional connectivity of the left lateral prefrontal lobes in 
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the disabled subgroup of cLBP patients compared to the non-disabled 
subgroup, suggesting that our pain chronicity may be  related to 
abnormalities in the downstream inhibitory function of the 
DLPFC. Pain not only is a physical phenomenon, but also an 
emotional experience. There are relatively few studies relating the 
temporal lobe to pain, but the temporal lobe is implicated in emotion 
regulation and memory processing and may be involved in pain-
related emotional processing and memory formation (Houde et al., 
2020). Peng suggested that somatic pain VAS scores in the Parkinson’s 
with pain group were associated with activation of the left middle 
temporal gyrus, a brain region associated with nociception, by a 
mechanism that may be due to a dopamine deficiency associated with 
mood disorders that enhances the propagation of injury signals and 
pain sensitivity (Peng, 2020).

Interestingly, in the correlation results of this study, we found a 
positive correlation between pain and anxiety, while the right superior 
temporal gyrus and the left middle frontal gyrus correlated with both 
clinical pain and anxiety scores. This suggests to us that abnormalities 
in the right superior temporal gyrus and left middle frontal gyrus may 
be  the main and mediating factor for the occurrence of pain and 
emotion interaction in LDHCP patients. Future analysis and 
validation of large sample brain imaging cohort studies could focus on 
these 2 brain regions as areas of interest. After a large sample or 
multicenter validation, an attempt could also be made to use changes 
in these two brain regions as an evaluation indicator for clinical 
interventions. By observing the changes in brain region activities 
before and after different interventions, the efficacy of different 
treatments for LDHCP may thus be  evaluated. Other brain areas 
differing in LDHCP patients compared to the HC group in this study, 
which did not show a correlation with clinical scale scores, also have 
an important influence in pain and emotional processing. Studies have 
shown that the DMN is one of the main networks affected by chronic 
pain (Jones et al., 2020), being modulated and reorganized by chronic 
pain. The precuneus, a functional center of the default mode network 
which modulates pain sensitivity and pain thresholds, is structurally 
and functionally altered in chronic pain (Zhang et al., 2014; Wang 
et al., 2019). The right inferior orbital frontal gyrus is anatomically 
connected to the limbic system and other prefrontal brain regions and 
is a superior integration center for emotional processing. Patients with 
depression showed reduced clustering coefficients in the inferior 
orbital frontal gyrus and reduced hemodynamic activation (Zhang 
et al., 2020; Feng et al., 2021).

However, some LDHCP studies have shown results different 
from our findings. Wen et al. found a completely different finding 
from ours, they point out that the LDHCP patients exhibited 
increased fALFF in right lingual gyri in the conventional band, and 
showed increased fALFF in left Cerebelum_Crus1 in the slow-4 
band (Wen et al., 2022). In addition to finding similar results to our 
study in the prefrontal cortex or temporal lobe, Zhou et al. (2018) 
also noted that LDHCP patients had abnormal activation in brain 
regions such as the insula, cingulate gyrus, posterior cerebellum, 
inferior parietal lobule, middle occipital gyrus, and postcentral 
gyrus. It is worth noting that patients recruited by Zhou et al. (2018) 
had pain in their legs in addition to cLBP. We  consider these 
controversial findings mainly for the following three reasons. First, 
different pain locations and differences in the distribution of 
subjects in terms of age, gender, and disease duration may be the 
main reasons for the different study results (von Leupoldt et al., 
2011; Zhao et al., 2013; Wink, 2019; Tsvetanov et al., 2021). Second, 

different brain imaging data acquisition machines, processing 
software, and preprocessing steps used by different study groups 
may make differences in the study results (Murphy et al., 2007; 
Ashburner, 2009; Goto et al., 2013; Qing et al., 2015; Shirer et al., 
2015; Hartwig et  al., 2017; Gargouri et  al., 2018). Third, the 
correction methods and thresholds set by different teams during the 
statistical analysis may make differences in the study results 
(Durnez et al., 2014; Fasiello et al., 2022; Noble et al., 2022). In the 
future, the academic community should endeavor to establish a 
uniform standard for the above mentioned points as soon as 
possible in order to eliminate these controversial conclusions. 
Overall, in this experiment, our findings point to a negative 
correlation between the left middle frontal gyrus ALFF and SAS and 
VAS in LDHCP patients, while the right superior temporal gyrus 
was positively correlated with SAS and VAS, and the left dorsolateral 
superior frontal gyrus and right middle frontal gyrus were 
negatively correlated with VAS and SAS, respectively, which is in 
accordance with the results of previous relevant studies. There are 
also limitations to our study. First, we did not differentiate further 
subgroups of lumbar disc herniation in terms of the degree and 
direction of herniation. Secondly, many patients were unable to 
provide the specific time of the first episode of LDHCP, so we did 
not collect LDHCP duration as a factor in this study. Third, the 
pain-focused position was not specifically limited in this study. 
These factors should be progressively modified in future studies, 
taking into account the actual clinical situation.

Conclusion

This study describes the regions of altered spontaneous neural 
activity in LDHCP patients compared to HCs. The right superior 
temporal gyrus, dorsolateral superior frontal gyrus and middle frontal 
gyrus may have important roles in regulating negative emotions and 
pain, providing new evidence to support the exploration of 
pathological mechanisms in LDHCP.
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