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Depression is a common mental disorder that seriously affects patients’ 
social function and daily life. Its accurate diagnosis remains a big challenge in 
depression treatment. In this study, we used electroencephalography (EEG) and 
functional near-infrared spectroscopy (fNIRS) and measured the whole brain 
EEG signals and forehead hemodynamic signals from 25 depression patients and 
30 healthy subjects during the resting state. On one hand, we explored the EEG 
brain functional network properties, and found that the clustering coefficient and 
local efficiency of the delta and theta bands in patients were significantly higher 
than those in normal subjects. On the other hand, we extracted brain network 
properties, asymmetry, and brain oxygen entropy as alternative features, used 
a data-driven automated method to select features, and established a support 
vector machine model for automatic depression classification. The results 
showed the classification accuracy was 81.8% when using EEG features alone and 
increased to 92.7% when using hybrid EEG and fNIRS features. The brain network 
local efficiency in the delta band, hemispheric asymmetry in the theta band and 
brain oxygen sample entropy features differed significantly between the two 
groups (p  <  0.05) and showed high depression distinguishing ability indicating that 
they may be effective biological markers for identifying depression. EEG, fNIRS 
and machine learning constitute an effective method for classifying depression 
at the individual level.
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1. Introduction

Depression is a common mental disorder that seriously affects patients’ social function and 
daily life. In recent years, enormous pressure has been placed on individuals due to the 
accelerated pace of life. Under the context of the COVID-19 pandemic, panic and anxiety have 
increased (Kok et al., 2022). According to the World Health Organization, an estimated 3.8% of 

OPEN ACCESS

EDITED BY

Ling-Li Zeng,  
National University of Defense Technology, 
China

REVIEWED BY

Chaolin Teng,  
Air Force Medical University, China  
Jianpo Su,  
National University of Defense Technology, 
China

*CORRESPONDENCE

Jinyan Sun  
 jinyansun@fosu.edu.cn  

Zhifeng Hao  
 2297278685@qq.com  

Jiaquan Liang  
 liangjiaquan@muc.edu.cn

†These authors have contributed equally to this 
work

RECEIVED 14 April 2023
ACCEPTED 10 August 2023
PUBLISHED 24 August 2023

CITATION

Yi L, Xie G, Li Z, Li X, Zhang Y, Wu K, Shao G, 
Lv B, Jing H, Zhang C, Liang W, Sun J, 
Hao Z and Liang J (2023) Automatic depression 
diagnosis through hybrid EEG and near-
infrared spectroscopy features using support 
vector machine.
Front. Neurosci. 17:1205931.
doi: 10.3389/fnins.2023.1205931

COPYRIGHT

© 2023 Yi, Xie, Li, Li, Zhang, Wu, Shao, Lv, Jing, 
Zhang, Liang, Sun, Hao and Liang. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Original Research
PUBLISHED 24 August 2023
DOI 10.3389/fnins.2023.1205931

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1205931&domain=pdf&date_stamp=2023-08-24
https://www.frontiersin.org/articles/10.3389/fnins.2023.1205931/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1205931/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1205931/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1205931/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1205931/full
mailto:jinyansun@fosu.edu.cn
mailto:2297278685@qq.com
mailto:liangjiaquan@muc.edu.cn
https://doi.org/10.3389/fnins.2023.1205931
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1205931


Yi et al. 10.3389/fnins.2023.1205931

Frontiers in Neuroscience 02 frontiersin.org

the global population has experienced depression, with over 280 
million individuals affected by depression (World Health 
Organization, 2018). Symptoms induced by depression, such as low 
mood and insomnia, seriously affect the patient’s normal work and life 
and negatively impact their health. In the worst-case scenario, these 
symptoms can lead to suicide (Orsolini et al., 2020). Depression is 
characterized by its persistent existence, high recurrence rate, diverse 
symptoms, and significant individual differences in treatment efficacy. 
The detection and diagnosis of depression often present challenges for 
clinical doctors. So, there is an urgent need to develop objective and 
accurate diagnostic methods.

Depression diagnosis is usually based on the experience of clinical 
doctors and the evaluation of depression scales (Tao et al., 2021). 
However, depression scales have several limitations, such as patients’ 
denying their symptoms and subjective bias. Objective physiological 
indicators are beneficial for the diagnosis of depression. Brain 
functional imaging techniques are now widely used in depression 
research (Ramasubbu et  al., 2016; Herold et  al., 2018; Lai, 2019; 
Kabbara et  al., 2022), including functional magnetic resonance 
imaging (fMRI), functional near-infrared spectroscopy (fNIRS) and 
electroencephalogram (EEG), etc. Studies have shown that depression 
may be  a mental illness caused by abnormal brain function or 
structure in the hippocampus (Liu et al., 2013), dorsolateral prefrontal 
cortex (Grimm et al., 2008), anterior cingulate cortex and posterior 
cingulate cortex (Yao et al., 2009; Guo et al., 2012). Depression is also 
related to abnormal brain network topological properties, including 
global and local connectivity abnormalities. Ye et  al. (2015) used 
resting-state fMRI and the graph theory and found that patients with 
major depressive disorder (MDD) had higher local efficiency and 
modularity, compared with the healthy control (HC) group. An EEG 
study showed that the mild depression group had a larger characteristic 
path length and lower clustering coefficient than that of the HC group 
(Li et  al., 2020). Brain functional imaging research promotes the 
understanding of the brain function of depression and lays the 
foundation for depression diagnosis with neurological indicators.

Among these neuroimaging techniques, fMRI has high spatial 
resolution, but low time resolution (Arbabshirani et al., 2017). Also, 
the strong magnetic field environment and strict motion restriction 
make some subjects feel uncomfortable. EEG has high time resolution, 
but poor spatial resolution. fNIRS has the same physiological basis as 
fMRI and can detect neural activity indirectly by measuring 
hemodynamic signals. fNIRS can provide reasonable time and spatial 
resolution and has good repeatability and stability (Zhang et al., 2015). 
The combination of EEG and fNIRS can provide complementary 
physiological information, and has the characteristics of 
non-invasiveness (Lacerenza et al., 2020), low cost, easy operation and 
feasibility for long-term and repeated monitoring (Cai et al., 2020; 
Zhao et al., 2021). Therefore, this study aims to combine EEG and 
fNIRS to study the brain function of depression and to establish an 
automated diagnostic assessment method for depression.

Machine learning (ML) is a research field that enables computers 
to automatically learn patterns and rules from data (Wu et al., 2021). 
Combined with neuroimaging data, ML can be used for the diagnosis 
of patients. Hosseinifard et al. (2013) extracted nonlinear features from 
four EEG bands and used k-nearest neighbor, linear discriminant 
analysis, and logistic regression as classifiers to distinguish normal 
individuals and depression patients, achieving the highest classification 
accuracy of 83.3%. Another study on depression diagnosis found 

alpha2 and theta asymmetry had the highest classification accuracy of 
88.33% using support vector machine (SVM) (Mahato and Paul, 2020). 
Although EEG alone has shown considerable diagnostic potential for 
depression, combining EEG and fNIRS has the potential to further 
improve diagnostic performance. Al-Shargie et al. (2016) demonstrated 
that EEG and fNIRS can improve the sensitivity and specificity in 
detecting psychological stress, achieving an accuracy increase of 3.4% 
compared to EEG alone and 11% compared to fNIRS alone. Another 
study extracted different features from EEG, fNIRS, and EEG + fNIRS 
signals as biomarkers to quantify human mental workload, and fed 
them to a SVM classifier. The results showed that the hybrid EEG and 
fNIRS system achieved a significantly higher accuracy (90.9%) 
compared to either EEG (85.9%) or fNIRS (74.8%) alone (Aghajani 
et al., 2017). The combined application of EEG and fNIRS in depression 
diagnosis is still in its early stages, requiring further exploration and 
validation of the potential biomarkers.

In this study, we simultaneously recorded EEG and fNIRS signals 
from depression patients and HC subjects during the resting state and 
analyzed the abnormal brain network characteristics of patients. 
Studies have found that delta, theta, and alpha bands are closely 
associated with the pathophysiology and clinical symptoms of 
depression, making them widely utilized in depression biomarker 
research (Kang et  al., 2020; Ghiasi et  al., 2021). Additionally, 
depression is linked to abnormal brain network topological properties 
(Ye et al., 2015; Li et al., 2020). Therefore, we extracted brain network 
properties from these three bands as candidate features. Besides, 
we extracted asymmetry features of delta, theta and alpha, as well as 
brain oxygenation entropy, lateralization, and functional connectivity 
strength as alternative features. By establishing an automated feature 
selection method and an SVM model, we classified the two groups of 
subjects. It was expected that the hybrid EEG and fNIRS system would 
provide better discrimination of depression patients.

2. Materials and methods

2.1. Participants

A total of 25 patients with major depressive disorder (MDD) and 
30 age-, gender-, and education-matched healthy controls were 
recruited (Table  1). MDD were recruited from the Third People’s 
Hospital of Foshan, and their clinical severity of depression was 
evaluated using the 24-item Hamilton Depression Rating Scale 
(HAMD-24).

The inclusion criteria for all participants: age between 16 and 
55 years, right-handedness and junior high school education or above. 

TABLE 1 Demographic information for the two groups.

HC 
(n  =  30)

MDD 
(n  =  25)

χ2/T p

Age 27.43 ± 9.47 28.84 ± 10.70 1.591 0.213

Gender (M/F) 12/18 9/16 0.092 0.761

Education years 13.17 ± 2.65 12.60 ± 2.74 0.033 0.857

HAMD-24 0.40 ± 0.67 19.76 ± 10.37 87.480 <0.001

Data are presented as mean ± standard deviation. A χ2 test was used for gender comparison 
and T-tests were used for Age, Education years and HAMD-24 comparison between the two 
groups.
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The inclusion criteria for MDD were as follows: (Kok et al., 2022) 
meeting the diagnostic criteria for depression in the fifth edition of the 
Diagnostic and Statistical Manual of Mental Disorders (DSM-V) 
based on clinical psychiatric interviews (World Health Organization, 
2018), being diagnosed as MDD by two attending psychiatrists, and 
(Orsolini et al., 2020) without psychiatric medication treatment in the 
past 2 weeks. The exclusion criteria for MDD: (Kok et al., 2022) the 
presence of neurological or severe physical disease (World Health 
Organization, 2018), a history of drug abuse or dependence; (Orsolini 
et al., 2020) the presence of other psychiatric disorders, such as bipolar 
disorder, obsessive–compulsive disorder, schizophrenia, or personality 
disorders. For HC, exclusion criteria include a personal or family 
history of psychiatric disorders.

All participants were informed of the experimental procedures 
and provided written informed consent. This study was approved by 
the Ethics Committee of the Third People’s Hospital of Foshan and 
Foshan University, and all procedures performed in this study were in 
accordance with the committee’s ethical guidelines.

2.2. Experimental design and data 
acquisition

We adopted a resting-state paradigm. During the experiment, 
participants were seated comfortably in a quiet room and instructed 
to relax with their eyes closed but remain awake. EEG and fNIRS 
signals were recorded simultaneously for 6 min. All data collection 
was conducted between 10 a.m. and 4 p.m., with room temperature 
maintained at 23 ± 2°C. Regarding the data acquisition time, 
we completed all data collection between July 2022 and March 2023. 
No dropouts occurred during the entire data collection process.

A wireless EEG acquisition system with 32 channels (NeuSen W, 
Neuracle, Changzhou, China) was used for the EEG recordings, with 
REF as the reference electrode and GND as the ground electrode. The 
EEG data from 28 electrodes were recorded according to the standard 
10–20 system (Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, C4, T7, 
T8, CP1, CP2, CP5, CP6, Pz, P3, P4, P7, P8, PO3, PO4, Oz, O1, O2, 
Figure 1). The EEG sampling rate was 500 Hz and the impedance for 
all electrodes was kept below 30 kΩ during the experiment.

The fNIRS signals were recorded by using a device from 
Artinis, OctaMon. The device comprised two detectors and eight 
emitters (light sources) forming eight fNIRS channels (Figure 1). 
OctaMon emits near-infrared light at 760 and 850 nm, and can 
measure concentration changes of oxygenated and deoxygenated 
hemoglobin (Δ[HbO2] and Δ[Hb]) based on the modified 
Lambert–Beer’s law. The source-detector distance was set as 
35 mm and the differential path length factor was set as 6. During 
the experiment, the fNIRS probe was aligned with the midline and 
placed on the participant’s forehead, with the probe secured in 
place using a bandage to prevent movement and minimize any 
external light interference. The fNIRS signals were acquired at a 
sampling rate of 10 Hz.

2.3. Data preprocessing

In this study, signal processing and analysis were performed using 
EEGLAB and MATLAB. For EEG data preprocessing, EEG signals 
from T7 and T8 were first removed due to the influence of muscle 
activity. Then, a 50 Hz notch filter was used to eliminate the powerline 
interference followed by a bandpass filter of 0.5–30 Hz. After the initial 
10-s EEG data were discarded, the filtered EEG data were then 
re-referenced to the average reference and then segmented into 40-s 
epochs. Epochs with absolute values exceeding ± 100 μV were excluded 
automatically. After visual inspection of all EEG data, the first four 
40-s epochs (26*20000*4) were artifact-free and were used to extract 
the delta (0.5–4 Hz), theta (4–8 Hz), and alpha (8–13 Hz) bands for 
subsequent analyses.

For fNIRS data preprocessing, a second-order bandpass 
Butterworth filter (0.01–0.1 Hz) was first applied to eliminate 
low-frequency noise and baseline drift (Sasai et al., 2011). The fNIRS 
signals may appear to drift over time. A third-order polynomial fit was 
used to remove drift, followed by wavelet denoising (Bornhövd et al., 
2002). Compared with Δ[Hb], Δ[HbO2] has a higher signal-to-noise 
ratio (Strangman et al., 2002), therefore only HbO2 data were analyzed 
in this study. For each participant, after the initial 30-s data were 
discarded, 3-min stable Δ[HbO2] signals were selected for subsequent 
analysis (Pang et al., 2022).

FIGURE 1

(A) The EEG electrode positions. (B) fNIRS channel positions. L is for the left hemisphere, and R is for the right hemisphere.
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2.4. EEG network analysis

To analyze the abnormal brain network characteristics of patients, 
the phase locking value (PLV) (Lachaux et  al., 1999) was used to 
calculate the functional connectivity between all electrode pairs of the 
EEG time series. The range of PLV is between 0 (no synchronization) 
and 1 (complete synchronization). The instantaneous phase (Ψ) of 
each signal was obtained using the Hilbert transform, and the PLV 
between two signals x and y was defined by equation (1):

 

( ) ( )( )
1

1 x y
n i t t

t
PLV e

N
Ψ −Ψ

=
= ∑| |

 
(1)

Where Ψx and Ψy and are the instantaneous phases for signals x 
and y at time t, and N represents the window size used to calculate 
the PLV.

PLV was first applied to each 40-s epoch which is a stable period 
to calculate the brain’s resting state functional connectivity (Kabbara 
et al., 2017), resulting in four 26 × 26 adjacency matrices for each 
subject. Then, these four 26 × 26 PLV matrices were averaged to obtain 
the final PLV matrix to calculate the network properties.

The graph theory was used to analyze the small-world properties. 
The PLV matrix was first converted to the corresponding binary 
network through sparseness with different thresholds. The choice of 
the threshold is critical for constructing the network. Low threshold 
values lead to dense connections while high threshold values lead to 
sparse networks (Achard et  al., 2006). In this study, we  used a 
proportional threshold to remove weak connections from the PLV 
matrix. The PLV matrix was sorted from largest to smallest, and 
connections larger than the threshold were set to 1, while the rest were 
set to 0.1 means that an edge was present between two channels, 
otherwise, no edge was present. If a threshold value was set as 0.3, the 
first 70% of PLV matrix values are designated as 1, while the remaining 
values are designated as 0. We chose a threshold range of 0.2–0.5, with 
a stepsize of 0.01, to ensure the comparison of network properties 
between the two groups under the same connection. After the sparse 
binary network was constructed, six brain network properties 
(clustering coefficient: C, characteristic path length: L, global 
efficiency: GE, local efficiency: LE, transitivity: T, and modularity: M) 
were calculated using the Brain Connectivity Toolbox (BCT) (Rubinov 
and Sporns, 2010).

2.5. Feature extraction and machine 
learning

2.5.1. AUCs of EEG network properties
To avoid the influence of threshold on EEG network property 

analyses, we used the area under the curve (AUC) (Zhang et al., 2015) 
of six brain network properties at the threshold range of 0.2–0.5 as 
alternative features. AUC is the area between the curve of topological 
properties and the X-axis by the numerical integration method, and it 
can provide a summary scalar for the corresponding network property 
(Shi et al., 2021). AUC can avoid the influence of a single threshold 
and research has demonstrated its sensitivity in detecting topological 
changes associated with brain disorders (Zhang et al., 2015; Han et al., 
2020). Thus, in this study, we computed the AUCs in the delta, theta, 
and alpha bands as candidate features.

2.5.2. EEG inter-hemispheric asymmetry
For EEG signals at each band, we  used the relative power 

difference between each electrode and its symmetrical electrode to 
obtain the inter-hemispheric asymmetry as a candidate feature. 
Specifically, we used the Welch’s Hanning method to compute the 
power spectrum for the EEG signal at each electrode. In the Welch 
method, the time series were divided into 8.192-s segments (50% 
overlap), and the modified periodograms of all segments were 
averaged to obtain the power spectral densitySfor each frequency 
band. Equation (2) was used to calculate the relative power of the 
target frequency band, where f1 and f2 represent the lowest and highest 
frequencies in the band, respectively. For example, f1 was 0.5 Hz and f2 
was 4 Hz for delta.
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Equation (3) provides an example to compute the asymmetric 
score of ch1 and ch2, where Rch1 represents the relative power of the 
EEG signal at a specific right electrode, while Lch2 represents the 
relative power of the EEG signal at its corresponding symmetrical left 
electrode. Therefore, the electrode pairs included: F4-F3, F8-F7, 
FC2-FC1, FC6-FC5, C4-C3, CP2-CP1, CP6-CP5, P4-P3, P8-P7, 
PO4-PO3, and O2-O1, totaling 11 electrode pairs.

2.5.3. HbO2 sample entropy
In this study, we used the Sample Entropy (SampEn) (Richman 

and Moorman, 2000) to calculate the complexity of the HbO2 signal 
as candidate features. Specifically, for an N-point time series signal, its 
SampEn is calculated using the following equations:
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where m represents the embedding dimension, r is the tolerance 
factor for the difference between two subsequences, and τ represents the 
time delay. Bi = number of j where d |xi, xj| ≤ r, xi = (xi, xi + τ,…xi + (m-1)τ), 
xj = (xj, xj + τ,…xj + (m-1)τ), i ≤ j ≤ N-mτ, j ≠ i. In this study, we set τ = 2, m = 2 
and r = 0.2*SD (Richman and Moorman, 2000).

2.5.4. HbO2 functional connectivity
In this study, we  divided the eight fNIRS channels into four 

regions (roi1: ch1 and ch3, roi2: ch2 and ch4, roi3: ch5 and ch7, roi4: 
ch6 and ch8). The HbO2 at each region was calculated as the average 
of the two channels within that region. We then calculated the Pearson 
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correlation coefficients between the HbO2 time series from two 
regions and performed Fisher-Z transformation to improve the 
normality (Rogers et al., 2007). The transformed Z values were defined 
as the functional connectivity strength between regions and used as 
candidate features.

2.5.5. HbO2 laterality index
As referenced from previous studies (Wang et al., 2023), we also 

computed the laterality index (LI) of HbO2 as an alternative feature 
using Equation (7). Here, ΔoxyR and ΔoxyL represent HbO2 
concentration changes in the right (four right channels were averaged) 
and left (four left channels were averaged) forehead, respectively. The 
range of LI is between −1 and 1, where a positive LI indicates greater 
activity in the right forehead compared to the left forehead, and a 
negative LI indicates greater activity in the left forehead compared to 
the right forehead.

 

( )( ) ( )( )
( )( ) ( )( )

oxyR min oxyR oxyL min oxyL

oxyR min oxyR oxyL min oxyL
LI

 ∑ ∆ − ∆ − ∆ − ∆ =
 ∑ ∆ − ∆ + ∆ − ∆   

(7)

2.5.6. Feature selection and SVM model
After extracting the above candidate features, we  obtained a 

55 × 67 two-dimensional feature matrix. Before classification, 
we normalized these features within the range of 0 and 1 using the 
following equation (8):

 
′ =

−
−

X X X
X X

i min

max min  
(8)

where X’ is the normalized feature value, X is the original feature 
value, Xmax and Xmax are the maximum and minimum values of the 
feature X, respectively.

Among these alternative features, there were many redundant 
features. Feature selection can reduce the number of input variables 
for the classifier, which can effectively improve the model recognition 
(Mumtaz et  al., 2018). The least absolute shrinkage and selection 
operator (LASSO) regression (Tibshirani, 1997) was used to perform 
feature selection on the input feature matrix. LASSO penalizes the 
coefficients of regression variables so that some feature variable 
parameters shrink to 0. The LASSO method uses L1 norm 
regularization to select variables, retaining only the features with 
non-zero coefficients after the shrinkage process. This feature selection 
not only retained useful feature information as much as possible but 
also reduced the complexity of the model. Suppose 𝐗∈R𝑁×𝑚 consists 
of 𝑁 samples containing 𝑚 features, 𝐲∈R𝑁 is the response vector, and 
𝜷∈R𝑚 is the vector of regression parameters. LASSO is mathematically 
represented as follows (Liu et al., 2013):

 
2
2 1| |argmin y Xββ λ β∗ = − β +

 (9)

where 𝜷* is the optimal solution of the problem, ||.||1, ||.||2 
represent the L1 norm and L2 norm respectively, λ ≥ 0 is the penalty 
parameter. The L1 regularization imposes a penalty on the regression 
coefficients 𝜷, leading to automatic shrinkage of smaller absolute 

values of 𝜷 components toward 0. Therefore, a sparse optimal solution 
can be obtained, and as the penalty parameter increases, the solution 
becomes sparser. In the feature selection process, we  employed a 
10-fold cross-validation strategy to identify the best performing 
feature subset within the training set, which served as the input 
variables for the SVM model.

SVM was used to construct the classification model (Cortes and 
Vapnik, 1995). SVM has unique advantages in solving small sample, 
nonlinear, and high-dimensional feature recognition problems and 
has largely overcome problems such as the “curse of dimensionality” 
and overfitting (Erfani et al., 2016). SVM constructs a hyperplane that 
separates the target class from the other classes by minimizing the 
error and maximizing the margin, which is the distance between the 
hyperplane and the closest sample points from each class (Cortes and 
Vapnik, 1995). Based on the optimal feature set selected by the LASSO 
regression, we established an SVM model and optimized the kernel 
function parameters (C = 1, kernel = ‘linear’). We  used the Leave-
One-Out Cross-Validation (LOOCV) (Cawley and Talbot, 2004) to 
evaluate the performance of the model, where one participant was 
used as the test sample while the remaining participants served as the 
training samples. We performed backward feature elimination during 
the LOOCV process and identified the subset with the highest 
recognition accuracy as the final classification feature. Meanwhile, 
Accuracy, Precision, and Recall were used to evaluate the 
generalization performance of our model.

Figure 2 shows the flow chart for processing and analyzing EEG 
and NIRS data in this study.

2.6. Statistical analyses

In our study, Shapiro–Wilk tests were used to determine whether 
the data were normally distributed. We employed the independent 
samples t-test or the Mann–Whitney U test to compare the 
measurement data between the two groups, and all t-tests were 
corrected by FDR (False Discovery Rate). The effect size was calculated 
using the GPower software, and the level of statistical significance was 
set at 0.05. Python was used for automatic feature selection and 
classification modeling.

3. Results

3.1. EEG network results

Figures 3–5 show the network topological property trend along 
the threshold in different EEG bands for the two groups of subjects. 
Along with the threshold increase, some connections got lost, leading 
to a decrease in C. This loss of connections also resulted in connections 
between node pairs passing through more nodes, leading to an 
increase in L. The global and local efficiency as well as transitivity also 
decreased with increasing thresholds, while modularity increased with 
increasing thresholds.

This study first analyzed the abnormal brain network 
characteristics of patients. T-test results showed that, in the delta and 
theta bands, C and LE of MDD increased compared to the HC, and L 
and M of MDD also increased at certain thresholds (Figures 3, 4). 
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There was almost no significant difference in GE and T between the 
two groups. And there was no significant difference in brain network 
properties between the two groups in the alpha band.

We also compared the AUCs of the six network properties 
between the two groups. The T-test results showed significant 
differences in the AUCs of C and LE in the delta and theta bands 

FIGURE 2

EEG and NIRS data processing and analyses flowchart.

FIGURE 3

Delta network topological properties. The mean C (A), L (B), LE (C), GE (D), T (E), and M (F) for the two groups under each threshold. The shaded part 
indicates the standard error (SEM) (p  <  0.05, FDR correction).
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between the two groups (Figure 6). The results were as follows: delta-C 
(p = 0.032, Cohen’s d = 0.61) and delta-LE (p = 0.015, Cohen’s d = 0.76); 
theta-C (p = 0.032, Cohen’s d = 0.60) and theta-LE (p = 0.014, Cohen’s 
d = 0.79). The p-values were corrected using FDR correction.

3.2. Classification results

After LASSO feature selection, we selected the optimal feature 
subset, that is, 19 EEG and fNIRS features shown in Figure 7. In order 

FIGURE 4

Theta network topological properties. The mean C (A), L (B), LE (C), GE (D), T (E), and M (F) for the two groups under each threshold. The shaded part 
indicates the SEM (p  <  0.05, FDR correction).

FIGURE 5

Alpha network topological properties. The mean C (A), L (B), LE (C), GE (D), T (E), and M (F) for the two groups under each threshold. The shaded part 
indicates the SEM (p  <  0.05, FDR correction).
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FIGURE 7

Feature importance in the (EEG and fNIRS) LASSO Model.

to obtain reliable biomarkers for depression, we also performed t-tests 
to analyze the differences in the top six features after LASSO between 
the two groups. The results showed significant differences between the 
two groups in local efficiency in the delta band (p = 0.015, Cohen’s 
d = 0.76), asymmetry of FC1-FC2 in the theta band (p = 0.003, Cohen’s 
d = 0.84), and HbO2 sample entropy at ch1 (p = 0.016, Cohen’s d = 0.82) 
(Table 2).

SVM models were built with single EEG features and with hybrid 
EEG and fNIRS features, separately. The confusion matrixes for the 
two SVM models are shown in Figure  8, and the classification 
Accuracy, Precision, and Recall for the two SVM models are shown in 
Figure 9A. Using EEG features, the SVM classification accuracy was 
81.8%, with the precision of 81.9% and the recall of 81.3%. But when 

mixed in fNIRS features, the calculated average accuracy was 0.927 
with a standard deviation of 0.036, precision and recall of 92.7 and 
93.0%, respectively. The receiver operator characteristic (ROC) curves 
of the SVM models are presented in Figure 9B, with AUC = 0.87 for 
EEG features alone, and AUC = 0.94 for hybrid EEG and 
fNIRS features.

4. Discussion

This study examined the resting-state functional network 
properties of MDD patients and attempted to establish an automatic 
identification method for MDD using EEG and fNIRS features. The 
results showed that MDD had higher clustering coefficients and local 
efficiency in the delta and theta bands. Through automated feature 
selection, we constructed an SVM model with both EEG and fNIRS 
features that achieved high classification rates of 92.7% for the two 
groups of subjects.

Our results revealed that MDD exhibited higher LE, C, and M in 
the delta and theta bands. The increased clustering coefficient of 
patients’ brain networks suggests an increase in the local short 
connections, indicating high local clustering phenomena. 
Furthermore, patients’ local efficiency was significantly higher than 
that of the HC group, which may represent a decrease in information 
processing efficiency between distant brain regions (Rocca et  al., 
2016). These results indicate that some local regions in the brain 
network of MDD have abnormal neural connections, leading to a 
tendency for the brain network to become more tightly and locally 
connected and separate globally in certain bands. Our findings are 
consistent with those of an fMRI study (Ye et al., 2015) but differ from 
those of Li et al. (2020) and Leistedt et al. (2009). Leistedt et al. found 
that the path length in the theta and delta frequency bands was 

FIGURE 6

AUC indicators that are significantly different between the two 
groups, * indicates p  <  0.05, ** indicates p  <  0.01 (FDR correction).
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significantly reduced in acute depressive patients. This difference may 
be  due to different analysis methods and patients’ 
clinical manifestations.

The feature importance ranking showed that the local efficiency 
in the delta band was the most distinguishing factor in identifying 
depression, followed by the FC1-FC2 hemisphere asymmetry in the 

theta band, the O2-O1 asymmetry in the alpha band, the O2-O1 
asymmetry in the delta band, and the HbO2 SampEn of the right 
forehead in sequence. Among them, there were significant differences 
between the two groups in the local efficiency of the delta band 
(p = 0.015, Cohen’s d = 0.76), the FC1-FC2 hemisphere asymmetry in 
the theta band (p = 0.003, Cohen’s d = 0.84), and the HbO2 SampEn at 
ch1 (p = 0.016, Cohen’s d = 0.67). Currently, many studies have shown 
that the frontal asymmetry in the alpha and theta bands can serve as 
a biomarker for evaluating depressive disorders (Hinrikus et al., 2009; 
Duan et al., 2020; Mahato and Paul, 2020; Kang et al., 2021). Our 
research confirmed that the frontal asymmetry in theta band of 
depressed patients was greater than that of healthy individuals. Under 
the joint verification of machine learning classification and statistical 
analyses, this feature can be used to distinguish depressed patients 
from healthy individuals. Furthermore, the forehead HbO2 SampEn 
was higher in depressed patients than that in healthy subjects, 
indicating that patients’ neural activity in this region is more complex 
during the rest state (Perpetuini et al., 2020). The features selected by 

TABLE 2 T-test results for the top six features between the two groups.

No Features T-value P-value Cohen’s d

1 Delta_AUC_LE −2.787 0.015 0.76

2 Theta_Asymm_FC2FC1 −3.162 0.003 0.84

3 Alpha_Asymm_O2O1 1.063 0.293 0.28

4 Delta_Asymm_O2O1 0.710 0.367 0.24

5 SampEn_ch1 −2.488 0.016 0.67

6 Theta_AUC_T −1.102 0.275 0.30

Negative T-values indicate higher values for the patient group.

FIGURE 8

The confusion matrix for the SVM model with EEG features (A) and with EEG and fNIRS features (B).

FIGURE 9

(A) The classification performance of SVM with EEG features and hybrid EEG and fNIRS features. (B) The ROC curve of the SVM models.
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our machine learning model and the significant group differences in 
statistical analyses are not entirely consistent. Low p-values do not 
necessarily indicate good single-subject-level prediction performance, 
further emphasizing the need for AI involvement in precision 
medicine (Bonkhoff and Grefkes, 2022).

In this study, we  used EEG with another complementary 
neuroimaging technique, fNIRS. The incorporation of fNIRS features 
improved the recognition accuracy of the SVM model by 10.9%, 
demonstrated the advantages of the joint EEG and fNIRS signals in 
identifying depressive disorders. EEG and fNIRS measure the 
electrophysiological and hemodynamic signals of brain activity, 
respectively, and their combination can provide richer information 
and enhance detection accuracy. This has also been confirmed in 
other studies. For example, Li et al. achieved a higher classification 
accuracy (91.02%) by integrating EEG and fNIRS features in a left 
and right hand movement task compared to using EEG alone 
(85.64%) (Li et al., 2017). Al-Shargie et al. demonstrated that the 
fusion of EEG and fNIRS features could enhance the sensitivity and 
specificity in assessing mental stress. The accuracy of the fusion 
method improved by 3.4% compared to EEG alone and by 11% 
compared to fNIRS alone (Al-Shargie et al., 2016). We developed an 
SVM model that incorporated mixed EEG and fNIRS features, 
achieving a classification accuracy of 92.7%. The notable performance 
of our model might be  attributed to two key factors. Firstly, 
we employed a non-linear phase analysis method (PLV) to construct 
brain networks, enabling a better capture of the complex temporal 
dynamics of EEG signals (Lachaux et  al., 1999). Secondly, the 
combination of LASSO and SVM for feature selection effectively 
addressed the challenges of small sample size and high-
dimensional data.

The hybrid EEG and fNIRS is a safe and well-tolerated method of 
data acquisition for subjects with low environmental requirements. 
Throughout the entire experiment, no subjects dropped out. This 
makes the combination method great potential for clinical application 
or routine screening of depression. Moreover, the development of 
wireless and wearable EEG and fNIRS devices has made our approach 
more portable and cost-effective (Buckova et al., 2020; Jeong et al., 
2022; Yu et  al., 2022), which facilitates screening in high-risk 
populations at schools or communities.

This study also has some limitations that need to be addressed. 
Firstly, the sample size was small. However, the effect size 
demonstrated that the differences in network properties and features 
between the two groups were reliable. In future research, we  will 
recruit more patients to further validate our method, taking into 
consideration various factors such as age, gender, and severity level. 
Secondly, we  employed a simple feature-level fusion of EEG and 
fNIRS features. However, this fusion strategy may overlook the 
complex relationship between EEG and fNIRS. In the future, we will 
explore high-level fusion strategies, such as deep learning-based 
methods or convolutional neural networks, to better leverage the 
potential information of EEG and fNIRS.

5. Conclusion

This study found that patients with depression have higher 
clustering coefficients and local efficiency in the delta and theta 

bands, indicating brain network separation and local clustering 
characteristics. Our study also suggests that the brain network 
local efficiency in the delta band, hemispheric asymmetry in the 
theta band and brain oxygen sample entropy features may serve 
as biological markers for identifying depression. By optimizing 
hybrid EEG and fNIRS features, we built a machine learning-
based individual-level depression diagnosis model, achieving an 
accuracy of 92.7%. The advantages of hybrid EEG and fNIRS 
allow our depression recognition model great potential  
for use.
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