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Editorial on the Research Topic

Demonstrating quality control (QC) procedures in fMRI

Introduction

This Research Topic, “Demonstrating quality control (QC) procedures in fMRI1,” focused

on promoting quality control descriptions and discussions within the FMRI community.

We invited anyone in the field to participate and perform their QC protocol of choice on

sets of task-based and resting state FMRI data, describing their steps and criteria in detail.

Ten teams participated, utilizing processing and QC methods that are available from a wide

variety of software packages. The resulting set of articles represents a didactic resource for

the field moving forward, as a reference for teaching and describing QC procedures.

The examined data collection came from real, unaltered, and publicly available datasets

from widely used distributions. Even if a repository is curated, one would likely still expect

to see some QC issues arise—that is one of the fundamental reasons this Research Topic was

organized, and the aim of this project is certainly not to derogate the collections themselves

but simply to use “real world” datasets for demonstrating detailed QC. The assortment was

selected explicitly to include a full gamut of “good” to “poor” quality datasets. In the end,

among the QC issues found and reported by the Project contributors were: extreme subject

motion, severe ghosting, upside-down EPIs, incomplete FOV coverage, low TSNR, severe

EPI distortion and dropout, left-right flipping of datasets, mismatched subjects, systematic

spatio-temporal EPI artifacts, incorrect slice-timing, task-correlated motion, invalid task

performance and anomalous correlation patterns. These are all issues that can affect study

results, and this highlights how anyone undertaking an FMRI project should include careful

QC assessments as part of their workflow.

Here we first describe how the focal data collection was assembled. We then give an

overview of the software utilized, and highlight commonalities across the contributions of

the participating teams, as well as differences and unique aspects of each. Finally, we present

recommendations based on the accumulated Project contributions for the neuroimaging

community around QC considerations, which apply when using either public data or

acquiring one’s own.

1 https://www.frontiersin.org/research-topics/33922/demonstrating-quality-control-qc-

procedures-in-fmri
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Methods

Project instructions for participants

We briefly describe the Project instructions for participants (see

https://osf.io/qaesm/ for more details). Participants were asked to

perform their preferred QC steps on provided task-based and/or

resting state FMRI data collections, and to describe their evaluation

criteria in detail, including representative examples. Researchers

could choose any desired processing steps for a whole brain study,

with the final EPI data aligned to a specified MNI template (see

below). “Whole brain” included subcortical structures but excluded

the cerebellum, as many datasets do not fully cover the latter.

The participants could perform any QC steps they would

normally use for such an analysis, using any software, visualization

or processing. Each analyzed subject’s dataset would be placed into

one of the following categories: “include” (passing all QC criteria;

high confidence to use in a study); “exclude” (fails one or more QC

criteria; high confidence to remove); and “uncertain” (questionable

for whether to include).

For the Project write-ups, the participants were asked to

explicitly list all their evaluative criteria, and to denote quantitative

and qualitative ones. Additionally, authors should:

Describe each item listed in the QC criteria table(s) in

sufficient detail for others to apply the same criteria. The criteria

may also be structured as a protocol. Write the descriptions in

a didactic manner, as if explaining each item to a new research

assistant. Please detail quantities used.

Finally, each Project should contain a presentation of a variety

of interesting and representative QC examples across each of

the categories.

Dataset selection

To facilitate the QC discussions, we created a single, common

collection from public repositories for participating researchers to

analyze. Here we list the source datasets, as well as the approach for

selecting them.

We chose to start with example investigations of commonly

used data, namely human acquisitions at 3T with a single echo,

which have long formed the bulk of FMRI studies. For the Project’s

initial distribution of data, the acquisition site and original subject

IDs were anonymized, to reduce possible evaluation biases. Since

FMRI analysis is often performed on groups of subjects, and some

QC factors might be considered “relative” to the group, subject ID

numbering was used to identify sets of subjects from a particular

site. Separate sites were labeled with group numbers, and subject

IDs were simply remapped with the first digit reflecting group

membership: Group 0 = sub-001, sub-002, . . . ; Group 1 = sub-

101, sub-102, . . . ; etc. (see the table in the Supplementary material

for the full mapping). No properties of the datasets (data values,

header information, etc.) were altered in this process. The datasets

are publicly available from the “FMRI Open QC Project” webpage2

2 doi: 10.17605/OSF.IO/QAESM: https://osf.io/qaesm/.

(Taylor et al., 2023), which also contains further details of the

Project description.

For the resting state collections, we browsed available data

repositories that had open use agreements, including ABIDE-1

and ABIDE-2 (Di Martino et al., 2014), AOMIC (Snoek et al.,

2021), Functional Connectome Project (FCP; Biswal et al., 2010),

MPI-LEMON (Babayan et al., 2019), SALD (Wei et al., 2018), and

SLIM (Liu et al., 2017), as well as a large number of OpenNeuro

(Markiewicz et al., 2021) collections. In total, over 230 separate

resting state data collections were initially examined for this project.

The first selection stage was to find collections with the

following properties:

• Having >12 subjects, each of whom has at least one EPI and

one T1w volume in the same session directory.

• EPI: TR > 1.5 s, all voxel edges < 4.1mm, number of volumes

> 100, non-zero srow values in the NIFTI header.3

• T1w: all voxel edges < 2.1mm, non-zero srow values in the

NIFTI header.

This reduced the number of collections to 56.

Then, quick processing and brief visual investigation were

performed. Data collections with systemic issues, such as overly

tight FOV (cutting off the cerebellar cortex), very poor EPI tissue

contrast, obvious ghosting in the EPIs, and odd coordinate systems

(e.g., not approximately centered around the coordinate origin,

suggesting possible DICOM conversion and header issues) were

removed from further consideration. From the remaining sets,

we selected collections with a variety of voxel sizes, run lengths

and numbers of runs, and particularly those that appeared to

contain both reasonable data and a variety of occasional (but

not systemic) QC considerations. To finalize the Project data

collection size, we aimed to balance the breadth of data properties

to explore with the number of researchers likely to participate:

having more sites/subjects would likely increase the former but

decrease the latter.

Therefore, we settled on having seven resting state FMRI sites

from various data repositories and formed “groups” of∼20 subjects

each. Most of the Project groups were subsets of their original

repository collections; the subsets generally had a range of subject

motion and other underlying considerations. Some repositories

originally contained explicit categorization of subjects as “control”

and non-control, such as having TBI (traumatic brain injury)

or psychiatric diagnosis; those designations did not influence

data selection, and subjects were typically drawn from multiple

categorizations, as most MRI studies contain such combinations.

The final list of included resting state datasets (Groups 1–7)

is provided in Table 1, with a brief description of properties

by site/group.

Similar considerations to the above were used for selecting

task-based FMRI data. As an additional factor, there are a wide

variety of possible task designs, with differing degrees of complexity

for modeling and analysis. Quality control considerations of the

paradigm timing, both in terms of setup and subject response, are

3 That is, have a defined voxel grid, where the a�ne sform matrix in the

NIFTI header is nonzero.
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TABLE 1 List of the sites from which project datasets were selected, along with brief descriptions of EPI properties.

Brief descriptions of the resting state datasets used in the project

Group 1: ABIDE-1, KKI (Barber et al., 2012; Nebel et al., 2014), N = 20 subjects used (of 55 total). FMRI acquisition details: Philips Achieva 3T scanner, EPI axial

slice acquisition with fat saturation and SENSE (factor=3), flip angle= 75◦ , TE= 30ms, TR= 2.5 s, voxel size= 2.67× 2.67× 3.0mm, slice timing provided in

JSON sidecar, PE direction= j-; subjects instructed to focus on a crosshair on black computer screen.

Group 2: ABIDE-1, Trinity (Delmonte et al., 2012), N = 20 subjects used (of 49 total). FMRI acquisition details: Philips Achieva 3T scanner, EPI axial slice

acquisition with fat saturation and SENSE (factor=2), flip angle= 90◦ , TE= 28ms, TR= 2.0 s, voxel size= 3.0× 3.0× 3.841mm, slice timing provided in JSON

sidecar, PE direction= j-, subjects instructed to close eyes during scan.

Group 3: ABIDE-2, KUL-3 (Bernaerts et al., 2016), N = 16 subjects used (of 28 total). FMRI acquisition details: Philips Achieva Ds 3T scanner, EPI axial slice

acquisition with fat saturation and with SENSE (factor=2), flip angle= 90◦ , TE= 30ms, TR= 2.5 s, voxel size= 1.562× 1.562× 3.1mm, slice timing provided in

JSON sidecar, PE direction= j-, subjects instructed to focus on a white fixation cross on black background.

Group 4: FCP, Baltimore (Pekar and Mostofsky, 2010), N = 23 subjects used (of 23 total). FMRI acquisition details: 3T scanner (unspecified type), TR= 2.5 s,

voxel size= 2.667× 2.667× 3.0mm, subjects instructed to keep eyes open and fixate (target unspecified) during scan.

Group 5: OpenNeuro, ds000220 (Roy et al., 2017), N = 20 subjects used (of 26 total). FMRI acquisition details: Philips Achieva and Siemens Trio 3T scanners, EPI

axial slice acquisition with segmented k-space (no SENSE), flip angle= 90◦ , TE= 34ms, TR= 2 s, voxel size= 1.85× 1.85× 4.0mm, instructions to

subjects undescribed.

Group 6: OpenNeuro, ds000243 (Petersen et al., 2018), N = 20 subjects used (of 120 total). FMRI acquisition details: Siemens Magnetom Trio 3T scanner, 12

channel head coil, flip angle= 90◦ , TE= 34ms, TR= 2.5 s, voxel size= 4.0× 4.0× 4.0mm, instructions to subjects undescribed.

Group 7: OpenNeuro, ds000245 (Yoneyama et al., 2018), N = 20 subjects used (of 45 total). FMRI acquisition details: Siemens Verio 3T scanner, 12 channel head

coil, flip angle= 80◦ , TE= 30ms, TR= 2.5 s, voxel size= 3.0× 3.0× 3.51mm, slice timing provided in JSON sidecar, subjects instructed to close eyes

during scan.

Brief description of the task-based state datasets used in the Project

Group 0: OpenNeuro, ds000030, “task-pamenc” (Poldrack et al., 2016; Bilder et al., 2018), N = 30 subjects used (of 272 total). FMRI acquisition details: Siemens

TrioTim 3T scanner, EPI acquisition with segmented k-space and fat saturation (acceleration factor PE= 2), flip angle= 90◦ , TE= 30ms, TR= 2 s, slice timing

provided in JSON sidecar, PE direction= j-.

See the Supplementary material for a detailed subject list from each site. In some cases, properties varied across the site, which was noted within some QC evaluations, and properties shown here

are those for the first subject in each group. Group 4′s details were not provided in original project downloads, because the dataset JSON sidecar files did not contain acquisition information.

This description comes from the “Release Table (April 6, 2012)” spreadsheet from the FCP download website: https://www.nitrc.org/docman/?group_id=296. For Groups 5–7, voxel size was

included only in the NIFTI dataset, not included in the JSON sidecar.

important in much of FMRI research. For this Project we decided

to use task FMRI data from a single site and paradigm, and we

wanted to select a relatively straightforward design with a small

number of stimulus classes, to simplify explication, processing and

modeling considerations.

Thirty subjects from the following task-based dataset were

selected. Table 1 provides a brief description of this “Group 0,”

including FMRI acquisition properties contained within the JSON

sidecar files in the Project download. The specific task was a paired

memory encoding task (“pamenc”) with button-pushing responses

(see Poldrack et al., 2016, for details). In addition to the originally

distributed events TSV file, we also provided a simplified task

file with only three columns: stimulus onset time, duration and

a trial type label (“TASK,” “CONTROL”). Teams were free to use

either set of timing information—or even to not use any—as part

of their QC. Onset timing was essentially identical for all but

two subjects (whose onsets were uniformly 2 s later), separated by

2.5–18.5 s (mean = 7.5 s). Response times, which could represent

event duration, had per-subject means of 0.51–1.57 s (range= 0.0–

2.43 s) for CONTROL events and 0.45–2.65 s (range = 0.0–4.0 s)

for TASK events. Inter-stimulus interval times ranged from 1.3 to

17.3 s (mean= 6.4 s).

We note that de-identifying the task data to fully blind

teams from the source dataset was challenging, because BIDS

(Brain Imaging Data Structure specification) encodes the task label

explicitly in the dataset filenames. For example, an EPI dataset

is called sub-001_task-pamenc_bold.nii.gz, where “pamenc” is the

label for the specific task; searching online for “fmri pamenc” leads

to the original repository. Because we did not want to change any

dataset properties besides the subject IDs (to avoid introducing

any errors by mistake), we neither relabeled columns within the

subject timing files nor changed the task label in the filenames.

Therefore, in theory, participating teams could have investigated

more background details about the task data; we are unaware if any

did, but, in practice, essentially the same QC considerations would

still apply.

In the end, the available Project data collection was comprised

of seven groups of 139 total resting state FMRI subjects and 1

group of 30 task-based FMRI subjects. Each subject had one T1w

anatomical reference and 1 or 2 EPI functional runs from a single

session directory. These collections were intended to provide a

basis for QC examples, with a full spectrum of data quality within

each group and a diverse assortment of items to discuss across the

subjects: having a mix of both reasonable and poor quality data

would facilitate clearer depictions of QC procedures and contrasts.

The collections were initially investigated for this purpose, using

a quick inspection. However, during the course of the analysis for

the Project itself, it became apparent with a more complete QC

procedure that the EPI datasets for two groups actually did contain

systemic artifacts (see Reynolds et al.). While this is certainly worth

examining and understanding from a QC point of view, it had not

been the intention to include such datasets within this project. This

occurrence does primarily highlight two important points: (1) an

in-depth quality control investigation is necessary on at least some

subset of a data collection to truly understand its contents, whether

using shared or acquired data; and (2) QC must be performed from
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the start of data acquisition (also using an in-depth examination),

to avoid the propagation of systemic issues.

The repositories from which subjects were drawn contained a

wide range of age spans: from 8–13 to 56–78 years. Neither age

nor sex nor any other subject-specific information was included in

the accompanying participants.tsv file, as part of anonymization.

In “real” FMRI studies that use a standard template to define a

common final space, it is generally considered preferable to match

that template to the age of the subjects, such as the Haskins

pediatric template (Molfese et al., 2021) for studies of children;

and, increasingly, templates and atlases exist for a wider variety

of geographical locales, such as Korean (Lee et al., 2005), Chinese

(Tang et al., 2010), and Indian (Holla et al., 2020) populations,

which may also provide a better reference. However, since the

present project was focused on subject-level QC considerations and

not on a group-level report, researchers were asked to use just a

single reference template for simplicity and uniformity: the widely

used MNI-2009c ICBM152 T1w, non-linear asymmetric volume

(Fonov et al., 2011). Any particularly notable mismatches to the

template dataset would be deserving items for QC commentary by

the participating teams.

BIDS packaging

The selected datasets were then merged into BIDS-valid resting

state and task-based collections. We used multiple versions of

the BIDS validator (1.2.5 and 1.9.9) to ensure BIDS compliance.

As noted above, we did not alter the data or metadata supplied

from the source dataset. Since each of the datasets was already

available publicly in a BIDS structure, we only needed to rename

the directories and files according to our site-based enumeration

(see Supplementary material).

We first merged the seven resting state groups into a single

data collection, and then deposited the appropriate top-level text

files (dataset_description.json, participants.∗, etc.) into each of the

resting state and task-based collections. For resting state Group 4,

we noticed that the JSON sidecar for the functional image in the

source dataset was provided at the dataset level instead of at the

participant level. To maintain consistency with the other groups,

we copied this sidecar to the latter and renamed the file accordingly.

We also note that for resting state Groups 4 and 5, JSON sidecars for

the T1w images had not been supplied in the source dataset. Since

metadata fields contained in these sidecars are often contingent on

conversion software version, we opted to preserve the absence of

this metadata.

We found no validation errors in the resting state collection and

noted five warnings: (1) some images were not supplied with slice

timing info; (2) not all subjects contained the same number of EPI

files (e.g., some subjects in Group 6 had two functional runs, while

the rest of that group and all other groups only contained one per

subject); (3) not all subjects/sessions/runs had the same scanning

parameters, sometimes even within a single group/site; (4) NIFTI

header fields for unit dimensions were missing in the anatomical

volumes for some subjects (xyzt_units was 0 for most of Group 1

and all of Group 2); and (5) two subjects (sub-506 and sub-507)

had a mismatch between the number of items in the SliceTiming

array and the k dimension of the corresponding NIFTI volume.

For the task-based collection we found no validation errors and one

warning: the tabular file contained custom columns not described

in the data dictionary for the timing files. We avoided altering any

of these warnings, as they existed in the original data, and left these

as possible QC items for teams to discuss.

Participating teams and software utilized

One goal of this Research Topic was to have as wide a

representation of software tools and research labs as possible, in

order to have a maximal breadth of QC descriptions. The Research

Topic was advertised widely on general MRI analysis message

boards, such as the INCF’s Neurostars, and on email lists, such

as the open “niQC” email group, which was created to foster

discussions on neuroimaging quality control. It was advertised at

major neuroimaging conferences and workshops, such as ISMRM

and OHBM. Email notices were also sent to members of software

development groups, to project consortia (e.g., ENIGMA) and

to many FMRI labs across the field. In the end, there were 10

participating teams, from labs across three continents.

Across the contributions, there was a wide array of software

used for each of the processing and QC phases. We list the

processing and QC software packages used by each team in

Table 2. We note that virtually all of the tools and implemented

procedures exist in freely available (and mostly open source)

software. As a result, this means that this set of Topic contributions

assembles detailed QC descriptions across many widely used

software packages that can immediately be used across the field for

training, processing and research applications.

Results

Common themes across teams

There were several common themes running across the

participating teams’ analyses.

1) Each team found subjects to exclude based on one or

more aspects of data quality. As noted above, these collections

all come from standard public data repositories. These repositories

are great resources for the field for open data sharing, increasing

multisite studies and having validation datasets, but there should

generally not be the expectation that they are fully curated for

data quality (and as noted in below in Theme 7, it may be

impracticable to do so in a general way). Exclude-or-uncertain

rating fractions varied across the teams, but many excluded 25%

or more (Figure 1). In some cases, subtle but systematic artifacts

were even found that led to recommending the complete exclusion

of Groups 2 and 4 (see Reynolds et al.). These findings stress the

importance of performing QC: researchers should always check that

data contents are appropriate for their study, whether acquiring

collections themselves or downloading them.

2) Each team evaluated one or more subject’s datasets

as “uncertain.” This is reasonable and expected, particularly

when first investigating a data collection. This categorization

would almost by definition be expected to be heterogeneous
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TABLE 2 Software used by each participating team for data processing and quality control.

Team Software for processing Software for QC

(A) Birn AFNI, FSL, ANTs AFNI

(B) Di and Biswal SPM, Matlab SPM, Matlab

(C) Etzel fMRIPrep (with ANTs, AFNI, FreeSurfer, FSL, Nipype) R (with knitr, RNifti and fields), AFNI

(D) Lepping et al. AFNI AFNI, REDCap

(E) Lu and Yan DPABI, DPABISurf, DPARSF, fMRIPrep, FreeSurfer, ANTs, FSL,

AFNI, SPM, PALM, Matlab, DARTEL

DPABISurf, DPARSF, fMRIPrep, Matlab

(F) Morfini et al. CONN (with ART), SPM12, Matlab CONN, SPM12, Matlab, FSLeyes

(G) Provins et al. MRIQC (with ANTs, AFNI, FreeSurfer, FSL, Nipype, SynthStrip),

fMRIPrep (with ANTs, AFNI, FreeSurfer, FSL, Nipype)

MRIQC (with ANTs, AFNI, FreeSurfer, FSL, Nipype, SynthStrip), fMRIPrep

(with ANTs, AFNI, FreeSurfer, FSL, Nipype)

(H) Reynolds et al. AFNI, FreeSurfer AFNI

(I) Teves et al. FreeSurfer, AFNI AFNI

(J) Williams et al. FSL, cinnqc (with FSL and pyfMRIqc) pyfMRIqc

Citations for each are included here, in alphabetical order: AFNI (Cox, 1996), ANTs (Avants et al., 2012), ART (Ardekani and Bachman, 2009), cinnqc (https://github.com/bwilliams96/

cinnqc), CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012; Nieto-Castanon, 2020), DARTEL (Goto et al., 2013), DPABI (Yan et al., 2016), DPABISurf (Yan et al., 2021), DPARSF (Yan and

Zang, 2010), fields (Nychka et al., 2017), fMRIPrep (Esteban et al., 2019), FreeSurfer (Fischl and Dale, 2000), FSL (Smith et al., 2004), FSLeyes (McCarthy, 2022), knitr (Xie, 2014), Matlab

(www.mathworks.com), MRIQC (Esteban et al., 2017), Nipype (Gorgolewski et al., 2011), PALM (Winkler et al., 2014), pyfMRIqc (Williams and Lindner, 2020), REDCap (Harris et al., 2009,

2019), RNifti (Clayden et al., 2020), SPM (https://www.fil.ion.ucl.ac.uk/spm/; Ashburner, 2012), and SynthStrip (Hoopes et al., 2022).

across researchers, given their different backgrounds, experience,

opinions, expectations and intended use for the data. QC

considerations and criteria will adapt over time, likely reducing

the number of uncertain evaluations, but it is still a useful

categorization to have in a QC procedure. It is essential to

identify unknown or “surprising” features of a data collection or

processing procedure. In a real study, this rating would likely

be a temporary evaluation that leads to checking acquisition

or other aspects more in-depth, perhaps even leading to a

corrective measure or change in the acquisition. A subject

given this rating may eventually be evaluated as either include

or exclude.

3) Nearly all QC protocols started by investigating the

unprocessed data’s consistency and “metadata” properties. These

included checking the number of EPI runs, voxel sizes, acquisition

parameters, and other properties that are generally contained in

the NIFTI headers and/or JSON sidecars; standard data collections

are also likely to be accompanied by further subject descriptions

(age, demographic, etc.). Even when acquiring one’s own data, it is

necessary to be sure that these underlying properties are consistent

and meet expectations. Alterations in scanner settings, software

version, DICOM field conversion and more can easily occur, and

these can detrimentally alter dataset features, affecting final results

or compatibility for inclusion within a study.

4) Each team identified consistency, reliability or mismatch

errors within subject datasets. For example, all teams found

two datasets that had upside-down EPI datasets, and some

also identified left-right flip errors between a subject’s EPI

and anatomical volumes, which is a disturbingly common

problem in FMRI (see Glen et al., 2020). Two teams even

suspected that a subject’s EPI and anatomical volumes came

from different subjects, based on sulcal and gyral pattern

mismatch. These kinds of fundamental data issues are difficult,

if not impossible, to reliably correct after the fact. Some

groups chose to address the EPI-anatomical consistency issues

by assuming the anatomical dataset was correct, but while

that may produce EPI-anatomical consistency, the presence

of such header problems greatly reduces the reliability in

absolute left-right identification. As was noted by multiple

teams, fiducial markers are needed for clear identification (and

some were identified in the visual inspections of some Project

datasets here).

5) Each QC protocol used qualitative criteria and visual

inspection of datasets. These included checking the raw

data and inspecting derived images (e.g., TSNR or standard

deviation maps) for suitability, as well as for artifacts. Visual

checks were also used to evaluate the success of processing

steps, such as alignment or statistical modeling. While these

procedures cannot be performed automatically, they benefit

greatly from systematization within a QC protocol, which software

developers aim to facilitate. These qualitative checks carry the

requirement for researchers to learn how to distinguish reasonable

and problematic data, as well as to accurately communicate

their methodology.

6) Most, but not all, protocols included

quantitative/automatic checks. The teams employed a variety of

quantities based on subject motion, TSNR and other measures.

These tests are useful and find some of the most common kinds

of expected problems. It was perhaps surprising that not every

protocol included quantitative checks (while all did include

qualitative ones, noted in Theme 5). This may reflect that

visualization is still key to evaluating several data features and

processing steps, and quantitative criteria typically originate as

useful extensions of such understanding. It is likely that more

developments for automating certain checks will be made over

time, but this process also typically is rooted in visual inspection

during the “training phase” of determining meaningful quantities

and reasonable thresholds.

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1205928
https://doi.org/10.3389/fnimg.2023.1072927
https://doi.org/10.3389/fnimg.2022.1070151
https://doi.org/10.3389/fnimg.2023.1070274
https://doi.org/10.3389/fnins.2023.1076824
https://doi.org/10.3389/fnins.2023.1069639
https://doi.org/10.3389/fnins.2023.1092125
https://doi.org/10.3389/fnimg.2022.1073734
https://doi.org/10.3389/fnins.2022.1073800
https://doi.org/10.3389/fnins.2023.1100544
https://doi.org/10.3389/fnins.2023.1070413
https://github.com/bwilliams96/cinnqc
https://github.com/bwilliams96/cinnqc
http://www.mathworks.com
https://www.fil.ion.ucl.ac.uk/spm/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Taylor et al. 10.3389/fnins.2023.1205928

FIGURE 1

The set of QC evaluations for each subject (Group 0 = sub-001, sub-002, …; Group 1 = sub-101, sub-102, …; etc.), by each participating analysis

team (see Table 2 for each column label, A–J). Group 0 contained task-based FMRI, and Groups 1–7 contained resting state FMRI. Groups within the

data collection contained a range of data quality, from reasonable to poor. A large number of subjects were given evaluations of exclude or

uncertain, showing the need for QC in FMRI studies. There is also variation among team evaluations, which was expected due to their di�erent

treatments of subject motion, signal coverage, and other focal features. This is discussed below in the Results.

7) QC parameters were closely tied to a specific analysis and

research goal.Nearly every groupmade the point that some subject

data and data collections may be appropriate for one particular

analysis but not another. As a consequence, it is likely not possible

to simply adopt existing QC ratings on a given data collection from

a separate study when using that data for a new project. While

prior QC evaluations may inform those of a new analysis, the

burden is always on the researcher to be sure of the contents of

the data for their current application. There is no “one size fits all”

set of criteria, as there is no single method for designing a study

(sample size, number of groups, task paradigm, etc.), acquiring

data (different field strengths, echo number, etc.), performing
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analysis (ROI- vs. voxel-based; surface vs. volumetric; etc.)

and so on.

8) Non-EPI items can affect FMRI analysis, too. While the

vast majority of QC evaluations focus on the EPI volume and its

spatiotemporal properties, checks on the accompanying data can

also affect the usability of the dataset as a whole. For example,

some cases of notable anatomical variability were cited by most

teams, such as having extremely large ventricles (and its limiting

effect on the accuracy of template registration), as well as other

anatomical anomalies. In other data collections one might find

alterations to structure due to tumors, surgery or hemorrhages,

which might necessitate removing a subject from the analysis or

at least constrain the analysis options. Similarly, evaluating the

stimulus timing in its own right was shown to be useful (Etzel;

Reynolds et al.). For more complicated study designs, one might

also analyze accompanying data such as physiological time series

(such as cardiac and respiratory rate), etc. All the input data used

for analysis needs to be reviewed.

9) Each team made their processing and QC pipelines

publicly available. This kind of open processing (e.g., using

GitHub, OSF or another accessible webpage) is becoming more

common within the field, but it is important for this practice

to keep growing. Given the didactic nature of this Research

Topic, we hope that having these methods directly available will

encourage the implementation for more detailed QC protocols

and reporting.

Individual elements and focuses among
teams

Each of the submissions also introduced their own unique

perspective and tools for quality control. We briefly list some

examples here.

Birn analyzed the seven resting state groups. This paper

explored the effects of using different motion thresholds, as well as

the inclusion/exclusion of low-frequency fluctuation bandpassing,

during processing. In particular, it investigated some trade-offs of

trying to remove artifactual features with reducing the degrees of

freedom in each subject’s data, using network based dissimilarity

matrices of QC-FC (Ciric et al., 2017; see below) that can be used

for quality control evaluation.

Di and Biswal analyzed 1 task group (using stimulus timing)

and the seven resting state groups. The authors included tissue-

based segmentation estimates within their visual checks of

anatomical-to-template volumetric registration. Tissue-masks were

also used within a set of time-series checks of subject motion-

related artifacts, where principal components of white matter and

cerebrospinal fluidmasks were examined for similarity withmotion

regressors and global mean signals.

Etzel analyzed 1 task group (using stimulus timing). This work

focused on the task-based FMRI data. Among other QC steps,

it included checks for participant behavior and responsiveness,

such as by basing some criteria on patterns of button-pushing.

Being confident that subjects had followed the task assignment to a

reasonable degree is indeed paramount in neuroimaging, whether

for explicit task-based paradigms or for naturalistic and resting

state ones (with eye-tracking, alertness monitoring, etc.).

Lepping et al. analyzed the seven resting state groups. While

all teams had an explicit list of QC criteria, this team created

a REDCap checklist form to itemize and store the dataset

assessments. They emphasized how this system facilitated the

training and replicability aspects of the QC, which are vital aspects

in any evaluation procedure. This also provided a convenient

mechanism for sharing QC results.

Lu and Yan analyzed the seven resting state groups. This team

included surface-based processing and criteria as part of their QC

procedure, even though the analysis itself was explicitly volumetric.

This allowed the evaluation to contain an interesting intersection

of anatomy- and function-based assessment. They also briefly

explored the differences of group-level tests with and without

incorporating their excluded subjects.

Morfini et al. analyzed the seven resting state groups. Among

other QC criteria, this team used multiple “QC-FC” analyses (Ciric

et al., 2017) to evaluate the data at the group-level, an approach

which incorporates both the quality of underlying data itself and

the denoising/processing steps utilized on it. For example, one QC-

FC measure involved calculating correlation matrices from 1,000

random voxels across a gray matter template in standard space.

Provins et al. analyzed one task group (not using stimulus

timing) and the seven resting state groups. This work included

exclusively qualitative assessments of quality, including signal

leakage from eye movements, carpet plots and ICA-based

components. One particular point of emphasis was on the

importance of examining “background” features within the field of

view (FOV), as patterns there can reveal several kinds of artifacts,

such as aliasing ghosts, subject motion spikes, or scanner issues.

Reynolds et al. analyzed one task group (using stimulus timing)

and the seven resting state groups. This QC procedure was

organized into 4 or 5 separate stages for the resting state and

task FMRI data, respectively, including GUI-based checks with

InstaCorr (interactive “instant correlation;” Song et al., 2017) to

follow up on observed spatio-temporal features as necessary. The

authors also explicitly placed QC within the larger context of

understanding the contents of the dataset and having confidence

in what goes into the final analysis, rather than viewing it simply as

a subject selection/rejection filter.

Teves et al. analyzed one task group (using stimulus timing)

and one resting state group. This team organized their work as a

QC assessment guide for both new and experienced researchers,

and they emphasized the importance of interactive training and

discussions with new researchers. They also used the comparison

of EPI-anatomical alignment cost function values as a measure to

trigger a visual check for potentially mismatched datasets.

Williams et al. analyzed one task group (not using stimulus

timing) and five resting state groups. In particular, this work

focused on the issue of inter-rater variability and reliability.

Even within a single lab performing QC, there can be different

assessments of datasets: qualitative evaluations can vary, as well

as the choice of specific quantitative thresholds. This issue is also

critical for describing QC procedures as accurately as possible to

others when reporting results.
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General di�erences in team perspectives

Overall, there were some general differences in teams’

approaches and scopes, which influenced QC discussions and

selections. These did not reflect decisions that would necessarily be

described as either right or wrong, but rather different choicesmade

by teams that would contribute to variability of dataset evaluations

(see Figure 1).

Firstly, the range of QC items necessarily depended on what

processing steps were implemented, and the latter choice can vary

widely across the field of FMRI analysis. There is no generally

defined set of processing steps to apply when performing QC of

an FMRI dataset. For example, some groups included subject-level

(or “first level”) regression modeling within their processing, while

others did not.4

Secondly, for the task FMRI dataset, some teams chose to

ignore the timing files in their QC processing, while others included

the stimulus information. Some even analyzed and interpreted

the performance information in detail on its own within the

list of exclusion criteria (e.g., Etzel). These again reflect different

choices and degrees for understanding the presented data, and will

necessarily contribute to variability in subject selections. For more

complicated task designs (which certainly exist within the field),

one would expect the QC approaches to have further variability,

and to be closely tied to the analyses at hand, such as which stimulus

contrasts are particularly central to the analysis.

Thirdly, the issue of subject motion was viewed and treated

differently. Some teams used estimated motion-based parameters

(e.g., Enorm or FD) for censoring (or “scrubbing”) time points

to remove potentially contaminated volumes, and then to include

the number of censored volumes within subject exclusion criteria.

Other teams adopted processing approaches to mitigate effects of

subject motion in other ways (within minimal or no censoring),

with the stated aim of avoiding potential biases, arbitrary thresholds

and loss of subject data. These philosophical choices will result in

very different criteria for QC evaluations, given that typical data

collections contain a range of subject motion profiles.

Fourthly, there were also different interpretations of how much

signal dropout and distortion within a volume was acceptable

before excluding a subject. For example, one team excluded 166

out of 169 subjects (and listed the remaining 3 as uncertain) from

the evaluations of these features (Provins et al.). In a real study,

this consideration might take the form of listing brain regions of

particular interest and verifying the signal quality there specifically.

Additionally, beyond the fact that researchers make their own

choices when determining what data are satisfactory to include

in their research, the Project guidelines omitted details such as

research goals, which might imply anatomical regions of particular

interest. Similarly, subject group types were omitted, which might

identify subjects for whom elevated levels of typical motion, or

anatomical anomalies, would be expected. Researchers also made

independent choices on how to treat within-group inhomogeneity

4 In some cases, this may reflect a di�erentiation of “processing” vs

“preprocessing,” in which the former includes subject-level regression while

the latter does not. However, these terms are not used consistently across

the field. Within the Project description, “processing” was consistently used.

of acquisition, such as whether subjects were required to be scanned

on the exact same grids or to have the same number of EPI runs. As

such, for this Project variance in QC perspectives was expected.

Discussion

The immediate goals of this project were:

1. To promote the broader adoption of quality control practices

in the FMRI field. There are many QC tools and protocols

available in publicly available software (e.g., those in AFNI,

CONN, DPARSF, fMRIprep, MRIQC, pyfMRIqc, and SPMwere

all used here), perhaps more than people have typically realized,

and this set of Research Topic articles provides a didactic

collection of them for researchers and trainees to use.

2. To facilitate the inclusion of more details in QC protocol

descriptions. Each Project contribution contained an explicit

list of QC criteria, along with demonstrations of most features.

We hope these help start to systematize QC reporting within

the field.

3. To develop the view of QC as more than “just” vetting

datasets, but rather as more deeply understanding the

contents of the collection and analysis as a whole. This should

allow for greater confidence in final results, and hopefully

improve reproducibility and reliability across the field.

4. To share QC criteria across researchers who are performing

analysis and developers creating tools, thereby improving the

set of available QC tools in the process. We would expect

increasing clarity and potentially homogeneity of QC methods

as a result of this work.

One longer term goal is to motivate the development of new

QC methods, techniques and criteria. As noted in several Project

papers, MRI acquisitions and analyses are complex and always

changing, so evaluation criteria should continue to adapt. For

instance, new images may summarize a feature in a clearer way,

or more quantitative methods could be developed to streamline

QC procedures. It is our experience as methods researchers and

software developers that these kinds of advances are often rooted in

visualization and understanding: quantitative checks are essentially

extensions of qualitative ones, in which understanding is rooted. The

present project collected a large number of datasets with varied

properties, so that many people could view and comment on them

in detail—we hope this provides a useful incubator for further QC

development, which can be expanded across more data collections

and researchers.

Another long term goal of this project is to facilitate the

development of a common language and clear description of

QC items. Several teams noted that there is not currently any

general commonality in criteria or descriptions in the field, and

that developing one would improve the ability to use, understand

and communicate QC in work. For example, even referring to

an apparently straightforward mathematical measure like TSNR

(temporal signal-to-noise ratio) can lead to confusion, since there

can be multiple reasonable definitions. Therefore, analysts should

specify which definition they are using (as well as ensure that they

are using a reasonable one), not only a numerical threshold.
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QC recommendations for researchers

The following are recommendations for implementing quality

control in FMRI studies, drawing from the accumulated Project

contributions, guidance and suggestions.

1) Check new acquisitions immediately—delays can lead

to wasted data. Performing in-depth evaluations is crucial with

the first few subjects in a protocol, to avoid systematic errors

from the start. Maintaining checks remains important as scanner

settings can easily be changed by accident or through an upgrade,

etc., and this can flag alterations in data quality or properties.

Acquiring good data is always better than trying to fix problematic

data retrospectively.

2) Conduct detailed QC checks whenever using a new data

collection or starting a new project. Most public repositories

explicitly note that curation should not be assumed, and prior

checks may have focused on different purposes, regions of

interest or type of analysis. QC also integrates directly with

verifying processing steps, and different analyses may have different

properties and requirements.

3) Treat QC as understanding data, not just “removing bad

data.” FMRI datasets are complicated, and many small details can

affect downstream results. Treating QC as purely the elimination

of bad data can lead to selection bias and to missing systematic

issues—often checking why some datasets get removed provides

useful insight into the entire collection. Understanding the full

properties (and realistic limitations) of data will generally lead

to better interpretation of it. Researchers should be confident in

their data and its contents, and in-depth QC is the only way to

achieve this.

4) Apply both qualitative and quantitative checks.

Visual verifications remain fundamental in data analysis, as

shown by the participating teams here. These can be usefully

systematized for maximal efficiency and utility, and these inform

and complement automatic checks of derived quantities. This

combination also typically helps with the development of new

QC measures.

5) Clearly define and describe all QC steps and measures.

This is necessary to maintain consistency of the QC within a lab

or group setting, as evaluations of features can change over time

or differ among people. All quantities should be clearly defined,

since there may be multiple derivations; thresholds are not useful

if their associated quantities are not clearly described. Having clear

checklists facilitates implementing the QC, as well as reporting it in

papers and presentations.

6) Coordinate QC evaluations with the paradigm and aims

of the current study. In practice, it is difficult to make one QC

evaluation apply to all possible purposes, due to the variability

of study design, regions of interest, etc. Viewing previous QC

evaluations might be useful, but those could be missing important

characteristics for the present work or be overly harsh/lenient.

Include explicit QC discussions in the planning stages of each

study design.

7) Ensure (at least some) in-depth QC, even for large studies.

The typical amount of time, expense and per-researcher effort of

acquiring any subject is large (e.g., planning, piloting, grant writing,

training, acquiring, and analyzing). As many QC steps are already

integrated into analysis software, the relative effort of checking

data and processing quality is actually quite small compared to

that of the other stages of acquisition and analysis—QC should

not be skipped simply because it comes near the end of processing.

Big data can still be corrupted by systematic issues in acquisition

and analysis. Even when applying automatic checks across all

subjects, in-depth QC (including visualization and qualitative

checks) should still be applied to at least meaningful subsamples

across scanners and systematically across time, to avoid wasted data

and resources as well as artifactual results.

8) Share QC advice and recommendations. Stating what

QC steps are most useful for identifying certain features or

for validating data for certain analyses benefits everyone in the

neuroimaging community. Similarly, adding new tests and features

helps other researchers and software developers directly.

9) Make QC scripts public where possible. While textual

descriptions of methods in papers are useful and provide

explanatory context, there are many influential details for both

processing and QC that exist only at the level of code. Researchers

presenting findings in posters, talks and other presentations would

also be encouraged to provide links to their processing and QC

scripts. Having the code available provides a valuable resource for

the field, and hopefully this will help promote the wider adoption

of QC integration into FMRI processing.

10) Make QC evaluations public where possible. Many of

the QC protocols and software tools implemented in Project

contributions produced reports that can be shared and/or archived.

These include PDFs, HTML pages, RedCap reports, and JSON

files. These could be included in NeuroVault uploads, for instance,

as well as linked to papers, presentations and data repositories.

Additionally, provide QC feedback to public repository hosting

sites and/or to the researchers who acquired the original data:

just like software packages, data collections have version numbers

because fixes and updates can be required; QC feedback can benefit

the neuroimaging community.

11) Stay up to date with QC developments. QC measures

and methods will change over time. New acquisition and analysis

approaches will lead to new artifacts and other considerations to

evaluate; new ideas and software developments provide new checks

and solutions.

Conclusions

This Project demonstrates that there are many tools and

procedures currently available for performing quality control in

FMRI. It also presents a healthy warning that much can go wrong

with the complex data acquisitions and analyses that go into FMRI,

and QC should be included in all studies, whether researchers are

using public datasets or acquiring their own scans. With careful

preparation and quality control investigations, researchers can be

more confident that their results are based on reasonable data and

the intended processing. In short, we urge researchers to choose a

quality control method that is thorough and understandable, and

to keep looking at the data.
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